New oscillation criteria for differential equations with sublinear and superlinear neutral terms

Ali MUHIB\(^1,2,\ast\), Elmetwally M. ELABBASY\(^1\), Osama MOAAZ\(^3\)

\(^1\)Department of Mathematics, Faculty of Science, Mansoura University, Mansoura, Egypt
\(^2\)Department of Mathematics, Faculty of Education-Al-Nadirah, Ibb University, Ibb, Yemen

Received: 03.12.2020 • Accepted/Published Online: 16.02.2021 • Final Version: 26.03.2021

Abstract: The aim of this article is to establish some new oscillation criteria for the differential equation of even-order of the form

\[(r(l)(y^{(n-1)}(l))^\alpha)' + f(l, x(\tau(l))) = 0, \]

where \(y(l) = x(l) + p(l)x^\beta(\sigma_1(l)) + h(l)x^\delta(\sigma_2(l)) \). By using Riccati transformations, we present new conditions for oscillation of the studied equation. Furthermore, two illustrative examples showing applicability of the new results are included.

Key words: Sublinear and superlinear neutral terms, even-order differential equations, oscillation criteria

1. Introduction

In this work, we study the oscillatory properties of solutions of the even-order nonlinear differential equation with sublinear and superlinear neutral terms of the form

\[\left(r(l) \left((x(l) + p(l)x^\beta(\sigma_1(l)) + h(l)x^\delta(\sigma_2(l)))^{(n-1)} \right)^\alpha \right)' + f(l, x(\tau(l))) = 0, \]

(1.1)

where \(l \geq l_0 \), \(n \) is an even natural number. Through the work, we assume the following

(B1) \(\alpha, \beta, \) and \(\delta \) are ratios of odd natural numbers with \(0 < \beta < 1 \) and \(\delta \geq 1 \);

(B2) \(r \in C([l_0, \infty), \mathbb{R}^+) \), \(r'(l) \geq 0 \), and

\[S(l,l_0) := \int_{l_0}^{l} \frac{1}{r^{1/\alpha}(\xi)} d\xi \to \infty \text{ as } l \to \infty; \]

(B3) \(p, h \in C([l_0, \infty), \mathbb{R}^+) \), \(p(l) \geq 0 \), and \(h(l) \geq 0 \);

(B4) \(\tau, \sigma_1, \sigma_2 \in C([l_0, \infty), \mathbb{R}) \), \(\tau(l) \leq l \), \(\tau' > 0 \), \(\sigma_1(l) \leq l \), \(\sigma_2(l) \leq l \), and \(\lim_{l \to \infty} \tau(l) = \lim_{l \to \infty} \sigma_1(l) = \lim_{l \to \infty} \sigma_2(l) = \infty; \)

*Correspondence: muhib39@yahoo.com

2010 AMS Mathematics Subject Classification: 34C10, 34K11
(B5) $f \in C ([l_0, \infty) \times \mathbb{R}, \mathbb{R})$ and there exists a function $q \in C ([l_0, \infty), [0, \infty))$ such that $|f (l, x)| \geq q (l) |x|^\gamma$
where γ is a ratios of odd natural numbers.

To facilitate calculations, we will denote the corresponding function of the solution x by

$$y := x + p \cdot (x^\delta \circ \sigma_1) + h \cdot (x^\delta \circ \sigma_2).$$

By a solution of (1.1), we mean a function $x \in C ([l_x, \infty)), l_x \geq l_0$, with $y, r (l) (y' (l))^\alpha \in C^1 ([l_x, \infty))$, and it satisfies (1.1) on $[l_x, \infty)$. We focus in our study on the solutions that satisfy $\sup \{|x (l)| : l \geq l_0\} > 0$, for every $l \geq l_x$. Such a solution of (1.1) is called oscillatory if it is neither eventually positive nor eventually negative; otherwise, it is called nonoscillatory. The equation itself is termed oscillatory if all its solutions oscillate.

Differential equations with neutral delay have many applications including population dynamics, automatic control, mixing liquids, and vibrating masses attached to an elastic bar; see Hale [6]. In recent decades, there has been an increasing interest in studying the oscillation theory of solutions of differential equations of different orders, see for example, [1–3, 8–16, 18, 19]. Most of these papers studied the neutral differential equations with corresponding function of the form

$$z := x + p \cdot (x \circ \sigma).$$

Graef et al. [4] related the oscillatory properties of solutions of even-order differential equations with unbounded neutral term of the form

$$z^{(n)} (l) + \int_a^b q (l, \xi) x^\alpha (g (l, \xi)) d\xi = 0,$$

where $\sigma (l) \geq l$, $g (l, \xi) \leq l$, and τ is strictly increasing. Graef et al. [5] studied the oscillation of even-order sublinear neutral differential equation

$$(x (l) + p (l) x^\beta (\sigma (l)))^{(n)} + q (l) x^\alpha (\tau (l)) = 0,$$

where $\sigma (l) \leq l$.

The purpose of the article is to study the oscillatory properties of solutions of (1.1). By using Riccati transformations, we present new oscillation conditions for (1.1). Our results extend and complement the previous related results in [4, 5]. Examples are provided to illustrate the importance of the new results.

2. Some preliminary lemmas

Next, we state some preliminary lemmas, which will be necessary in the proofs of our main results.

Lemma 2.1 [17] Let $f \in C^n ([l_0, \infty), (0, \infty))$ and $f^{(n)} (l)$ is of one sign for all large l. Then, there are a $l_x \geq l_0$ and a $\eta \in [0, n]$ is an integer, with $n + \eta$ even for $f^{(n)} (l) \geq 0$, or $n + \eta$ odd for $f^{(n)} (l) \leq 0$ such that

$$\eta > 0 \text{ implies } f^{(k)} (l) > 0 \text{ for } l \geq l_x, \ k = 0, 1, \ldots, \eta - 1,$$

and

$$\eta \leq n - 1 \text{ implies } (-1)^{\eta+k} f^{(k)} (l) > 0 \text{ for } l \geq l_x, \ k = \eta, \eta + 1, \ldots, n - 1.$$
Lemma 2.2 \[\text{[7]}\] If \(A \geq 0, \ B \geq 0 \) and \(0 < \kappa < 1 \), then
\[
A^\kappa - \kappa AB^{\kappa - 1} - (1 - \kappa) B^\kappa \leq 0.
\]
Moreover, the equality is satisfied if and only if \(A = B \).

Lemma 2.3 \[\text{[17]}\] Assume that \(y \) is a positive function and differentiable \(n \) times on \([l_1, \infty)\). If \(y^{(n)}(l) \leq 0 \) and \(y^{(n)}(l) \neq 0 \) on any interval \([l_*, \infty)\), \(l_* \geq l_0 \) and \(y^{(n-1)}(l) \geq 0 \) for all \(l \geq l_y \geq l_1 \), then there exist a constant \(\lambda \in (0, 1) \) and a positive constant \(N \) such that
\[
y'(\lambda l) \geq N l^{n-2} \left| y^{(n-1)}(l) \right|,
\]
for \(l \geq l_y \).

Lemma 2.4 \[\text{[20]}\] Assume that \(K \) and \(E \) are real, \(E > 0 \). Then
\[
Kw - Ew^{(\alpha+1)/\alpha} \leq \frac{\alpha^\alpha}{(\alpha + 1)^{\alpha+1}} \frac{K^{\alpha+1}}{E^\alpha}.
\]

3. Main results

Now, we present the main theorems which give oscillation criteria for solutions of (1.1). To facilitate calculations, we adopt the following notations:

\[
\varphi(l) = \epsilon \int_l^\infty q(u) \Omega(u) \, du,
\]
\[
\varpi(l) = \alpha \lambda N^{\alpha-2} l(\alpha+1) r(l) r^{-1/\alpha}(l)
\]
and
\[
\Omega(l) = \begin{cases}
 k_1^{\gamma-\alpha} & \text{if } \gamma \geq \alpha; \\
 k_3^{\gamma-\alpha} (l^{n-2})^{\gamma-\alpha} S^{\gamma-\alpha} (l, l_1) & \text{if } \gamma < \alpha,
\end{cases}
\]
where \(\epsilon, \lambda \in (0, 1), N, k_1, \) and \(k_3 \) are positive real constants.

Theorem 3.1 Assume that
\[
\lim_{l \to \infty} h(l) (l^{n-2} S(l, l_0))^{\delta-1} = \lim_{l \to \infty} p(l) = 0. \tag{3.1}
\]

If
\[
\lim_{l \to \infty} \frac{1}{\varphi(l)} \int_l^\infty \varpi(\xi) \varphi^{(\alpha+1)/\alpha}(\xi) \, d\xi > \frac{\alpha}{(\alpha + 1)^{(\alpha+1)/\alpha}}, \tag{3.2}
\]
for some \(\epsilon \in (0, 1), k_1, k_2 > 0 \) and for all \(\lambda \in (0, 1), N > 0 \), then (1.1) is oscillatory.

Proof Assume that \(x \) is a nonoscillatory solution of equation (1.1). Hence, there exists a \(l_1 \geq l_0 \) such that \(x(l) > 0, x(\tau(l)) > 0, x(\sigma_1(l)) > 0 \), and \(x(\sigma_2(l)) > 0 \) for \(l \geq l_1 \). From (1.1), it follows that
\[
(r(l) (y^{(n-1)})^\alpha) \leq -q(l) x^\gamma(\tau(l)), \tag{3.3}
\]
for $l \geq l_1$. Using Lemma 2.1 and taking into account the fact that $r'(l) \geq 0$, we get that there exists a $l_2 \geq l_1$ such that

$$y'(l) > 0, \ y^{(n-1)}(l) > 0, \ \left(r(l) \left(y^{(n-1)}(l) \right)^{\alpha} \right)' \leq 0, \ \text{and} \ y^{(n)}(l) \leq 0, \quad (3.4)$$

for $l \geq l_2$. Since $x(l) \leq y(l)$, we have, from the definition of y, that

$$x(l) = y(l) - p(l) x^\beta (\sigma_1(l)) - h(l) x^\delta (\sigma_2(l)) \geq y(l) - p(l) y^\beta (l) - h(l) y^\delta (l) = y(l) - h(l) \frac{y(l)}{y^{1-\delta}(l)} - p(l) \left[y^\beta (l) - y(l) \right] - p(l) y(l). \quad (3.5)$$

Using Lemma 2.2 with $\kappa = \beta$, $A = y$ and $B = \beta^{1/(1-\beta)}$, we obtain that

$$y^\beta (l) - y(l) \leq (1 - \beta) \beta^{\beta/(1-\beta)}. \quad (3.6)$$

Combining (3.6) and (3.5), we arrive at

$$x(l) \geq y(l) \left[1 - \frac{h(l)}{y^{1-\delta}(l)} \frac{p(l)(1-\beta)}{y(l)} - p(l) \right]. \quad (3.7)$$

Since $y(l) > 0$ and $y'(l) > 0$ on $[l_2, \infty)$, there exists a $k_1 > 0$ such that

$$y(l) \geq k_1, \ \text{for} \ l \geq l_2, \quad (3.8)$$

so

$$y^{\gamma-\alpha}(l) \geq k_1^{\gamma-\alpha}, \ \text{for} \ \gamma \geq \alpha. \quad (3.9)$$

Since $\left(r(l) (y^{(n-1)}(l))^{\alpha} \right)' \leq 0$, there exist a $k_2 > 0$ and $l_3 \geq l_2$ such that

$$r(l) (y^{(n-1)}(l))^{\alpha} \leq k_2, \ \text{for} \ l \geq l_3. \quad (3.10)$$

Integrating (3.10) from l_3 to l for a total of $n - 1$ times, we have

$$y(l) \leq k_3 l^{n-2} S(l, l_3), \ \text{for} \ l \geq l_3. \quad (3.11)$$

Thus,

$$y^{\gamma-\alpha}(l) \geq k_3^{\gamma-\alpha} (l^{n-2})^{\gamma-\alpha} S^{\gamma-\alpha}(l, l_3), \ \text{when} \ \gamma < \alpha. \quad (3.12)$$

Therefore, combining (3.9) and (3.12), we arrive at

$$y^{\gamma-\alpha}(l) \geq \Omega(l), \quad (3.13)$$

In view of (3.8) and (3.11), inequality (3.7) becomes

$$x(l) \geq \left[1 - h(l) (k_3 l^{n-2} S(l, l_3))^{\delta-1} - p(l) \left(\frac{(1-\beta) \beta^{\beta/(1-\beta)}}{k_1} + 1 \right) \right] y(l) \geq \left[1 - k_4 (h(l) (l^{n-2} S(l, l_3))^{\delta-1} + p(l)) \right] y(l), \quad (3.14)$$

922
where
\[k_4 = \max \left(k_3^{\delta-1}, \frac{(1 - \beta) \beta^{\delta/(1 - \beta)}}{k_1} + 1 \right). \]

From (3.1), for any \(\epsilon \in (0, 1) \) there exists \(l_\epsilon \geq l_3 \) such that
\[x (l) \geq \epsilon y (l) \text{ for } l \geq l_\epsilon, \]
which, with \(\lim_{l \to \infty} \tau (l) = \infty \), gives
\[x (\tau (l)) \geq \epsilon y (l) \text{ for } l \geq l_\epsilon. \] (3.15)

Taking into account \(y^{(n-1)} (l) y^{(n)} (l) \leq 0 \), and using Lemma 2.3, we have that there exist \(\lambda \in (0, 1) \) and \(N > 0 \) such that
\[y' (\lambda l) \geq N l^{n-2} y^{(n-1)} (l). \] (3.16)

Now, we set
\[\Psi (l) = \frac{r (l) (y^{(n-1)} (l))^\alpha}{y^n (\lambda \tau (l))}. \] (3.17)

By differentiating \(\Psi \) and and using (3.3), we arrive at
\[\Psi' (l) = \frac{\left(\frac{r (l) (y^{(n-1)} (l))^\alpha}{y^n (\lambda \tau (l))} \right)'}{y^n (\lambda \tau (l))} - \frac{\alpha r (l) (y^{(n-1)} (l))^\alpha y' (\lambda \tau (l)) \lambda \tau' (l)}{y^{n+1} (\lambda \tau (l))}, \]
which with (3.15) gives
\[\Psi' (l) \leq - \frac{q (l) \epsilon y^\gamma (\tau (l))}{y^n (\lambda \tau (l))} - \frac{\alpha r (l) (y^{(n-1)} (l))^\alpha y' (\lambda \tau (l)) \lambda \tau' (l)}{y^{n+1} (\lambda \tau (l))}. \] (3.18)

From (3.13) and (3.16), (3.18) becomes
\[\Psi' (l) \leq - q (l) e^\gamma y^{-\alpha} (\tau (l)) - \frac{\alpha N \tau^{n-2} (l) \lambda \tau' (l) r (l) (y^{(n-1)} (l))^{\alpha+1}}{y^{n+1} (\lambda \tau (l))} \]
\[\leq - q (l) e^\gamma \Omega (l) - \frac{\alpha N \tau^{n-2} (l) \lambda \tau' (l)}{r^{1/\alpha} (l)} \Psi^{(\alpha+1)/\alpha} (l). \] (3.19)

Integrating (3.19) from \(l \) to \(\infty \), and using the facts \(\Psi > 0 \) and \(\Psi' < 0 \), we get
\[-\Psi (l) \leq - \int_l^\infty q (\xi) e^\gamma \Omega (\xi) \, d\xi - \int_l^\infty \frac{\alpha N \tau^{n-2} (\xi) \lambda \tau' (\xi)}{r^{1/\alpha} (\xi)} \Psi^{(\alpha+1)/\alpha} (\xi) \, d\xi. \]

Furthermore, we may write
\[\frac{\Psi (l)}{\varphi (l)} \geq 1 + \frac{1}{\varphi (l)} \int_l^\infty \frac{\alpha N \tau^{n-2} (\xi) \lambda \tau' (\xi)}{r^{1/\alpha} (\xi)} \Psi^{(\alpha+1)/\alpha} (\xi) \, d\xi. \] (3.20)
If we set \(\kappa = \inf_{l \geq l_1} \frac{\Psi (l)}{\varphi (l)} \), then obviously \(\kappa \geq 1 \). Hence, it follows from (3.2) and (3.20) that

\[
\kappa \geq 1 + \alpha \left(\frac{\kappa}{\alpha + 1} \right)^{1+1/\alpha}.
\]

Or, equivalent

\[
\frac{\kappa}{\alpha + 1} \geq 1 + \frac{\alpha}{\alpha + 1} \left(\frac{\kappa}{\alpha + 1} \right)^{1+1/\alpha},
\]

this contradicts with the acceptable value for \(\kappa \geq 1 \) and \(\alpha > 0 \). Therefore, the proof is complete.

Corollary 3.2 Assume that (3.1) holds. If

\[
\int_{l_0}^{\infty} q(l) \, dl = \infty,
\]

then (1.1) is oscillatory.

Proof Assume that \(x \) is a nonoscillatory solution of equation (1.1). Proceeding as in the proof of Theorem 3.1, we arrive at (3.19) for \(l \geq l_1 \). It is easy to see that \((\alpha N \tau^{n-2} (l) \lambda \tau' (l)) \Psi^{(\alpha+1)/\alpha} (l) / \tau^{1/\alpha} (l) > 0 \). Hence, (3.19) reduces to

\[
\Psi' (l) \leq -q (l) e^\Omega (l).
\]

Integrating this inequality from \(l_1 \) to \(l \), and using (3.21), we get that \(\Psi (l) \to -\infty \) as \(l \to \infty \). However, this contradicts the positivity of \(\Psi \). Therefore, the proof is complete.

Define a sequence of functions \(\{v_n (l)\}_{n=0}^{\infty} \) by and

\[
v_0 (l) : = \varphi (l)
\]

\[
v_n (l) : = \int_{l}^{\infty} \varpi (\xi) v_{n-1}^{(\alpha+1)/\alpha} (\xi) \, d\xi + v_0 (l), \quad n = 1, 2, 3, ... \tag{3.22}
\]

We see that by induction \(v_n (l) \leq v_{n+1} (l) \), \(n = 1, 2, 3, ... \).

Lemma 3.3 Assume that \(x \) is an eventually positive solution of (1.1), \(v_n (l) \) and \(\Psi (l) \) are defined as in (3.22) and (3.17), respectively. Then \(v_n (l) \leq \Psi (l) \), there exists a function \(v \in C ([l_0, \infty), (0, \infty)) \) such that \(\lim_{l \to \infty} v_n (l) = v (l) \) and

\[
v (l) = \int_{l}^{\infty} \varpi (\xi) v^{(\alpha+1)/\alpha} (\xi) \, d\xi + v_0 (l). \tag{3.23}
\]

Proof Assume that \(x \) is an eventually positive solution of (1.1). Proceeding as in the proof of Theorem 3.1, we arrive at (3.19). Integrating (3.19) from \(l \) to \(\zeta \), we get

\[
\Psi (\zeta) - \Psi (l) \leq - \int_{l}^{\zeta} e^q (\xi) \Omega (\xi) \, d\xi - \int_{l}^{\zeta} \varpi (\xi) \Psi^{(\alpha+1)/\alpha} (\xi) \, d\xi, \tag{3.24}
\]

924
If
\[\Psi (\zeta) - \Psi (l) \geq \int_{l}^{\zeta} \varpi (\xi) \Psi^{(\alpha + 1)/\alpha} (\xi) \, d\xi. \]
(3.25)

Then
\[\int_{l}^{\infty} \varpi (\xi) \Psi^{(\alpha + 1)/\alpha} (\xi) \, d\xi = \infty. \]
(3.26)

so
\[\psi (\zeta) = \Psi (\zeta) - \Psi (l) \geq \int_{l}^{\zeta} \varpi (\xi) \Psi^{(\alpha + 1)/\alpha} (\xi) \, d\xi. \]

From (3.24) and (3.27), we have
\[\Psi (l) \geq \varphi (l) + \int_{l}^{\infty} \varpi (\xi) \Psi^{(\alpha + 1)/\alpha} (\xi) \, d\xi = \nu_0 (l) + \int_{l}^{\infty} \varpi (\xi) \Psi^{(\alpha + 1)/\alpha} (\xi) \, d\xi, \]
that is
\[\Psi (l) \geq \varphi (l) = \nu_0 (l). \]

Next, by induction, we have that \(\Psi (l) \geq \nu_n (l) \) for \(l \geq l_0, \, n = 1, 2, 3, \ldots \) Since the sequence \(\{ \nu_n (l) \}_{n=0}^{\infty} \)
monotone increasing and bounded above, we get that \(\nu_n (l) \) converges to \(v (l) \). Letting \(n \to \infty \) in (3.22) and using Lebesgue’s monotone convergence theorem, we arrive at (3.33). Hence, the proof is complete.

Theorem 3.4 Let \(v_n (l) \) be defined as in (3.22). If there exist a \(l_1 \geq l_0 \) and \(n \geq 0 \) such that
\[\int_{l_1}^{\infty} q (l) \Omega (l) \exp \left(\int_{l_1}^{l} \varpi (\xi) v_n^{1/\alpha} (\xi) \, d\xi \right) \, dl = \infty, \]
(3.28)
for some \(\epsilon \in (0, 1), \, k_1, k_2 > 0 \) and for all \(\lambda \in (0, 1), \, N > 0 \), then (1.1) is oscillatory.

Proof Assume that \(x \) is an eventually positive solution of (1.1). Proceeding as in the proof of Theorem 3.1, we arrive at (3.4). Using Lemma 3.3, we have that (3.23) holds. Thus,
\[v' (l) = -\varpi (l) v^{(\alpha + 1)/\alpha} (l) - \epsilon^\gamma q (l) \Omega (l). \]

It follows from \(v_n (l) \leq v (l) \) that
\[v' (l) \leq -\varpi (l) v_n^{1/\alpha} (l) v (l) - \epsilon^\gamma q (l) \Omega (l). \]

This implies, for \(l \geq l_1, \)
\[v (l) \leq \exp \left(-\int_{l_1}^{l} \varpi (\xi) v_n^{1/\alpha} (\xi) \, d\xi \right) \left(v (l_1) - \int_{l_1}^{l} \epsilon^\gamma q (\xi) \Omega (\xi) \exp \left(\int_{l_1}^{\xi} \varpi (u) v_n^{1/\alpha} (u) \, du \right) \, d\xi \right) ; \]
thus,
\[\int_{l_1}^{l} \epsilon^\gamma q (\xi) \Omega (\xi) \exp \left(\int_{l_1}^{\xi} \varpi (u) v_n^{1/\alpha} (u) \, du \right) \, d\xi \leq v (l_1) < \infty, \]
which contradicts (3.28). Therefore, the proof is complete.
Theorem 3.5 Assume that (3.1) holds. If there exist a function \(\psi \in C^1 ([l_0, \infty), \mathbb{R}^+) \) such that

\[
\limsup_{l \to \infty} \int_{l_0}^l \left(\psi (\xi) q (\xi) e^{\gamma \Omega (\xi)} - \frac{1}{(\alpha + 1)^{\alpha+1}} \frac{(\psi' (\xi))^{\alpha+1}}{\varpi^\alpha (\xi)} \right) d\xi = \infty.
\]

(3.29)

for some \(\epsilon \in (0, 1) \), \(k_1, k_2 > 0 \) and for all \(\lambda \in (0, 1), N > 0 \), then (1.1) is oscillatory.

Proof Assume that \(x \) is an eventually positive solution of (1.1). Proceeding as in the proof of Theorem 3.1, we arrive at (3.19). Then,

\[
q (l) e^{\gamma \Omega (l)} \leq -\psi' (l) - \omega (l) \Psi^{(\alpha+1)/\alpha} (l).
\]

(3.30)

Multiplying inequality (3.30) by \(\psi (\xi) \) and integrating from \(l_1 \) to \(l \), we have

\[
\int_{l_1}^l \psi (\xi) q (\xi) e^{\gamma \Omega (\xi)} d\xi \leq -\int_{l_1}^l \psi (\xi) \omega (\xi) \Psi^{(\alpha+1)/\alpha} (\xi) d\xi - \int_{l_1}^l \psi (\xi) \Psi' (\xi) d\xi \\
= -\psi (l) \Psi (l) - \psi (l_1) \Psi (l_1) + \int_{l_1}^l \psi' (\xi) \Psi (\xi) d\xi - \int_{l_1}^l \psi (\xi) \omega (\xi) \Psi^{(\alpha+1)/\alpha} (\xi) d\xi.
\]

Using Lemma 2.4 with \(K = \psi' (l) \), \(E = \psi (l) \omega (l) \) and \(w = \Psi (l) \), we have

\[
\int_{l_1}^l \left(\psi (\xi) q (\xi) e^{\gamma \Omega (\xi)} - \frac{1}{(\alpha + 1)^{\alpha+1}} \frac{(\psi' (\xi))^{\alpha+1}}{\varpi^\alpha (\xi)} \right) d\xi \leq \psi (l_1) \Psi (l_1) < \infty.
\]

Taking the lim sup on both sides of the above inequality, we arrive at a contradiction with (3.29). Therefore, the proof is complete. \(\Box \)

Corollary 3.6 Assume that (3.1) holds. If there exist a function \(\psi \in C^1 ([l_0, \infty), \mathbb{R}^+) \) such that

\[
\limsup_{l \to \infty} \int_{l_0}^l \psi (\xi) q (\xi) e^{\gamma \Omega (\xi)} d\xi = \infty
\]

and

\[
\limsup_{l \to \infty} \int_{l_0}^l \left(\frac{\psi' (\xi))^{\alpha+1}}{\varpi^\alpha (\xi)} \right) d\xi < \infty,
\]

then (1.1) is oscillatory.

4. Examples

In this section, we will show some applications of our main results.

Example 4.1 Let us consider the following equation:

\[
\left(\left(x \left(\frac{l}{5} \right) + \frac{1}{l} x^{1/3} \left(\frac{4}{5} \right) + \frac{1}{1 + l^2/3} \left(\frac{1}{3} \right)^m \right) \right) + \frac{q_0}{l} x^5 \left(\frac{l}{4} \right) = 0,
\]

(4.1)

926
where \(l \geq 1 \). Here, \(r(l) = 1 \), \(n = 4 \), \(p(l) = 1/l \), \(h(l) = 1 \left(\frac{l^2}{1 + l^2} \right) \), \(q(l) = q_0/l^2 \), \(q_0 > 0 \), \(\tau(l) = l/4 \), \(\sigma_1(l) = l/5 \), \(\sigma_2(l) = l/3 \), \(\alpha = 5 \), \(\gamma = 5 \), \(0 < \beta = 1/3 < 1 \) and \(\delta = 3 \geq 1 \). By simple calculations, one can deduce that
\[
\lim_{l \to \infty} h(l) (l^{n-2} S(l,l_0))^{\delta-1} = 0
\]
and
\[
\lim_{l \to \infty} p(l) = 0.
\]

Now, by choosing \(\psi(l) = l \), we have that
\[
\limsup_{l \to \infty} \int_{l_0}^l \left(\psi(\xi) q(\xi) e^\gamma \Omega(\xi) - \frac{1}{(\alpha + 1)^{\alpha+1}} \frac{\psi'(\xi)^{\alpha+1}}{\psi^{\alpha} (\xi)} \right) d\xi
\]
\[
= \limsup_{l \to \infty} \int_{l_0}^l \left(\xi^{q_0} e^5 - \frac{1}{6^6 \left(N \xi (\sqrt{5}/\lambda)^4 \right)} \right) d\xi = \infty
\]

Then, using Theorem 3.5, equation (4.1) is oscillatory.

Example 4.2 Let us consider the following equation:
\[
\left(l \left(x(l) + \frac{1}{l^2} x^{1/5} \left(\frac{l}{\sqrt{10}} \right) + \frac{1}{1 + l^{20}} x^{21/3} \left(\frac{l}{\sqrt{2}} \right) \right) \right)^{3/2} + \frac{1}{l^7} x^7 \left(\frac{l}{\sqrt{5}} \right) = 0,
\]
where \(l \geq 1 \). Here, \(r(l) = l \), \(n = 4 \), \(p(l) = 1/l^2 \), \(h(l) = 1 \left(\frac{l^2}{1 + l^2} \right) \), \(q(l) = 1/l^5 \), \(\tau(l) = l/\sqrt{5} \), \(\sigma_1(l) = l/\sqrt{10} \), \(\sigma_2(l) = l/\sqrt{2} \), \(\alpha = 3 \), \(\gamma = 7 \), \(0 < \beta = 1/5 < 1 \) and \(\delta = 21/3 \geq 1 \). By simple calculations, one can deduce that
\[
\lim_{l \to \infty} h(l) (l^{n-2} S(l,l_0))^{\delta-1} = 0
\]
and
\[
\lim_{l \to \infty} p(l) = 0.
\]

Furthermore, we choose \(\psi(l) = l^5 \), it is easy to verify that
\[
\limsup_{l \to \infty} \int_{l_0}^l \psi(\xi) q(\xi) e^\gamma \Omega(\xi) d\xi = \limsup_{l \to \infty} \int_{l_0}^l \epsilon_2 d\xi = \infty
\]
and
\[
\limsup_{l \to \infty} \int_{l_0}^l \left(\psi'(\xi) \right)^{\alpha+1} d\xi = \limsup_{l \to \infty} \int_{l_0}^l \frac{\xi (5\xi^4)}{\left(N \xi (\sqrt{5}/\lambda)^4 \right)} d\xi < \infty,
\]
where \(\epsilon_2 = \epsilon^2 k_1^4 \). Hence, by Corollary 3.6, the equation (4.2) is oscillatory.

Conflict interests
The authors declare that they have no competing interests.
References

