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ON A CERTAIN FAMILY OF LINEAR POSITIVE
OPERATORS

Ogiin Dogru

Abstract
In this study, a family of linear positive operators, which includes the sequence
of linear positive operators built in a paper of A. D. Gadjiev and I. I. Ibragimov
and later investigated by B. Wood and P. Radatz, is defined and using the some
inequalities proved by P. J. Davis, results related to approximation properties of
this family are obtained.

1. Introduction

Let C([a,b],z?) be the space of functions defined on the entire line, continuous in
the interval [a,b], continuous from the right at the point z = b, and from the left at the
point z = a, and increasing to infinity not more rapidly than z%. Let us assume also that
L,, n=1,2,..., are linear positive operators, defined on the set C([a,b],z?).

The following theorem (5] is well known (concerning functions bounded in growth,
see [2]).

Theorem of P. P. Korovkin. If L,(t*;x) — 2, k =0,1,2, uniformly on the entire

interval [a,b], then Ly(f;xz) — f(x) uniformly on this interval for all functions f(x) €
C([a,b], z?%).

In [4], a general sequence of linear positive operators, while satisfies the conditions
of this theorem, is defined and it is shown that this sequence of operators, in special case,
consists of the well known Bernstein (see [6]), Szas (see [8]), Bernstein-Chlodovsky (see
[6]) and V. A. Baskakov [1] operators. Some new properties of the operators defined in
[4] are investigated in [7].

In this study, we define and investigate a generalization of the linear positive
operators defined in [4].
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2. Generalized Linear Positive Operators

Let A and A be positive real numbers, {px(t)} and {¢a(¢)} be the family of
functions in C [0, A] such that ¢ (0) =0, ¥x(t) > 0, for each t € [0, A4].
Let also {a,} be a family of positive numbers such that
)

lim —==1, lim ——— =
Abee A7 abe AZgy (0)

Assume that a family of functions of three variables {K(z,t,u)} (z,t € [0, 4],
—00 < u < 00, A > 0) satisfies the following conditions:

19, Each function of this family is an entire analytic function with respect to u for
fixed z and ¢ of the segment [0, 4] .

2. K(z,0,0) =1 for any z € [0, A] and for any A > 0.
39{@4V£;Km@uwww}zo (Ve [0,4], A>0, v=0,1,..).

t=

40, % Kx(m,t,u)]u;%l =—-)\z [L-IKh()\)(x,t,u)}

Auv-1

u=uj
t=0

(Vx € [0,A], X € RY, v = 1,2,...) where h()\) is a nonnegative function
satisfying the condition lim) . @ =1.

Consider the family of linear operators;

La(fiz) =) f(mqﬁ) { [%KA(%ta U)]

u= t
o0 o) ¥y (t)

t=0

where f € C([0,A4],2?) .

Note that for A=n and h(A\) = m+n (m+n=20,1,2,...), the operators defined
by (1) are reduced to the operators defined in [4].

First we prove the following theorem.

Theorem 1. Uniformly on [0, A]
lim Ly(f;z) = f(z)
A—00

for every function f € C([0, 4], z?).
Proof. It is easily seen that by 3° the operators Ly(f;z) defined in (1) are linear positive
operators. Thus, it is sufficient to verify the conditions of P. P. Korovkin’s theorem.

Since {Kx(z,t,u)} is entire analytic function, we can expand it to Taylor series of
any arbitrary point u = u;. Thus for each A > 0,

U S| E e I =

v=0
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Setting u = p(t) and u; = a\¥a(t), we have

Kx(z,t,0a(t)) = i { [%Kx(x,t,u)] o (t)} [a(t) — axa(8)]”

|
0 V!

Since x(0) =0 and K)(z,0,0) = 1, by setting ¢t = 0 we get,

i { [gf.v K,\(l”,t,u)] - } [Faaa (0)]° _ 1.

v!
v=0

This means that Ly(1;z) =1 for any A > 0 and the first condition of Korovkin theorem
is satisfied.

On the other hand, by using 4° in the equality

> v v —aa(0)]°
L)\(t,l') = 1;1 /\2(/»\(0) {[auv K,\(x,t,u)} u:at)\:%/\(t)} [ : /\( )]

v!

we obtain after simplification,

ta) = 30 E@nOlC) { [;;J_IKh(A)(x,t,u)] . } [—a&w‘

oz > oV ) [—axya(0)]”
= Z { l:a_uleh()\)(»L‘,t’U):l R } —

v!

Since Lp(y)(1;2) =1, we get

arz
Ly(t;z) = %

and since limy_,o 5 =1 uniformly on [0, 4],
lim Ly(t;z) = x.
A—00

Finally, using

La(t%2) = i (m)z { [%K)\(x,t,u)] — } [;O‘A:/j?ﬂ

v=1
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and making simplifications, we get

L)\(tQ;.fL') = %Z ) {

i [oava(0)]""

(v—1)!
8U 2 ]v—2
|

—K /\))(l',t,u):| (0 } %—

N I R
= 35 (0) P Z { [—8uv T Kn (r,t,u)J u-awuﬂ} !
X

g—-| —
@
C

(v—1)!
(2’ MA) e 1
A A A /\21/)A(0)
Since
. h(A\) .o . 1 _
am oy Thim e =1 and lim e =0,

we see that all conditions of Korovkin’s theorem hold
The proof is complete.

Remark. By choosing, A=n (n=1,2,...) in {K\(z,t,u)} we obtain, as in [4], some
known sequences of linear positive operators. Some of them follows
By choosing

uz " 1
Kn(l'ytau):l:]-_l_l_t] 7an:n?wn(0)zﬁ’
we have h(n) =n — 1 and the operators defined by (1) are transformed into Bernstein
polynomials.
For .
anp=n, Y,(0) = — ( lim b, =00,

lim — =0),
nb,  n—oo n—oo N
we obtain Bernstein-Chlodovsky polynomials

By choosing

1
Kn(l'yt,u) = efn(t+um)’ Qp =1, wn(o) ==
n

we have h(n) =n and get Sasz operators.
If K,(z) is entire analytic function and

1
K,(z,t,u) = K,(t + uz)

3 n="n, Y(0) = —
o=, n0) = ©
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then we obtain Baskakov [1] operators, and for
an=n,¢n(0)=— and — =0, ,
o

we get Baskakov [2] operators.

3. The Properties of The Operators Family (1)

Let us assume that {K(z,t,u)}, in addition to 19,29,3% 49 satisfies the condition

50, % K}\(x, t,u)| u:at);v,gx(t) = —da ¥ (0) Kh(,\)(.'L’,t, u)’ u:atx_lgk(g) .

It can be easily shown that for A = n (n = 1,2,...) the sequences of functions
{Kn(z,t,u)} in special case mentioned above also satisfy 5°.

Now let us remember the definition of the divided difference of a function g;

Assume that z¢,21,..., 2, be any points in the domain of g. Denote

[©0; 9] = g(o)
............... _g(mo) .
[-T07l'1,...7l'nag] T (wo—z1)(wo—x2)...(xo—Zn) + ...+ e e a1 SIS

The left hand side of this equalities are called, respectively, the zeros, first, second,
. ,(n — 1)-th divided differences of the function g.

Theorem 2. Let the family of the functions {Kx(z,t,u)} satisfies conditions 1° — 5°.
Then for each integer p > 0,

o0

dP af p! v v+l vt
I ) = )
—dxp /\(f,a‘) \2p l;ﬂ ':A%OA(O)’ )\290,\(0)’ ’>\2§0,\(0)’f

Ah(X) h(2) ()\)"'h(v+p—1) (A)

x ! (zax¥x(0))* LU CA R usay () (2)

where

BN = h(h(-h (V)

N——
v+p— times
and
v v+1 v+p J

A20x(0)" A20x(0)" 7 A204(0)’

is the divided difference of f at the points [0} )\;:';;%0) s /\21:;’(’0) .
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Proof. First, consider the equality

X%

W K)\(Z‘,t, u)| u:at)\:%)\(t) = (—l)ul'v/\ h()\) h(g)()\)"'h(v_l)(/\) Kh(v)()\)(l‘, t,u)

u=ay¥y(t)
t=0

Taking the derivative, we obtain by 5°,
d | o
dx | Ouv K.t u)l u:at)\z-‘f))\(t)]
= (=1)%0z" 7 AR(A) hig) () hip—1y (M)
wmayin ~ (TDTZIARRA) gy (A) R (V)
t=0

X Kh(v)()\)(x,t, ’U,)

X Kh(v+1)(/\)(x,t,u) N, a*d}/\(o)‘

t=0

From this, we get

d. .o N 9° (= (0)]°
Ea_jL)\(fﬂ ZL') - ,Uz:% )\21/)/\ d.’l? { [WKX(mvta U):' u:at/\:%)\(t) } !

Gy
S v+1 v ) )
= Z [f AQwA f()\%/;,\( ))] T AR(X) hiay(A) iy (X)

[aaoa ()] .

u=ay Yy (t) |
~0 v:

v=0

X Kh(v+1>()\)($,t,u)

Similarly, since

d2 a’u
dz? v K)\(x’t,u)’u*atk'ﬁ)\(t):l
= (—1)“2}(1} — 1)33'1}‘2/\ h()\) h(g)()\)h(vfl)()\) Kh(v)(/\)(l‘, t,u) w=ay by ()
{=0
_2(_1)vvx1)—1>\ h()\) h(2)()\)h(v)(/\) Kh(v+1)(/\)(m’t’u) u—as ¥y (6)
£=0
H(ED 2 AR by (V) hway () Koy oo (@t 0) |, ) (@x902(0))?,
{=0
we have
2

=S B2 gy vty v
G = 3|1t~ 2 ) + 1|
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[y (0))°F° .

u=ay Py (t) 1
tLOA v-

X Y\ h()\) h(2)(/\)mh(v+1)(>‘) Kh(v+2)(,\)(1‘, t, u)

In a similar way, we obtain

F L) = Z[f(—“i>—3f<“—”)+3f< L Y VL

=7 A (0) A2, (0) 2245 (0) 2245 (0)
0 v+3
X 2 AR Ay N By (N) Ky (@80 o [Bﬂ—iﬁ,”—

Thus, in general one can have

i

b — (x —i i vt v
T alfie) > (Z(—l)p CJ(w)) INR(A) B2y (A) " hioap-1)(A)

v=0 \i=0

[axpa(0)]"P

u:ac)\:dax(t) ,U! : (3)

X

LOISNEVMCARD

On the other hand, in [3, p.65] Davis shows that for [zg, 1, ..., zp; f] as being the
divided difference of the function f at the points xg,z1,...,zp, and for

P
APf(zo) =D (~1P7'Cif(zo+ib); b=ap—xk, 0<k<p—1,
i=0
we have the equality

1
[$07I17~~,90p;f] = bp—p!Apf(mo) .

Thus, for the points zy = W, T, = %7 vy Ty = A_Q%:I()—o) we have b = m.
Therefore ,
AP f(gir) = S O (),
A 7/}/\( ) = A2 (0)
and ) )
v v+ v+p v
; oo ;f} = AN
e W0 Tl ™ @)
Using these in (1), we obtain
dp = v v+1 v+p ]
—L 3 T . ) PR >
T = 3 o e St Tt !
N o 0)]"*
X x )\h()\) h(z) (/\)h(lH-pfl)()‘) Kh(v+p)()\)(matvu) wmay vy () %
t=0 ‘
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_ a’;p!i[ v v+ 1 v+p 'fJ
2 22 | pi(0) Mpa(0) T Npa(0)
AR(A) by (A) R p -1y (N)
vl

(2axya(0))” K,y 0 (2, 8, u) N
t=0

Hence the proof is complete. a

Theorem 3. Under the assumptions of Theorem 2,
La(f;z)

> (axz)* AR(A) by (V) i1y (M) 1 v
z:( /\(23’ - [0’ A2 (0)777 X2, (0) B OB
t=0

v=0

where [O, /\2¢1A(0)""’ /\2<p1;(0);fjl is the divided difference of f at the poinits
0

1 v
P X205 (0)7 77 X205 (0)
Proof. The Taylor expansion of Ly(f;z) about x =0 is

0 v v
z¥
On the other hand, if we rewrite the expression (2) in Theorem 2, for z = 0, we
get
d'U
L .
dz? )\(fvm) oo
_ayv! 1 W .
\20 [0, )\2()0)\(0) Jenny /\2¢/\(0) ; f:| )\h()\) h(g)()\) h(u—l)()‘) Khw)()\)((),t,u) u:at,\:tgxm .
Using this in (4) gives
La(f;z) =
> YAR(A) hay(A)hp—1y (A 1
Z (0a2) G (;);( VA ) [0’ 2 2 ’f] h(v)(,\)(O,t,u) uzay (1)
2 X T <t
and the proof is complete. O
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Theorem 4. Under the assumptions of Theorem 2,

/4 1pn
lim E_p Ly gy = D"

A—o00 AT ’

n!
where n is a natural number.
Proof. We give the proof by induction.

First, for n = 0, we show that

lim L !
A -2 La (87 2) = pl (4)

For this, in (2), let f(¢t) = t?. Thus,

dP o p! o v v+1 vtp
Py = O 2
Zor A (52) AP 1;) [V%(O)’)\?%(O)’ " A2px(0)’

AN A2y (A hiyap—1y (A
% ( ) (2)( )’U' (v+p 1)( )(xaxwx(o))v Kh(v+p)()\)(z,t,u)

u=ay Py () (6)

t=0

On the other hand, if f is p-th order differentiable, then the divided difference of
f satisfies the equality

(p)
[0, @1, .oy Tp; f] = P (z)

)

pl
where zo <z <1, (see [3, p.65]).
Taking
= zP = L = vtl = vt p
f(‘r) T I Zo A2§0/\(0) 9 z1 )\QQOA(O) ”"7$P )\290/\(0))
we have f(®)(z) = p!, and
[ v v+1 v+p '.r”]—g!—l
A205(0)" A2 (0)" 77 A20,(0)’ b
Using this in (6) give us
dr al pt G Ah(N) higy(\) hip-1)(A)
p. _ A v+p
Z b = S z
X(a:aﬂp)\(O))“ Kh(v+p)()‘)($’t’ ’LL) u=ay ¥y (t)
t=0
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From the last equality, we can write

dp ap p! e h( )()\) h( +1)()\)"'h(v+ _1)()\)
Zor AE72) = S5 NN By (A) -1y (V) ZO T R
X (woaha(0))” Kh,, 0 (@, t,u) umarvr(e) (7)
On the other hand, with u = ¢, (t), u; = ax¥x(t), the Taylor expansion of
Ky, o0 (2,t,u) about (u—wuy) is
o~ 0" (oa(t) — aayia(t))”
LA CATNOIEDY 0 Khip(@:t,u) o s (1) ol :
v=0
Thus, taking ¢ =0 in this equality, in view of the fact that ¢, (¢) = 0,
K,y (0)(2,0,0) = 1 we have
o O (—aaa(0))”
K,y )(2,0,0) = 1= a0 Khmo(@.t,u) umayvr() ol
v=0 t=
From this, we get
= (=axx(0))”
1 = Z h(P)()‘)h(p+1) (A)"'h(v-%pfl) ()\) Kh(p+v)(/\) (a:?t?u) u:a)\ﬂlq(t) U'
v=0 t=0 ’
Using this in (7), we obtain,
dpP v of p
aﬁLX(t ;T) = 2 MA@ (A hp-1) (V)
a\P A hQ) he-n(V)
= (2} 2 8
() 355 ®)
Since limyo0 % =1, im0 @ =1,.., lim, fp-) (M) 1, from (8)
1 " P !
L, e @) =P
Thus we have (5).
Finally let us assume that for n — 1,
dp — 1) gt
lim gy rint gy = @FnDla (9)

A—oo dIP (TL — 1)!
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If we show that & ( )
. dP ptn. oy _ P F+n)! z"
dm G DA ) = = (10)

then the proof is complete. O

Again, in (2), let f(t) = tP™" then

oo

" o® pl v v+1 v+p
Ly (tPt™: = 2 o ; e
G ) = S5 UZ_O[MNO)’A%DAOV ' 3205(0)

% AR(A) hi2)(A)hiwip—1)(A)
v!
On the other hand, since

(CEO{)J/),\(O))U Kh(v+p)()\) (:L.v t, u)

u=ewa(t) (11)
P (@) = (p+ 7). (p+ 1~ 1)...(n 4+ 1"

(p+n)z”
n!

we have
v vtl o vtp ] _(etn)tla”  (ptn)a (pn- 1l
A20x(0)7 A2px(0)7 77 X205 (0)” n! pl n (n—1)! p!
Using this in (11), we get
dr (p+n)z d”

— L\(tPT2) =
dx? A z) n dxP

La(Pt L),
Consequently,

. dr (p+n)x dr _
il ptn. e - p+n—1,
/\hm e L\(tP7™; x) — Jim —— Li(t ;)

and using (9) in the last equality we have (10).

Remark. In the special case A =n, h(A\) = m+n (m+n =0,1,2,..), we obtain,
by Theorem 2 and Theorem 3, the results proved in [4], and by Theorem 4, the results
proved in [7].

Note that a system of functions {fy, f1,..., fn} continuous on [a,b] is said to be
Tschebyscheff system, if the polynomial P,(t) = fo(t) + fi(t) + ... + f(t) has no more
than n-zeros on [a,b] .

Thus for

w+n) ,

fo(z) =p!, failz) =(p+ Dla, ..., fulz) = . z",

a system of functions {fo, f1, ..., fu} is Tschebyscheff system.
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Theorem 5. If {fo, fi,...., fu} is Tschebyscheff system on [a,b] then there ezists a
polynomial Pp(x) = fo(x) + fi(z) + ... + fu(z) which has the following inequality:

fn(b - a)
Toper < oax, 1Pl

where

folz) =p!, filz) = (p+ Dla, ..., fulz) = %n—)!x”.

Proof. In [3, Corollary 3.3.6, p.63], Davis shows that

a0l O < mas Jaga” + .+ 0l
— ax .
ap o2n—1 = argxgb agl Qpn
Setting
p+n)
ag = ( ! ) yees On—1 = (P+ 1)!70‘7L :p'

in the last inequality we have

(p+n)t(b—a) p+n)! .,
< m . ! .
B i 0 e +@+Dz+p

And in this inequality letting fo(z) = p!, fi(z) = (p+ Dla, ..., fu(z) = %x” and

p+ n)! n
falb—a) = (—'L)(b— a)”,
n!

we have ( )

fn b—a

o < angla?%(b Ifg(x) + filz) + ...+ fn(.z‘)| .
Hence the proof is complete. 0O
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