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1. Introduction
The near-vector spaces we study in this paper were first introduced by André in 1974 [1]. His near-vector spaces
have less linearity than normal vector spaces. They have been studied in several papers, including [2–6]. More
recently, since André did a lot of work in geometry, their geometric structure has come under investigation. In
order to construct some incidence structures a good understanding of the span of a vector is necessary. It very
quickly became clear that near-vector spaces exhibit some strange behavior, where the span of a vector need
not be one-dimensional and it is possible for a single vector to generate the entire space.

In this paper we begin by giving the preliminary material of near-vector spaces. In Section 3 we take a
closer look at the class of near-vector spaces of the form (Fn, F ) , where F is a nearfield and n is a natural
number, constructed using van der Walt’s important construction theorem in [9] for finite dimensional near-
vector spaces. We give conditions for when the quasi-kernel will be the whole space. In the last section we
prove that when for a near-vector space (V,A), v ∈ V , span v will equal vA . We introduce the dimension of
a vector and prove that in the case of a field, it is always less than or equal to the number of maximal regular
subspaces in the decomposition of V . We define a generator for V and give a condition for when v will be a
generator for V . Finally, we characterize the near-vector spaces that have generators.

2. Preliminary material

Definition 2.1 A (right) nearfield is a set F together with two binary operations + and · such that

1. (F,+) is a group;

2. (F\{0}, ·) is a group;

3. (a+ b) · c = a · c+ b · c for all a, b, c ∈ F .
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Left nearfields are defined analogously and satisfy the left distributive law. We will use right nearfields
throughout this paper. We also have the following definition.

Definition 2.2 Let F be a nearfield. We define the kernel of F to be the set of all distributive elements of F,
i.e.

Fd := {a ∈ F |a · (b+ c) = a · b+ a · c for every b, c ∈ F }.

If F is a nearfield, Fd is a subfield of it [8]; moreover, F is a vector space over Fd . We refer the reader
to [7] and [8] for more on nearfields.

Definition 2.3 ([1]) A near-vector space is a pair (V,A) that satisfies the following conditions:

1. (V,+) is a group and A is a set of endomorphisms of V ;

2. A contains the endomorphisms 0 , id , and −id ;

3. A∗ = A\{0} is a subgroup of the group Aut(V ) ;

4. If xα = xβ with x ∈ V and α, β ∈ A , then α = β or x = 0 , i.e. A acts fixed point free on V ;

5. The quasi-kernel Q(V ) of V generates V as a group. Here, Q(V ) = {x ∈ V |∀α, β ∈ A, ∃γ ∈
A such that xα+ xβ = xγ}.

We will write Q(V )∗ for Q(V )\{0} throughout this paper. The dimension of the near-vector space,
dim(V ) , is uniquely determined by the cardinality of an independent generating set for Q(V ) , called a basis of
V (see [1]).

Definition 2.4 ([6]) We say that two near-vector spaces (V1, A1) and (V2, A2) are isomorphic (written
(V1, A1) ∼= (V2, A2)) if there are group isomorphisms θ : (V1,+) → (V2,+) and η : (A∗

1, ·) → (A∗
2, ·) such

that θ(xα) = θ(x)η(α) for all x ∈ V1 and α ∈ A∗
1 .

We will write a near-vector space isomorphism as a pair (θ, η) .

Example 2.5 ([5]) Consider the field (GF (32) , + , ·) with

GF (32) := {0, 1, 2, γ, 1 + γ, 2 + γ, 2γ, 1 + 2γ, 2 + 2γ},

where γ is a zero of x2 + 1 ∈ Z3[x] . In [8], p. 257, it was observed that (GF (32) , + , ◦), with

x ◦ y :=

{
x · y if y is a square in (GF (32), +, ·)
x3 · y otherwise

and
+ : (a+ bγ) + (c+ dγ) = (a+ c)mod3 + ((b+ d)mod3 )γ

is a (right) nearfield, but not a field.
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◦ 0 1 2 γ 1 + γ 2 + γ 2γ 1 + 2γ 2 + 2γ
0 0 0 0 0 0 0 0 0 0
1 0 1 2 γ 1 + γ 2 + γ 2γ 1 + 2γ 2 + 2γ
2 0 2 1 2γ 2 + 2γ 1 + 2γ γ 2 + γ 1 + γ
γ 0 γ 2γ 2 1 + 2γ 1 + γ 1 2 + 2γ 2 + γ

1 + γ 0 1 + γ 2 + 2γ 2 + γ 2 2γ 1 + 2γ γ 1
2 + γ 0 2 + γ 1 + 2γ 2 + 2γ γ 2 1 + γ 1 2γ

2γ 0 2γ γ 1 2 + γ 2 + 2γ 2 1 + γ 1 + 2γ
1 + 2γ 0 1 + 2γ 2 + γ 1 + γ 2γ 1 2 + 2γ 2 γ
2 + 2γ 0 2 + 2γ 1 + γ 1 + 2γ 1 γ 2 + γ 2γ 2

The distributive elements of (GF (32) , + , ◦), denoted by (GF (32) , + , ◦)d, are the elements 0, 1, 2 . From now
on when there is no room for confusion, we will write x ◦ y as xy . Now let F = (GF (32),+, ◦) , with α ∈ F

acting as an endomorphism of V = F 3 by defining (x1, x2, x3)α = (x1α, x2α, x3α). Thus, Q(V ) = V1∪V2∪V3 ,
with V1 = (1, d1, d2)F , V2 = (d1, 1, d2)F and V3 = (d1, d2, 1)F , with d1, d2 ∈ Fd . We will refer back to this
example later in the paper.

In [9] it was proved that finite-dimensional near-vector spaces can be characterized in the following way:

Theorem 2.6 ([9]) Let (G,+) be a group and let A = D ∪ {0} , where D is a fixed point free group of
automorphism of G . Then (G,A) is a finite-dimensional near-vector space if and only if there exist a
finite number of nearfields F1, . . . , Fm , semigroup isomorphisms ψi : (A, ◦) → (Fi, ·) , and an additive group
isomorphism Φ : G→ F1 ⊕ . . .⊕ Fm such that if Φ(g) = (x1, . . . , xm) , then Φ(gα) = (x1ψ1(α), . . . , xmψm(α))

for all g ∈ G, α ∈ A.

Using this theorem we can specify a finite-dimensional near-vector space by taking n copies of a nearfield
F for which there are semigroup isomorphisms ψi : (F, ·) → (F, ·) , i ∈ {1, . . . , n}. We then take V := Fn , n
a positive integer, as the additive group of the near-vector space and define the scalar multiplication by:

(x1, . . . , xn)α := (x1ψ1(α), . . . , xnψn(α)),

for all α ∈ F and i ∈ {1, . . . , n} . This is the type of construction we will use throughout this paper and we
will use (Fn, F ) to denote an instance of a near-vector space of this form.

The concept of regularity is a central notion in the study of near-vector spaces.

Definition 2.7 ([1]) A near-vector space is regular if any two vectors of Q(V )∗ are compatible, i.e. if for any
two vectors u and v of Q(V )∗ there exists a λ ∈ A\{0} such that u+ vλ ∈ Q(V ) .

Theorem 2.8 ([1]) Let F be a (right) nearfield and let I be a nonempty index set. Then the set

F (I) := {(ni)i∈I |ni ∈ F, ni ̸= 0 for at most a finite number of i ∈ I }

with the scalar multiplication defined by
(ni)λ := (niλ)

gives that (F (I), F ) is a near-vector space.
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We describe the quasi-kernel of F (I) :

Theorem 2.9 ([1]) We have

Q(F (I)) = {(di)λ|λ ∈ F, di ∈ Fd for all i ∈ I }.

We can also show that the quasi-kernel is not the entire space.

Theorem 2.10 Letting F be a proper (right) nearfield and let I be a nonempty index set, then the near-vector
space (F (I), F ) has Q(F (I)) ̸= F (I) .

Proof Consider the element v = (a1, 1, . . . , 0) ∈ V , where a1 /∈ Fd. We show that v is in V \Q(V ) . Suppose
that v ∈ Q(V ) , and then (a1, 1, . . . , 0) = (d1λ, d2λ, . . . , 0) . Thus, we get that a1 = d1λ , 1 = d2λ and since
F is a nearfield, we can solve this and get that λ = d−1

2 . Substituting this in the first equation we get that
a1 = d1d

−1
2 , and since Fd is a field, this gives that a1 ∈ Fd, a contradiction. 2

The following theorem gives a characterization of regularity in terms of the near-vector space (F (I), F ) .

Theorem 2.11 ([1]) A near-vector space (V, F ) , with F a nearfield and V ̸= 0 , is a regular near-vector space
if and only if V is isomorphic to F (I) for some index set I .

The following theorem is central in the theory of near-vector spaces.

Theorem 2.12 ([1]) (The Decomposition Theorem) Every near-vector space V is the direct sum of regular
near-vector spaces Vj (j ∈ J ) such that each u ∈ Q(V )∗ lies in precisely one direct summand Vj . The
subspaces Vj are maximal regular near-vector spaces.

3. Spanning sets and generators

In [5] a study of the subspaces of near-vector spaces was initiated. In this section we add to these results. We
begin with some basic definitions.

Definition 3.1 ([5]) If (V,A) is a near-vector space and ∅ ̸= V ′ ⊆ V is such that V ′ is the subgroup of (V,+)

generated additively by XA = {xa |x ∈ X, a ∈ A} , where X is an independent subset of Q(V ) , then we say
that (V ′, A) is a subspace of (V,A) , or simply V ′ is a subspace of V if A is clear from the context.

From the definition, since X is a basis for V ′ , the dimension of V ′ is |X| . It is clear that V is a subspace
of itself since it is generated by XA where X denotes a basis of Q(V ) and we define the trivial subspace, {0},
to be the space generated by the empty subset of Q(V ) .

Definition 3.2 Letting (V,A) be a near-vector space, then the span of a set S of vectors is defined to be the
intersection W of all subspaces of V that contain S, denoted span S .

It is straightforward to verify that W is a subspace, called the subspace spanned by S, or conversely, S
is called a spanning set of W and we say that S spans W . Moreover, if we define span ∅ = {0} , then it is not
difficult to check that span S is the set of all possible linear combinations of S .
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For a vector space (V, F ) the span of a single vector v is always of the form vF, but in general this is
not true for near-vector spaces. The following two results were recently proved:

{

Lemma 3.3 Let (V,A) be a near-vector space. Then for all v ∈ V, span{v} = vA if and only if Q(V ) = V.

One might wonder if it is possible for a nonzero w ∈ V \Q(V ) to have span{w} = vA for some v ∈ Q(V ).

Lemma 3.4 Let (V,A) be a near-vector space. Then for all nonzero w ∈ V \Q(V ), span{w} ̸= vA for some
v ∈ Q(V ) .

}
We are interested in what the span of a vector outside of Q(V ) looks like.
Let (V,A) be a near-vector space, not necessarily finite-dimensional. By definition, the quasi-kernel

Q(V ) generates V , so for any v ∈ V, there is u1, . . . , um ∈ Q(V ) \ {0} and α1, . . . , αm ∈ A \ {0}, such
that v = u1α1 + · · · + umαm. This expression is not unique. We can also have u′1, . . . , u

′
l ∈ Q(V ) \ {0} and

α′
1, . . . , α

′
l ∈ A \ {0} such that v = u′1α

′
1 + · · ·+ u′lα

′
l with m ̸= l.

For v ∈ V \ {0} , we consider

n = min
{
m ∈ N | v =

m∑
i=1

uiαi, with ui ∈ Q(V ) \ {0}, αi ∈ A \ {0}, i = 1, . . . ,m

}
.

Definition 3.5 For v ∈ V \ {0} we define the dimension of v to be

n = min
{
m ∈ N | v =

m∑
i=1

uiαi, with ui ∈ Q(V ) \ {0}, αi ∈ A \ {0}, i = 1, . . . ,m

}
,

and we denote it by dim(v) = n and dim(v) = 0 if v is the zero vector.

Theorem 3.6 We have that dim (span{v}) = dim(v).

Proof Let n = dim(v) and {u1, . . . , un} ⊂ Q(V ), such that v =

n∑
i=1

uiαi for some αi ∈ A \ {0}. Then

span{v} ⊂ span{u1, . . . , un} =: W, since span{v} is the smallest subset of V that contains v . Since n is
minimal, {u1, . . . , un} is a linearly independent subset of Q(V ). Hence, dim(W ) = n and dim(span{v}) ⩽ n.

Let us assume that dim(span{v}) < n. Since v ∈ span{v} , there are u1, . . . , um ∈ Q(V ) \ {0} and

β1, . . . , βm ∈ A \ {0} such that v =

m∑
i=1

viβi , with m < n . This a contradiction since n is the smallest integer

that satisfies this condition. Hence, dim(span{v}) = dim(v). 2

We know that any subspace of W of V is generated by XA, with X a linearly independent subset
of Q(V ). For span{v} , v a vector in V \ {0} , the subset X is given by any linearly independent set

{u1, . . . , un} ⊂ Q(V ), such that n = dim(v) and v =

n∑
i=1

uiαi for some αi ∈ A \ {0}.

By Lemma 3.3, we have that:
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Proposition 3.7 For any v ∈ V , dim(v) = 1 if and only of v ∈ Q(V ) \ {0}.

Also, if V is finite-dimensional, of dimension n , then dim(v) ⩽ n , and if dim(v) = n, then span{v} = V .
Thus, we define:

Definition 3.8 Let (V,A) be a near-vector space. If v ∈ V such that span{v} = V, then v is called a generator
of V .

Isomorphisms preserve generators:

Theorem 3.9 Let (V1, A1) and (V2, A2) be isomorphic near-vector spaces and v ∈ V1 . Then dim(v) =

dim(θ(v)) , where (θ, η) is the isomorphism.

Proof Let dim(v) = k and dim(θ(v)) = k′ . Then there exist u1, . . . , uk ∈ Q(V1)\{0} and α1, . . . , αk ∈ A1\{0}

such that v =

k∑
i=1

uiαi. We have

θ(v) = θ

(
k∑

i=1

uiαi

)
=

k∑
i=1

θ (uiαi) =

k∑
i=1

θ (ui) η (αi) .

It follows that dim(θ(v)) ≤ k.

Assume that k′ = dim(θ(v)) < k. There are v1, . . . , vk′ ∈ Q(V2) \ {0} and β1, . . . , βk′ ∈ A2 \ {0} such

that θ(v) =
k∑

i=1

viβi. Since (θ, η) is an isomorphism, we have

θ(v) =

k′∑
i=1

θ
(
v

′

i

)
η
(
β

′

i

)
=

k′∑
i=1

θ
(
v

′

iβ
′

i

)
= θ

 k′∑
i=1

v
′

iβ
′

i

 .

It follows that v =

k′∑
i=1

v
′

iβ
′

i and dim(v) ≤ k′ < k, which is a contradiction. 2

Corollary 3.10 Let (V1, A1) and (V2, A2) be isomorphic near-vector spaces. v is a generator of V1 if and
only if θ(v) is a generator of V2, where (θ, η) is the isomorphism.

For F a field, using the following recently proved result, we can show more.
{

Theorem 3.11 Let F = GF (pr) and V = Fn be a near-vector space with scalar multiplication defined for all
α ∈ F by

(x1, . . . , xn)α := (x1ψ1(α), . . . , xnψn(α)),

where the ψ′
is are automorphisms of (F, ·) . If Q(V ) ̸= V and V = V1⊕· · ·⊕Vk is the canonical decomposition

of V , then Q(V ) = Q1 ∪ · · · ∪Qk where Qi = Vi for each i ∈ {1, . . . , k} .

}
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Theorem 3.12 Let F be a field and V = Fn be a near-vector space over F with scalar multiplication defined
for all (x1, . . . , xn) ∈ F and α ∈ F by

(x1, . . . , xn)α := (x1ψ1(α), . . . , xnψn(α)),

where the ψ′
is are automorphisms of (F, ·) for i ∈ {1, . . . , n} and they can be equal. If V1 ⊕ · · · ⊕ Vk is the

canonical decomposition of V, then for all v ∈ V, dim(v) ≤ k .

Proof Let v ∈ V and suppose that dim(v) > k, say dim(v) = k′, where k′ > k . Then v =
∑k′

i=1 uiλi, where
ui ∈ Q(V )\{0} , λi ∈ F for i ∈ 1, . . . , k′ . However, for all i ∈ 1, . . . , k′, ui ∈ Qj for some j with 1 ≤ j ≤ k,

since by Theorem 3.11, Q(V ) = Q1 ∪ · · · ∪ Qk and k′ > k . Suppose, without loss of generality, that us and
us′ are in Qj , and then usλs + us′λs′ ∈ Qj , since Qj = Vj (F is a field). Now we have that v can be written
with fewer than k′ elements, i.e. v = u1λ1 + · · ·+ ukλk, a contradiction. 2

Thus, in the case where F is a field, unless the dimension of V is less than or equal to 1, or equal
to k , where k is the number of maximal regular subspaces in the canonical decomposition of the near-vector
space, we cannot have any generators. If the dimension of V is exactly k then the maximal regular spaces have
dimension 1 and any element of the form (1, . . . , 1) will be generator of V .

3.1. Generators for regular near-vector spaces
When F is a proper nearfield, we have the following result:

Theorem 3.13 Let F be a proper nearfield and V ′ = Fn be a near-vector space over F with scalar multipli-
cation defined for all (x1, . . . , xn) ∈ V ′, α ∈ F by

(x1, . . . , xn)α := (x1α, . . . , xnα).

v = (a1, . . . , an) is a generator of V ′ if and only for d1, . . . , dn ∈ Fd,

n∑
i=1

diai = 0 ⇔ d1 = d2 = . . . = dn = 0.

Proof Let us assume that there are d1, . . . , dn ∈ Fd such that
∑n

i=1 diai = 0 and di0 ̸= 0. We show that
dim(v) < n. Without loss of generality let us assume that i0 = 1. Then a1 =

∑n
i=2 d

−1
1 diai , so we get

(a1, . . . , an) =(

n∑
i=2

d−1
1 diai, a2, . . . , an)

=

n∑
i=2

ui, with ui = (d−1
1 diai, . . . , 0, ai, 0, . . . , 0).

Since Q(V ′) = {(d1, . . . , dn)α|d1, . . . , dn ∈ Fd, α ∈ F} , ui ∈ Q(V ′) for all i = 2, . . . , n. It follows that
dim(v) < n. Therefore, dim(v) = n implies that for d1, . . . , dn ∈ Fd,

n∑
i=1

diai = 0 ⇔ d1 = d2 = . . . = dn = 0.
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Now let us assume that for d1, . . . , dn ∈ Fd,

n∑
i=1

diai = 0 ⇔ d1 = d2 = . . . = dn = 0,

and that dim(v) < n. Thus, v can be written as a linear combination of less than k vectors of the quasi-kernel
with k < n, so there is

(αi)1≤i≤k ⊆ F and (di,j)1≤i≤n
1≤j≤k

⊆ Fd,

such that

(a1, . . . , an) =

k∑
i=1

(d1,i, . . . , dn,i)αi.

Hence, we get the following system of n equations with k unknowns:
d1,1x1 + d1,2x2 + · · ·+ d1,kxk = a1

d2,1x1 + d2,2x2 + · · ·+ d2,kxk = a2
...
dn,1x1 + dn,2x2 + · · ·+ dn,kxk = an

with (α1, . . . , αk) as the solution. Since the equation has a solution, the matrix

A =


d1,1 d1,2 d1,3 . . . d1,k
d2,1 d2,2 d2,3 . . . d2,k

... . . . ...
dn−1,k

dn,1 dn,2 . . . dn,k−1 dn,k


has rank k in Fd. Therefore, there exist δ1, . . . , δn ∈ Fd not all zero such that

∑n
i=1 δiai = 0. This is a

contradiction. 2

Let F be a proper nearfield and V
′′
= Fn be a regular near-vector space over F .

Theorem 3.14 v = (a1, . . . , an) is a generator of V ′′ if and only if for d1, . . . , dn ∈ Fd,

n∑
i=1

diai = 0 ⇔ d1 = · · · = dn = 0.

Proof It follows from the fact that (V ′′, F ) is isomorphic to (V ′, F ) by Theorem 2.11. 2

Theorem 3.15 Let V = Fn be a near-vector space with |F | = |Fd|m and

(x1, . . . , xn)α := (x1α, . . . , xnα),

for all (x1, . . . , xn) ∈ V and α ∈ F. v is a generator of V if and only if m ≥ n.
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Proof Suppose that there is v = (a1, . . . , an) ∈ V such that dim(v) = n . By Theorem 3.13 we have that

for any di ∈ Fd, i = 1, . . . , n,

n∑
i=1

diai = 0 implies di = 0 for all i . It follows that {a1, . . . , an} is a linearly

independent set of vectors in the vector space F over Fd . Hence, m ≥ n.

To show the converse we assume that m < n. Then for any v = (a1, . . . , an) ∈ V there are d1, . . . , dn

not all zero with
n∑

i=1

diai = 0. Hence, we cannot have v ∈ V such that dim(v) = n.

2

Example 3.16 Let us consider the Dickson nearfield F = DF (3, 2) and V = F 2 a near-vector space with
(x, y)α := (xα, yα). Then the element v = (1, γ) has dimension 2 . In fact, v is not in any of the subspaces.
Suppose that v ∈ V1 , with V1 a one-dimensional subspace of V . Let w be a basis of V ′ . It follows that v = wλ,

with λ ∈ F, since the quasi-kernel is closed under scalar multiplication v ∈ Q(V ), but v /∈ Q(V ). Hence, the
smallest subspace of V that contains v is V itself. Hence, v is a generator of V and dim(v) = 2. Using
Theorem 3.15 we can also see that dim(v) = 2. For any d1, d2 ∈ Fd, d1 + d2γ = 0 implies that d1 = d2 = 0 ,
since {1, γ} is a basis of the vector space F over Fd .

For three copies of F , V = F 3, it is not possible to have an element that generates V .

3.2. Generators for general near-vector spaces
In this subsection we consider the case where F is a proper nearfield and V = Fn is a near-vector space over

F with the canonical decomposition V =

k⊕
i=1

Vi.

Lemma 3.17 If vi ∈ Vi \ {0} and vj ∈ Vj \ {0} with i ̸= j , then

dim(vi + vj) = dim(vi) + dim(vj).

Proof Let dim(vi) = li, dim(vj) = lj . It is not difficult to check that dim(vi + vj) ≤ li + lj . Suppose that
l = dim(vi + vj) < li + lj . There are u1, . . . , ul ∈ Q(Vi) \ {0} ∪Q(Vj) \ {0} and α1, . . . , αl ∈ F \ {0} such that

vi + vj =

l∑
m=1

umαm. It follows that we write vi as vi =
∑l′

m=1 umαm, with l′ < li or vj =
∑l′′

m=1 umαm with

l′′ < lj , since Vi ∩Vj = {0} . This is a contradiction since dim(vi) = li, dim(vj) = lj and we should have li ⩾ l′

and lj ⩾ l′′. 2

Corollary 3.18 If vi ∈ Vi \ {0} and vj ∈ Vj \ {0} with i ̸= j , then

span{vi + vj} = span{vi} ⊕ span{vj}.

Proof We have span{vi} ∩ span{vj} = {0}, since span{vi} ⊆ Vi, span{vj} ⊆ Vj and Vi ∩ Vj = {0}.
We have span{vi + vj} ⊆ span{vi} ⊕ span{vj}. Since dim(vi + vj) = dim(vi) + dim(vj), span{vi + vj} =

span{vi} ⊕ span{vj}. 2
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Corollary 3.19 Let v1, . . . , vm ∈ V such that they are all in distinct maximal regular subspaces. We have

dim(v1 + · · ·+ vm) = dim(v1) + · · ·+ dim(vm),

span{v1 + · · ·+ vm} = span{v1} ⊕ · · · ⊕ span{vm}.

Theorem 3.20 A vector v ∈ V is a generator of V if and only if there are vi ∈ Vi generators of Vi for all
i = 1, . . . , k , such that v = v1 + · · ·+ vk.

Proof We have span{v} = span{v1+ . . .+ vk} = span{v1}⊕ · · ·⊕ span{vk}. If v is a generator of v we have
span{v} = V and so span{v1} ⊕ · · · ⊕ span{vk} = V. Hence, span{vi} = Vi for all i = 1 . . . , k . Thus, vi is a
generator of Vi for all i . Likewise, if vi is a generator of Vi for all i , then v is a generator of V. 2
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