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Abstract: In this paper we study the quasi-kernel of certain constructions of near-vector spaces and the span of a

vector. We characterize those vectors whose span is one-dimensional and those that generate the whole space.
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1. Introduction

The near-vector spaces we study in this paper were first introduced by André in 1974 [1]. His near-vector spaces
have less linearity than normal vector spaces. They have been studied in several papers, including [2-6]. More
recently, since André did a lot of work in geometry, their geometric structure has come under investigation. In
order to construct some incidence structures a good understanding of the span of a vector is necessary. It very
quickly became clear that near-vector spaces exhibit some strange behavior, where the span of a vector need
not be one-dimensional and it is possible for a single vector to generate the entire space.

In this paper we begin by giving the preliminary material of near-vector spaces. In Section 3 we take a
closer look at the class of near-vector spaces of the form (F™,F), where F is a nearfield and n is a natural
number, constructed using van der Walt’s important construction theorem in [9] for finite dimensional near-
vector spaces. We give conditions for when the quasi-kernel will be the whole space. In the last section we
prove that when for a near-vector space (V,A), v € V, span v will equal vA. We introduce the dimension of
a vector and prove that in the case of a field, it is always less than or equal to the number of maximal regular
subspaces in the decomposition of V. We define a generator for V' and give a condition for when v will be a

generator for V. Finally, we characterize the near-vector spaces that have generators.

2. Preliminary material

Definition 2.1 A (right) nearfield is a set F together with two binary operations + and - such that
1. (F,+) is a group;
2. (F\{0},-) is a group;

3. (a+b)-c=a-c+b-c forall a,bce€F.
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Left nearfields are defined analogously and satisfy the left distributive law. We will use right nearfields
throughout this paper. We also have the following definition.

Definition 2.2 Let F be a nearfield. We define the kernel of F to be the set of all distributive elements of F,
i.e.

Fi:={a€Fla-(b+c)=a-b+a-c for every b,c € F'}.

If F is a nearfield, Fy is a subfield of it [8]; moreover, F' is a vector space over F,;. We refer the reader

to [7] and [8] for more on nearfields.

Definition 2.3 ([1]) A near-vector space is a pair (V,A) that satisfies the following conditions:
1. (V,+) is a group and A is a set of endomorphisms of V ;
2. A contains the endomorphisms 0, id, and —id;
3. A* = A\{0} is a subgroup of the group Aut(V);
4. If xa = a2 with x €V and a,5 € A, then a = or x =0, i.e. A acts fized point free on V ;

5. The quasi-kernel Q(V) of V generates V as a group. Here, Q(V) = {& € V|Va,8 € A, Iy €
A such that x4+ 28 = zv}.

We will write Q(V)* for Q(V)\{0} throughout this paper. The dimension of the near-vector space,
dim(V'), is uniquely determined by the cardinality of an independent generating set for Q(V'), called a basis of
V (see [1]).

Definition 2.4 ([6]) We say that two near-vector spaces (Vi, A1) and (Va,As) are isomorphic (written
(V1, A1) =2 (Va, A) ) if there are group isomorphisms 0 : (Vi,4+) — (Va,+) and n : (A7,:) — (A3,:) such
that O(za) = 0(z)n(a) for all x € Vi and o € A7.

We will write a near-vector space isomorphism as a pair (6,7).
Example 2.5 ([5]) Consider the field (GF(3%), +, -) with
GF(3%) :={0,1,2,7,1+7,2+7,2y,1 + 27,2+ 27},
where 7y is a zero of x® + 1 € Zs[z]. In [8], p. 257, it was observed that (GF(3%), +, o), with

x-y ifyis a square in (GF(3%), +, -)
oy = x:)) . .
Y otherwise

and
+:(a+by)+ (c+dy) = (a+c)mod3 + ((b+ d)mod3 )y

is a (right) nearfield, but not a field.
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o0 1 2 vy 1+v 247 2y 1+2y 242y
00 0 0 0 0 0 0 0 0
110 1 2 0% 1+v 244 2y 1+2y 2+2y
210 2 1 2y 242y 142y y 24+ 1+vy
v10 vy 2 2 142y 147 1 242y 247
1+9|0 1+ 242y 247 2 2y 142y y 1
24910 249 142y 2+2y vy 2 147 1 27y
2y 10 2y ol 1 24y 242y 2 1+ 142y
142910 142y 249 147 2y 1 2+ 2y 2 vy
242y|10 242y 147y 142y 1 ¥ 2+ 2y 2

The distributive elements of (GF(32), +, o), denoted by (GF(3%), +, 0)q, are the elements 0,1,2. From now
on when there is no room for confusion, we will write x oy as xy. Now let F = (GF(3?),+,0), with a € F
acting as an endomorphism of V. = F3 by defining (x1, 22, v3)a = (10, 220, 2300). Thus, Q(V) = VUV, UVs,
with V1 = (1,dy,d2)F, Vo = (d1,1,d2)F and Vs = (d1,d2, 1)F, with di,dy € Fy. We will refer back to this

example later in the paper.

In [9] it was proved that finite-dimensional near-vector spaces can be characterized in the following way:

Theorem 2.6 (/9]) Let (G,4) be a group and let A = D U {0}, where D is a fixed point free group of
automorphism of G. Then (G,A) is a finite-dimensional near-vector space if and only if there exist a
finite number of nearfields Fy, ..., F,,, semigroup isomorphisms v¥; : (A,0) = (F;,-), and an additive group
isomorphism ®: G — Fy & ... & F,, such that if ®(g) = (x1,...,2Tm), then O(ga) = (z1¢1(a), ..., Tmhm(@))
forall g e G, a € A.

Using this theorem we can specify a finite-dimensional near-vector space by taking n copies of a nearfield
F for which there are semigroup isomorphisms ; : (F, -) — (F, ), ¢ € {1,...,n}. We then take V := F" n

a positive integer, as the additive group of the near-vector space and define the scalar multiplication by:

(‘rly e ,:L'n)a = (5511/11(@), e wrnd}n(a))a

for all @« € F and i € {1,...,n}. This is the type of construction we will use throughout this paper and we
will use (F™, F) to denote an instance of a near-vector space of this form.

The concept of regularity is a central notion in the study of near-vector spaces.

Definition 2.7 ([1]) A near-vector space is regular if any two vectors of Q(V)* are compatible, i.e. if for any
two vectors w and v of Q(V)* there exists a A € A\{0} such that u+ v\ € Q(V).

Theorem 2.8 ([1]) Let F be a (right) nearfield and let I be a nonempty index set. Then the set
FU = {(ny)icrIn; € Fyn; # 0 for at most a finite number of i € I}

with the scalar multiplication defined by

gives that (F | F) is a near-vector space.
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We describe the quasi-kernel of F():
Theorem 2.9 ([1]) We have
Q(FWY = {(d)NX € F,d; € Fy for all i € T}.
We can also show that the quasi-kernel is not the entire space.

Theorem 2.10 Letting F be a proper (right) nearfield and let I be a nonempty index set, then the near-vector
space (FU F) has Q(FW) £ FW).

Proof Consider the element v = (a1,1,...,0) € V, where a; ¢ Fy. We show that v is in V\Q(V). Suppose
that v € Q(V), and then (a1,1,...,0) = (diA,d2A,...,0). Thus, we get that a3 = diA, 1 = do\ and since
F is a nearfield, we can solve this and get that A = d ! Substituting this in the first equation we get that

a; = d1d2_1, and since Fy is a field, this gives that a; € Fy, a contradiction. O

The following theorem gives a characterization of regularity in terms of the near-vector space (F), F).

Theorem 2.11 ([1]) A near-vector space (V, F), with F a nearfield and V # 0, is a regular near-vector space

if and only if V is isomorphic to F) for some index set I.

The following theorem is central in the theory of near-vector spaces.

Theorem 2.12 ([1]) (The Decomposition Theorem) Every near-vector space V is the direct sum of regular
near-vector spaces V; (j € J) such that each uw € Q(V)* lies in precisely one direct summand V;. The

subspaces V; are mazimal regular near-vector spaces.

3. Spanning sets and generators

In [5] a study of the subspaces of near-vector spaces was initiated. In this section we add to these results. We

begin with some basic definitions.

Definition 3.1 (/5]) If (V, A) is a near-vector space and () #£ V' CV is such that V' is the subgroup of (V,+)
generated additively by XA = {za|xz € X,a € A}, where X is an independent subset of Q(V), then we say
that (V' A) is a subspace of (V,A), or simply V' is a subspace of V if A is clear from the context.

From the definition, since X is a basis for V’, the dimension of V' is | X|. It is clear that V is a subspace
of itself since it is generated by X A where X denotes a basis of Q(V') and we define the trivial subspace, {0},
to be the space generated by the empty subset of Q(V).

Definition 3.2 Letting (V, A) be a near-vector space, then the span of a set S of vectors is defined to be the
intersection W of all subspaces of V' that contain S, denoted span S

It is straightforward to verify that W is a subspace, called the subspace spanned by S, or conversely, S
is called a spanning set of W and we say that S spans W . Moreover, if we define span ) = {0}, then it is not

difficult to check that span S is the set of all possible linear combinations of S'.
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For a vector space (V, F) the span of a single vector v is always of the form vF, but in general this is

not true for near-vector spaces. The following two results were recently proved:

{

Lemma 3.3 Let (V, A) be a near-vector space. Then for all v € V, span{v} = vA if and only if Q(V) = V.

One might wonder if it is possible for a nonzero w € V\Q(V') to have span{w} = vA for some v € Q(V).

Lemma 3.4 Let (V, A) be a near-vector space. Then for all nonzero w € V\Q(V), span{w} # vA for some
veQV).

}

We are interested in what the span of a vector outside of Q(V') looks like.

Let (V,A) be a near-vector space, not necessarily finite-dimensional. By definition, the quasi-kernel
Q(V) generates V', so for any v € V, there is uy,...,un € Q(V)\ {0} and ai,...,a, € A\ {0}, such
that v = w1 + -+ + Umay,. This expression is not unique. We can also have uf,...,u; € Q(V)\ {0} and
af,...,ap € A\ {0} such that v =ujaf + -+ uja) with m # [.

For v € V' \ {0}, we consider

nzmin{meNM:Zuiai, with u; € Q(V) \ {0}, o eA\{O},izl,...,m}.

=1

Definition 3.5 For v € V '\ {0} we define the dimension of v to be

n:min{mENM:Zuiai, with u; € Q(V) \ {0}, a; EA\{O},Z'zl,...,m}7

i=1

and we denote it by dim(v) =n and dim(v) =0 if v is the zero vector.

Theorem 3.6 We have that dim (span{v}) = dim(v).

Proof Let n = dim(v) and {ui,...,un} C Q(V), such that v = Zuiai for some a; € A\ {0}. Then

i=1
span{v} C span{uy,...,un} =: W, since span{v} is the smallest subset of V' that contains v. Since n is
minimal, {u1,...,u,} is a linearly independent subset of Q(V'). Hence, dim(W) =n and dim(span{v}) < n.

Let us assume that dim(span{v}) < n. Since v € span{v}, there are us,...,u, € Q(V)\ {0} and

By, Bm € A\ {0} such that v = Zviﬁi, with m < n. This a contradiction since n is the smallest integer
i=1

that satisfies this condition. Hence, dim(span{v}) = dim(v). O

We know that any subspace of W of V is generated by XA, with X a linearly independent subset

of Q(V). For span{v}, v a vector in V \ {0}, the subset X is given by any linearly independent set

{u1,...,un} C Q(V), such that n = dim(v) and v = Zuiai for some «; € A\ {0}.
i=1

By Lemma 3.3, we have that:
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Proposition 3.7 For any v €V, dim(v) =1 if and only of v € Q(V) \ {0}.

Also, if V is finite-dimensional, of dimension n, then dim(v) < n, and if dim(v) = n, then span{v} = V.

Thus, we define:

Definition 3.8 Let (V, A) be a near-vector space. If v € V' such that span{v} =V, then v is called a generator
of V.

Isomorphisms preserve generators:

Theorem 3.9 Let (Vi,A1) and (Va,A2) be isomorphic near-vector spaces and v € Vi. Then dim(v) =
dim(0(v)), where (0,n) is the isomorphism.

Proof Let dim(v) = k and dim(8(v)) = k¥’. Then there exist uq,...,ux € Q(V1)\{0} and a1, ..., ar € A1\{0}
k
such that v = Zuiai. We have
i=1

k k

k
O(v) =0 <Z uiai) = Za (wia;) = Za (ui) m (a) -
It follows that dim(0(v)) < k.

Assume that &' = dim(0(v)) < k. There are vq,...,vp € Q(V2) \ {0} and B1,..., 8k € A\ {0} such
k
that 6(v) = Z v;3;. Since (0,7) is an isomorphism, we have
i=1

00 =50 ()0 (5) = S0 (o) =0 [ 300
=1 =1 =1

k:/
It follows that v = Z v;8; and dim(v) < k' < k, which is a contradiction. O
i=1

Corollary 3.10 Let (Vi, A1) and (Va, A3) be isomorphic near-vector spaces. v is a generator of Vi if and

only if O(v) is a generator of Va, where (0,7n) is the isomorphism.

For F a field, using the following recently proved result, we can show more.

{

Theorem 3.11 Let F = GF(p") and V = F™ be a near-vector space with scalar multiplication defined for all
a€F by
(@15 @p)a = (T1P1(), . .., Tntn (),

where the s are automorphisms of (F,-). If Q(V) #V and V =V1&--- @V}, is the canonical decomposition
of V, then Q(V)=Q1U---UQy where Q; =V; for each i € {1,...,k}.

}
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Theorem 3.12 Let F be a field and V = F™ be a near-vector space over F with scalar multiplication defined
for all (x1,...,2,) € F and a € F by

(1, yzp)a = (2191(@), . .., Tpthp (@),

where the Yis are automorphisms of (F,-) for i € {1,...,n} and they can be equal. If V1 & --- &V}, is the

canonical decomposition of V, then for all v € V, dim(v) < k.

Proof Let v € V and suppose that dim(v) > k, say dim(v) = k', where k' > k. Then v = Ziil u; A;, where
u; € QV)\{0}, \; € F for i € 1,...,k". However, forall i € 1,... k', u; € Q; for some j with 1 < j <k,
since by Theorem 3.11, Q(V) = Q1 U---U Qg and k¥’ > k. Suppose, without loss of generality, that u, and
uy are in Qj, and then us\s +uy Ay € Qj, since Q; =V; (F is a field). Now we have that v can be written
with fewer than k' elements, i.e. v =uiA; + -+ + ugAs, a contradiction. O

Thus, in the case where F' is a field, unless the dimension of V is less than or equal to 1, or equal
to k, where k is the number of maximal regular subspaces in the canonical decomposition of the near-vector
space, we cannot have any generators. If the dimension of V' is exactly k£ then the maximal regular spaces have

dimension 1 and any element of the form (1,...,1) will be generator of V.

3.1. Generators for regular near-vector spaces

When F' is a proper nearfield, we have the following result:

Theorem 3.13 Let F' be a proper nearfield and V' = F™ be a near-vector space over F with scalar multipli-
cation defined for all (x1,...,2,) €V a € F by

(1, xn)a = (T10 ..., Tpa).
v=(ay,...,a,) is a generator of V' if and only for di,...,d, € Fy,
Y dia;=0&d =dy=...=d,=0.

i=1

Proof Let us assume that there are dy,...,d, € Fy such that ZIL:I dia; = 0 and d;, # 0. We show that

dim(v) < n. Without loss of generality let us assume that io = 1. Then a; = > i, di 'd;a;, so we get
(a1,...,ap) :(Z dytdiag, ag, . .. ap)
i=2
= Zui, with U; = (dl_ldiai, ey O,ai,(), NN 70)
i=2

Since Q(V') = {(d1,...,dn)a|d1,...,dyn € Fg,a € F}, u; € Q(V') for all i = 2,...,n. It follows that
dim(v) < n. Therefore, dim(v) = n implies that for dy,...,d, € Fy,

Zdiai:()@dlzdgz...:dnzo.

i=1
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Now let us assume that for dy,...,d, € Fy,

Zd1a1:0<:>d1:d2::dn:0,

i=1

and that dim(v) < n. Thus, v can be written as a linear combination of less than & vectors of the quasi-kernel
with k < n, so there is
(ai)1§¢§k C Fand (di7j>1§i§n C Fa,
1<j<k

such that
k

(al, e 7(1”) = z(dl’i’ ey dnﬂ')ai.
1=1

Hence, we get the following system of n equations with & unknowns:

di1z1 +dioxe + -+ di gz = a1
do1x1 + dopxo + - -+ do kT = a2

dpix1 +dp oo + -+ dp pxy = ap

with (a1,...,ax) as the solution. Since the equation has a solution, the matrix
dig dip digs e dy g
da1 dgo dags . da
A= ' : :
dn—l,k
dn 1 dn,Z cee dn,k—l dn,k

)

has rank k£ in F,;. Therefore, there exist dq,...,d, € Fy not all zero such that Z?zl d;a; = 0. This is a

contradiction. O

Let F be a proper nearfield and V' = F™ be a regular near-vector space over F'.

Theorem 3.14 v = (ay,...,ay,) s a generator of V' if and only if for dy,...,d, € Fyg,

n
Zdiaiz()(:)dl =...=d, =0.
i=1
Proof It follows from the fact that (V”, F) is isomorphic to (V', F') by Theorem 2.11. O

Theorem 3.15 Let V = F™ be a near-vector space with |F| = |Fq|™ and
(z1,...,2p)a = (110 . .., TpQ),

for all (xz1,...,2,) €V and o € F. v is a generator of V if and only if m > n.
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Proof Suppose that there is v = (ai,...,a,) € V such that dim(v) = n. By Theorem 3.13 we have that

n

for any d; € Fg, 1 =1,...,n, Zdiai = 0 implies d; = 0 for all 7. It follows that {aj,...,a,} is a linearly
i=1

independent set of vectors in the vector space F' over Fy. Hence, m > n.

To show the converse we assume that m < n. Then for any v = (ay,...,a,) € V there are dy,...,d,

n
not all zero with Z d;a; = 0. Hence, we cannot have v € V' such that dim(v) = n.
i=1
O

Example 3.16 Let us consider the Dickson nearfield F = DF(3,2) and V = F? a near-vector space with
(z,y)a := (za,ya). Then the element v = (1,7) has dimension 2. In fact, v is not in any of the subspaces.
Suppose that v € V1, with V1 a one-dimensional subspace of V. Let w be a basis of V'. It follows that v = w,
with X\ € F, since the quasi-kernel is closed under scalar multiplication v € Q(V), but v ¢ Q(V'). Hence, the
smallest subspace of V' that contains v is V itself. Hence, v is a generator of V and dim(v) = 2. Using
Theorem 3.15 we can also see that dim(v) = 2. For any dy,ds € Fy, di + doy = 0 implies that dy = dy =0,
since {1,7} is a basis of the vector space F over Fy.

For three copies of F', V. = F3, it is not possible to have an element that generates V .

3.2. Generators for general near-vector spaces

In this subsection we consider the case where F' is a proper nearfield and V = F™ is a near-vector space over
k
F' with the canonical decomposition V = @ Vi.

i=1
Lemma 3.17 If v; € V; \ {0} and v; € V; \ {0} with i # j, then
dim(v; +v;) = dim(v;) + dim(v;).

Proof Let dim(v;) = l;,dim(v;) = ;. It is not difficult to check that dim(v; +v;) < l; +1;. Suppose that
I =dim(v; +vj) <l +1;. There are uq,...,u; € Q(V;) \ {0} UQ(V;)\ {0} and au,...,a; € F'\ {0} such that

l
v vy = Z U Q. 1t follows that we write v; as v; = Zlmzl U Oy, With I! < I; or vj = Zlm=1 Uy Oy, With

m=1
" < 1j, since V;NV; = {0}. This is a contradiction since dim(v;) = l;,dim(v;) = l; and we should have ; > I
and 1; >1". O

Corollary 3.18 If v; € V;\ {0} and v; € V;\ {0} with i # j, then
span{v; + v;} = span{v;} & span{v,}.

Proof We have span{v;} N span{v;} = {0}, since span{v;} C Vj,span{v;} C V; and V;NV; = {0}.
We have span{v; + v;} C span{v;} & span{v;}. Since dim(v; + v;) = dim(v;) + dim(v;), span{v; + v;} =
span{v;} & spanf{v;}. O
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Corollary 3.19 Let vy,...,v, €V such that they are all in distinct maximal regular subspaces. We have
dim(vy + -+ vp) = dim(v1) + -+ - + dim(vs,),

span{vy + -+ + vy} = span{v1} ® - - - ® span{v, }.

Theorem 3.20 A vector v € V' is a generator of V if and only if there are v; € V; generators of V; for all
i=1,...,k, such that v = vy + - - - + vy.

Proof We have span{v} = span{vi+ ...+ v} = span{vi} @ - - ® span{vy}. If v is a generator of v we have
span{v} =V and so span{vi} @ --- ® span{vy} = V. Hence, span{v;} =V, forall i =1... k. Thus, v; is a

generator of V; for all ¢. Likewise, if v; is a generator of V; for all 7, then v is a generator of V. O
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