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UNIQUE FACTORISATION FOR COMMUTATIVE RINGS
WITHOUT IDENTITY

A.G. Agargin € C.R. Fletcher

Abstract

This paper concerns the unique factorisation property in commutative rings not
necessarily with identity. We give a new definition of irreducibility and associates in
a commutative ring with 1 (crwl), and define a UFR R in terms of a monomorphism
from R into a crwl. This becomes equivalent to the definition in [3] when R has
an identity. We generalize results on direct sums and direct summands. By our
definition we have new members of the family of UFR’s.
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1. Introduction

It is well known that a straightforward transfer of definitions from Z to a subring
will lose the property of uniqueness of factorisation into primes. But one useful way to
deal with rings not containing an identity is to embed them into a ring with identity.
With a subring of Z this could lead us back to Z or not as we chose. Back in Z, if we
took that road, we could adopt the usual factorisations for our elements.

Suppose then that R is a commutative ring, perhaps without identity. R’ is a
commutative ring with identity, and 6 : R — R’ is a monomorphism. We then consider
factorisations of elements of R via the factorisation of the elements of #(R) in R'. Two
fundamental ways in which to construct an appropriate ring containing an identity are as
follows.

(i) Form R x Z with the usual addition, and with multiplication defined by
(a,n) - (bym) = (ab+ ma + nb,mn).

Then R x Z is a commutative ring with identity (0,1) and § : R > R X Z is a
monomorphism where 0(r) = (r,0).

(ii) Form the ring of fractions Rg where S contains no zero-divisor, then g :
R — Rg is a moromorphism where

Os(r) = [rs, ]
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We could define uniqueness of factorisation absolutely in terms of one or both of
these, but it seems more sensible to define the concept relatively and talk of a unique
factorisation ring with respect to a particular monomorphism. Incidentally, the subrings
of Z do not give unique factorisation rings under construction (i). For example, in 27 x Z
we have the different U -decompositions

()((2,0)(2,0)(2,0)(2, 1)) = ( )((2,2)(2,0)(2,1))

(see below for the definitions).

2. Definitions

Let R be a crwl. A non-unit element p € R is said to be irreducible if whenever
P = ai---a,, then for some 4,a; = aal, a,b € R are said to be associate if a divides b
and b divides a. We write a ~ b if a and b are associates.

We recall that U(r), the U-class of r € R, is given by

Ufry={a€R|3B€R where r=afr}
and a U-decomposition of r € R is a factorisation of r, written in the form

r=(py - pp)(P1L ),

where all the factors are irreducible, the factors of the first bracket are in U(p; - - pn)
and p; € U(p1---P;i--pn) for each i, the hat signifying omission.

Then R, a commutative ring with identity (erwl), is a unique factorisation ring
(UFR) if every non-unit element has a U-decomposition, and if for two such
U -decompositions

?

a= (P p)@rpn) = (@1 @)@ gm),

we have m = n and p;, ¢; are associate after a suitable renumbering of the g¢s.
But now we require the following generalisation of the definition of irreducibility.
Let R be acrwl, then a non-unit element p € R is said to be a neo-irreducible if whenever

Yp =ya1- - an

for any y € R, then ya; ~ yp for some i. This corresponds to the usual definition
for integral domains, but if zero divisors are present, the number of irreducibles may be
reduced. For example (50, -1) is an irreducible but not a neo-irreducible in 5Z x Z since

(5,0)(50, 1) = (5,0)(5, 2)(5,2)

and
(5,0)(5,2) # (5,0)(50, —1)(5k, £).
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However, as we shall see, the definitions of irreducible and neo-irreducible are equivalent
for rings with unique factorisation. And for a crwl, a UFR remains a UFR for the identity
monomorphism.

Following the innovation in the definition of neo-irreducible we define a pair of
associate elements similarly in terms of subset T' of R. We say that a,b € R are ass(T)
if for each y € T ya ~ yb and we write a ~7 b. ~p is an equivalence relation which
reduces to the usual relation if 1 € T'.

We may now define what we mean by a commutative ring, not necessarily contain-
ing an identity, being a UFR with respect to a monomorphism.

Definition. Let R be a commutative ring and R’ a crwl, and suppose 0 : R — R’ is
a monomorphism with 8(R) an ideal of R'. Then R is said to be a UFR with respect to
(w.r.t) 8 : R — R' if the following properties are satisfied.

UFR1. Every non-unit element of the form 6(a) in R’ has U -decompositions into
neo-irreducibles in R'.

UFR2. If 6(a) = (0y---Pp) (@1 Pn) = (@1 q)(q1-"-gm) are two such U-
decompositions of a non-unit 6(a) € 6(R), then m = n, and p; ~or) ¢ for i =1,...n
after a suitable renumbering of the ¢’ s.

Since every product of neo-irreducibles may be turned into a U -decomposition the
property UFR1 is equivalent to ’every non-unit element of the form 6(a) in R' may be
expressed as a product of neo-irreducibles in R’'.

3. Equivalence of Definitions

We may now substantiate our claim that in the case of a crwl the new definition
of UFR is equivalent to the old definition in the following sense.

Theorem 1. Let R be a crwl. Then R is a UFR if and only if R is a UFR w.r.t
1:R—-R.

It is helpful first to show that the definitions of neo-irreducibility and irreducibility
are equivalent when we have uniqueness of factorisation.

Lemma 2. Let R be a crwl.
(i) If R is a UFR then every irreducible in R is neo-irreducible;

(ii) If R is a UFR w.r.t 1: R — R then every irreducible in R is neo-irreducible.
Proof. (i) Suppose ¢ is irreducible in R, and for any y € R let

yq =yai---an,. (1)
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We have to show that yg divides ya; for some ¢. If y is a unit or zero this is the case.
If y is non-zero and non-unit then it has an irreducible decomposition y; - - - y,. Suppose
that ¢ € U(yy ---ys) then y = gay and ya; = yg(aa;) for each of the clements a;. The
case when ¢ € U(y; - - - ys) involves chasing elements round two U-decompositions. Write
each side of (1) as a U-decomposition

Werr - ys) (W -yeq) = (g5 -0 ) (Y- pi- ),

where on the right hand side the p elements are irreducible factors of the a elements.

Since R is a UFR, ¢ is an associate of either y; or p;. If the latter then p; = g8 and

a; = qf giving ya; = ygB . The former possibility is a little more complicated and

requires another split into two cases. Suppose t +1 <4 < s then y; € U(y;---y:q) and
Y1 Yeq = YiYY1 - - Yeq-

But if ¢ and y; are associate then y; = ¢§ and

Y1 Yy = Y1 Yeyiyoq.
Hence
ya; = yq(vda;).
Finally, suppose that 1 < <¢. Then

(yt+1~--ys)(y1--~yi~~ytq):(yj'-~pj-~-)(yi---pi---)-

The two y;s can be paired off leaving g an associate of some other y;, and the process
can be repeated. Eventually we reach a case which we have dealt with previously. Hence
q is a neo-irreducible.

(ii) The proof of the second part starts off differently but soon falls into a similar
pattern. Suppose ¢ is irreducible in R, and for any y € R let

Yq =yai - ay. (2)

Once again we have to show that yq divides ya; for some i. Express both sides of (2)
as products of neo-irreducibles in the UFR w.r.t 1: R — R. We do not know that ¢ is
neo-irreducible; this in fact is what we are trying to prove:

Y Ys i dR =Y Ys Pic, 3)

where p; is a neo-irreducible factor of a;. Since ¢ is irreducible in R we have q; = go
say, and ¢z ---qx € U(q1). Now consider U-decompositions of both sides of (3).

If g € U(yr---ys) then y = qray = yg(oa) and ya; = yg(ocaar). If ¢ ¢
U(yy - --ys) then the U-decompositions will take the forms

and the proof procedes as before. QO
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Proof of Theorem 1. Suppose first that R is a UFR. Then each element has a U-
decomposition into irreducibles and this becomes a U-decomposition of neo-irreducibles
with respect to 1: R — R. Therefore UFR1 is satisfied. Since pairs of associate elements
are clearly ass(R) it immediately follows that UFR2 is satisfied, and hence R is a UFR
wrt 1: R — R. For the converse suppose R is a UFR wrt 1 : R — R, then a U-
decomposition of neo-irreducibles becomes a U decomposition of irreducibles and UFR1
follows. Finally, suppose an element has two U-decompositions of irreducibles.

(PP @1 pn) = (a1 @) (@1 Gm)-

Then these become U-decompositions of neo-irreducibles and any pair of elements which
are ass(R) must also be associate. Thus UFR2 holds and R is a UFR. O

4. Examples

We may illustrate these ideas by considering subrings of Z, and by answering the
question whether nZ is a UFR w.r.t 8 : nZ — nZx Z. We consider first the case where
n is prime. For convenience the term 'prime’ will encompass the negative prime numbers.

Proposition 3. Let p be prime in Z, then the neo-irreducible of pZ x Z are as follows.

(i) (=px1,p), where p is prime in Z and p = £1(modp).

(i1) (pF1,%1), where p is prime in Z and p = +1(modp);

(iii) (p—7,7), where p, 7 are prime in Z and o % +1(modp), o = T(modp);

(iv) (0,%p), (£p,0), (£2p, +p);

(v) (£p,¥p).

The proof of this proposition is long but trivial and so it is omitted. From it,

however, we can see that pZ is a UFR w.rt 0: pZ — pZ x Z. We note in passing
that the only neo-irreducibles we need from the above list to factor elements of 0 (pZ) are

(p F1,£1),(0,0) and (£p,0). For let pr = pbry -+ -ri81--- 8, be a prime factorisation
where r; = £1(modp) and s, # £1(modp). Then

(p?", 0) = (pa O)k (7‘1 F1 :tl) e (Tf F1, il)(owsl) T (07 sm)‘

Proposition 4. Let p be prime in Z. Then pZ is a UFR w.r.t 0 : pZ — pZ x Z
where 6(pr) = (pr,0).
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Proof. We have seen how to obtain a neo-irreducible decomposition of #(pr). To prove
uniqueness, we first see that the only neo-irreducibles in U(pr,0), with r # 0, are the set
{(=p=x1,p)}. Then if

(=p£Lp) ) (o F1,%£1) -
(Ph F1 il)(al - Tlle) U (019 - Tk’Tk) e (07 ﬂ:p)e(:i:p, 0>m(:t2a :Fp)n)

is a U-decomposition of (pr,0) we have

pr=p1--pror - ok (£p) (£p)™ (£p)",

where p; = +1(mod p) and ¢; # +1(mod p). So h and k are unique, and so is {+m+n.
Therefore we have UFR2 satisfied since the neo-irreducibles in the separate sections (ii),
(iii) and (iv) of Proposition 3, corresponding to h,k and £+ m + n, are all ass(8(p Z)).
In the case of » = 0, then (0,0) has always a U-decomposition as:

(0,0) = (some irreducibles of finite number )((+p, Fp)(£p, 0)).

Clearly, in {(£p, ¥p)(£p,0)} every pair of elements of form (+p, Fp) and every pair
elements of form (£p,0) are ass(6(pZ)) respectively. So pZ is a UFR w.r.t §: pZ — Z
x 7. m|

On the other hand, this result does not hold for a non-prime integer.

Proposition 5. Suppose that n is non-unit and non-prime in Z. Then nZ is not a UFR
wrt § : nZ - nZ x Z where 6(nr) = (nr,0).

Proof. The element 6(n) = (n,0) is not a unit. Neither is it a neo-irreducible since
if n = niny where 1 < ny, ny < n, we have (y,0)(n,0) = (y,0)(0,n1)(0,n2), but
(y,0)(n,0) does not divide (y,0)(0,n1) or (y,0)(0,n2). And any factorisation of (n,0)
must include (+n,0). So UFR1 does not hold, and nZ is not a UFR w.r.t 6 : nZ — nZ
x 2. O

As an example, 2 Z, 3 Z and 5 Z are UFRs w.r.t. the mapping given in Proposition
4. The element 120 is a member of each of these rings and we have the following three
neo-irreducible decompositions of the image of 120.

(120,0) = ( )( 0)(2,0)(4, —1)(6,—1) in 2Z x Z,
—1)(3, -1)(3,~1)(6, -1) in 3Z x Z,
(5

,—3)(5,—3)(5,—2) in 5Z x Z.

A
\_/
A

2
)
-3)
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5. Direct Sums and Direct Summands

We show finally that the operation of talking direct sums and direct summands
sends UFRs to UFRs. This generalises the result for crwls. The following proposition is
easily proved.

Proposition 6. Let R’ and S’ be crwls. Then (r,s) is a neo-irreducible in R' & S’ if
and only if r is a neo-irreducible in R' and s is a unit in S’, or r is a unit in R’ and
s 1s a neo-irreducible in S’.

The main theorems follow from this.

Theorem 7. Let R and S be UFRs w.r.t 6, : R —> R and 6, : S — S’ respectively.
Then R® S isa UFRw.rt 8 : R®S — R @5 given by 0(r,s) = (01(r),02(5)).

Proof. § is a monomorphism and (R @® S) is an ideal of R’ ® S’. Given (r,s) € R® S
we have neo-irreducible decompositions

O1(r)=r1---re  and  6a(s) =81 8p.

Hence (r,s) = (r1,1) -+ (re,1)(1,s1) - - - (1, 8,) and UFR1 is satisfied.
Suppose now (r,s) has the two U-decompositions

((ry, 1) - (ke s:)) (P11, 81) -+ (T, $1m))
= ((all’tll) T (alht/l) T (aé’tZ))((al’tl) T (anatn))'
Then (r},s;) € U((r1,51) € U((r1,51) -+ (Tm, Sm)) and it follows that 7, € U(ry - 7p),
s; € U(s1---5m). Also since (rj,s;) & U((r1,81) - (r7,8;) (T, Sm)), the previ-
ous proposition shows that we have exactly one of r; & U(ry---#;---rp,) and s; ¢

U(s1--+8j--8m). Suppose r; € U(ry---7;---rp) for j=1,...,9 and
ry  U(ry---7j--rm) for j = g+1,....,m. Then s; ¢ U(sy---8j--Sm),s; is not
a unit and r; is a unit for j = 1,...,¢. Similarly s; is a unit for j = g+ 1,...,m.
Let w =77y and v = sg41---8m then urgy is neo-irreducible in R’ and sqvU is
neo-irreducible in 5’. Therefore

() = () ury 1)
and

02(s) = (51~ sp) (51 540)

are U-decompositions. Similarly, we have the two other U-decompositions

01(r) = (a)---ap)(pansy---an)
O2(s) = (ty---tp)(t1--tny),

where y=a3---ap and v =tp 41 ---t, are units.

407



AGARGUN & FLETCHER

Since R and S are UFRs it is immediate that m — g =n — h and g = h. Hence

m =n. Also rj ~g,(rya; for j=g+1,...,m and s; ~g,(5) t; for j=1,...,g. Hence
(r,85) ~o(ras) (aj,t;) for j=1,...,m. Then RS isaUFRw.rt §: RS - R'dS'.
O

There is a similar result for direct summands.

Theorem 8. Suppose R= R, ®---® R, and R is a UFR w.r.t 8 : R — R'. Define
0;: Ry » R by 6;(r;) =6(0,...,ri,...,0). Then if 6;(R;) is an ideal of R’ it follows
that R; is a UFR w.r.t 0, : R, — R}.
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