•  
  •  
 

Turkish Journal of Mathematics

Author ORCID Identifier

HÉCTOR GUERRERO MORA: 0000-0002-5919-1046

WILLY SIERRA: 0000-0003-3303-8032

Abstract

In this article, using the concept of a Killing vector field along a curve, we extend certain results concerning a family of curves—previously studied in three-dimensional Euclidean space—to the setting of three-dimensional Minkowski space. Depending on the causal character of the curve, we derive Lancret-type results that establish the necessary and sufficient conditions for the existence of this family in three-dimensional Minkowski space. We determine the intrinsic equation of this family in three cases: (i) when the curve is nonnull with a nonnull acceleration vector, (ii) when the curve is spacelike with a null acceleration vector, and (iii) when the curve is null. In this article, using the concept of a Killing vector field along a curve, we extend certain results concerning a family of curves—previously studied in three-dimensional Euclidean space—to the setting of three-dimensional Minkowski space. Depending on the causal character of the curve, we derive Lancret-type results that establish the necessary and sufficient conditions for the existence of this family in three-dimensional Minkowski space. We determine the intrinsic equation of this family in three cases: (i) when the curve is nonnull with a nonnull acceleration vector, (ii) when the In this article, using the concept of a Killing vector field along a curve, we extend certain results concerning a family of curves—previously studied in three-dimensional Euclidean space—to the setting of three-dimensional Minkowski space. Depending on the causal character of the curve, we derive Lancret-type results that establish the necessary and sufficient conditions for the existence of this family in three-dimensional Minkowski space. We determine the intrinsic equation of this family in three cases: (i) when the curve is nonnull with a nonnull acceleration vector, (ii) when the curve is spacelike with a null acceleration vector, and (iii) when the curve is null.

DOI

10.55730/1300-0098.3587

Keywords

Curves, intrinsic equation, Killing vector fields, Lancret-type results, Minkowski space

First Page

244

Last Page

260

Publisher

The Scientific and Technological Research Council of Türkiye (TÜBİTAK)

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Share

COinS