Q-Korselt numbers

Nejib GHANMI∗
Preparatory Institute of Engineering Studies, Tunis University, Tunis, Tunisia

Received: 03.11.2017 • Accepted/Published Online: 21.08.2018 • Final Version: 27.09.2018

Abstract: Let \(\alpha = \frac{\alpha_1}{\alpha_2} \in \mathbb{Q} \setminus \{0\} \); a positive integer \(N \) is said to be an \(\alpha \)-Korselt number (\(K_\alpha \)-number, for short) if \(N \neq \alpha \) and \(\alpha_2 p - \alpha_1 \) divides \(\alpha_2 N - \alpha_1 \) for every prime divisor \(p \) of \(N \). In this paper we prove that for each squarefree composite number \(N \) there exist finitely many rational numbers \(\alpha \) such that \(N \) is a \(K_\alpha \)-number and if \(\alpha \leq 1 \) then \(N \) has at least three prime factors. Moreover, we prove that for each \(\alpha \in \mathbb{Q} \setminus \{0\} \) there exist only finitely many squarefree composite numbers \(N \) with two prime factors such that \(N \) is a \(K_\alpha \)-number.

Key words: Prime number, Carmichael number, Korselt number, squarefree composite number, Korselt set, Korselt weight

1. Introduction
A Carmichael number is a composite number \(N \) that divides \(a^N - a \) for all integers \(a \) \([2, 4]\). In 1899, Korselt gave a complete characterization of Carmichael numbers.

Theorem 1.1 (Korselt criterion \([8]\)) A composite integer \(N > 1 \) is a Carmichael number if and only if \(p - 1 \) divides \(N - 1 \) for all prime factors \(p \) of \(N \).

This criterion helped in the discovery of the existence of infinitely many Carmichael numbers in 1994 by Alford et al. (see \([1]\) for details). In the proof of the infinitude of Carmichael numbers the authors asked if this proof can be generalized to produce other kinds of pseudoprimes by writing the following:

“One can modify our proof to show that for any fixed nonzero integer \(a \), there are many squarefree, composite integers \(n \) such that \(p - a \) divides \(n - 1 \) for all primes \(p \) dividing \(n \). However, we have been unable to prove this for \(p - a \) dividing \(n - b \), for \(b \) other than 0 or 1.”

The query of Alford et al. inspired Bouallegue et al. to state in a recent paper a new kind of pseudoprimes called Korselt numbers (see \([3]\) for details). For \(\alpha \in \mathbb{Z} \setminus \{0\} \), a number \(N \) is called an \(\alpha \)-Korselt number if \(p - \alpha \mid N - \alpha \) for each prime divisor \(p \) of \(N \). By this definition, Carmichael numbers are exactly the squarefree composite 1-Korselt numbers. In this paper, we extend the definition of \(\alpha \)-Korselt numbers given in \([3]\) by allowing \(\alpha \) to be a rational number. We state the following definition.

Definition 1.2 Let \(N \in \mathbb{N} \setminus \{0, 1\} \) and \(\alpha = \frac{\alpha_1}{\alpha_2} \in \mathbb{Q} \setminus \{0\} \). \(N \) is said to be an \(\alpha \)-Korselt number (\(K_\alpha \)-number, for short) if \(N \neq \alpha \) and \(\alpha_2 p - \alpha_1 \) divides \(\alpha_2 N - \alpha_1 \) for every prime divisor \(p \) of \(N \).

*Correspondence: neghanmi@yahoo.fr
2010 AMS Mathematics Subject Classification: Primary 11Y16; Secondary 11Y11, 11A51

2752 This work is licensed under a Creative Commons Attribution 4.0 International License.
The set of all \(K_\alpha \)-numbers, where \(\alpha \in \mathbb{Q} \), is called the set of \(\mathbb{Q} \)-Korselt numbers.

For a fixed \(N \in \mathbb{N} \setminus \{0, 1\} \), we need to determine the set of all \(\alpha \in \mathbb{Q} \setminus \{0\} \) such that \(N \) is a \(K_\alpha \)-number. This leads to the following definition.

Definition 1.3 Let \(N \) be a positive integer and \(\mathbb{H} \) be a nonempty subset of \(\mathbb{Q} \).

1. By the \(\mathbb{H} \)-Korselt set of \(N \), we mean the set \(\mathbb{H} - KS(N) \) of all \(\alpha \in \mathbb{H} \setminus \{0, N\} \) such that \(N \) is a \(K_\alpha \)-number.

2. The cardinality of \(\mathbb{H} - KS(N) \) will be called the \(\mathbb{H} \)-Korselt weight of \(N \); we denote it by \(\mathbb{H} - KW(N) \).

By this definition, the notion of \(\mathbb{Q} \)-Korselt numbers generalizes that given by Bouallegue et al. and thus Carmichael numbers. Among the most recent works in this area are the papers [3, 5–7], where the notion of Korselt numbers over \(\mathbb{Z} \) was studied and several related results were obtained. In this paper, our aim is to introduce the notion of \(\mathbb{Q} \)-Korselt numbers and to discuss generalizations of properties holding when \(\mathbb{Z} \).

Therefore, we proceed as follows:

- In Section 2, after giving some general results about \(\mathbb{Q} \)-Korselt numbers, we prove that for each squarefree composite number \(N \), there exist only finitely many rational numbers \(\alpha \) such that \(N \) is a \(K_\alpha \)-number.

- In section 3, we prove that for every rational number \(\alpha \leq 1 \), if a squarefree composite number \(N \) is a \(K_\alpha \)-number then \(N \) must have at least three prime factors. Furthermore, we show that for each rational number \(\alpha > 1 \), there exist only finitely many \(K_\alpha \)-numbers with two prime factors.

Throughout this paper and for \(\alpha = \frac{\alpha_1}{\alpha_2} \in \mathbb{Q} \), we will suppose without loss of generality that \(\alpha_2 > 0 \), \(\alpha_1 \in \mathbb{Z} \), and gcd\((\alpha_1, \alpha_2) = 1 \). Moreover, in this work we are concerned only with squarefree composite numbers \(N \).

2. **\(\mathbb{Q} \)-Korselt set properties**

Proposition 2.1 Let \(\alpha \in \mathbb{Q} \setminus \{0\} \) and \(N = p_1p_2 \ldots p_m \) be a \(K_\alpha \)-number such that \(p_1 < p_2 < \ldots < p_m \) and \(m \geq 2 \). Then the following inequalities hold:

\[
\frac{(m+2)p_1 - N}{m+1} \leq \alpha \leq \frac{N + mp_m}{m+1}.
\]

Proof \(\alpha \in \mathbb{Q} - KS(N) \) implies that \(N - \alpha = k_i(p_i - \alpha) \) with \(k_i \in \mathbb{Z} \) for each \(i = 1 \ldots m \). We consider two cases:

Case 1: Assume that \(\alpha < 0 \). First, let us show that \(k_m \geq 3 \).

Since \(N - \alpha > p_m - \alpha > 0 \), then \(k_m = \frac{N - \alpha}{p_m - \alpha} > 1 \).

Next, we show that \(k_m \neq 2 \). Suppose by contradiction that \(k_m = 2 \).

Then \(\alpha = 2p_m - N \in \mathbb{Z} \), but as \(\alpha \neq p_m \) and \(\alpha \neq 0 \), we get \(N \neq p_m \) and \(N \neq 2p_m \). Thus, there exists an integer \(N_1 \geq 3 \) such that \(N = N_1p_m \). Let \(p_s \) be a prime factor of \(N_1 \). Then

\[
p_s - \alpha = p_s + (N_1 - 2)p_m \mid N - \alpha = 2p_m(N_1 - 1).
\]

However, as gcd\((p_m, p_s - \alpha) = 1 \), it follows that

\[
p_s - \alpha = p_s + (N_1 - 2)p_m \mid 2(N_1 - 1).
\]
and hence
\[p_s + (N_1 - 2)p_m \leq 2(N_1 - 1). \]
Since \(4 \leq p_s + 2 \leq p_m \), we get
\[2 + 4(N_1 - 2) \leq p_s + (N_1 - 2)p_m \leq 2(N_1 - 1). \]
Therefore, \(N_1 \leq 2 \), which contradicts \(N_1 \geq 3 \), so \(k_m \geq 3 \).

Now, as \((p_i - \alpha)_{1 \leq i \leq m} \) is increasing and positive, then \(\left(k_i = \frac{N - \alpha}{p_i - \alpha} \right)_{1 \leq i \leq m} \) is decreasing. Hence, as \(k_m \geq 3 \), \(\frac{N - \alpha}{p_1 - \alpha} = k_1 \geq m + 2 \). Thus,
\[
\frac{(m + 2)p_1 - N}{m + 1} \leq \alpha.
\]

Case 2: Suppose that \(\alpha > 0 \). We claim that \(\alpha < N \). If not, then (as \(\alpha \neq N \)) we get \(p_m < N < \alpha \). This implies that \(0 < \alpha - N < \alpha - p_m \), and hence \(0 < \frac{\alpha - N}{\alpha - p_m} = k_m < 1 \), contradicting the fact that \(k_m \in \mathbb{Z} \).

Now let us prove that \(\alpha \leq \frac{N + mp_m}{m + 1} \).

- If \(\alpha \leq p_m \), it is immediate.

- Now suppose that \(p_m < \alpha < N \). Since \((\alpha - p_i)_{1 \leq i \leq m} \) is decreasing and positive, then \(\left(|k_i| = \frac{N - \alpha}{\alpha - p_i} \right)_{1 \leq i \leq m} \) is increasing. Hence, \(|k_m| \geq m \) and consequently \(N - \alpha = |k_m| (\alpha - p_m) \geq m(\alpha - p_m) \). Thus,
\[
\alpha \leq \frac{N + mp_m}{m + 1}.
\]

Finally, combining the two cases, we get
\[
\frac{(m + 2)p_1 - N}{m + 1} \leq \alpha \leq \frac{N + mp_m}{m + 1}.
\]

By the following result, we provide a characterization of the \(\mathbb{Q} \)-Korselt set of a squarefree composite number \(N \).

Proposition 2.2 Let \(N \) be a squarefree composite number with prime divisors \(p_i \), \(1 \leq i \leq m \). If we let
\[
A_{ij} = \left\{ \frac{dp_j - \delta p_i}{d - \delta} ; d \neq \delta, \delta \mid (N - p_i), d \mid (N - p_j), \text{ and } (p_i - p_j) \mid (d - \delta) \right\},
\]
for \(1 \leq i < j \leq m \), then
\[
\mathbb{Q} \text{-K} \mathcal{S}(N) = \bigcap_{1 \leq i < j \leq m} A_{ij}.
\]
Proof First note that for each $1 \leq i \leq m$, N is a K_{α}-number if and only if $\alpha_2p_i - \alpha_1 \mid \alpha_2N - \alpha_1$ or equivalently $\alpha_2p_i - \alpha_1 \mid N - p_i$.

Now let $\alpha \in \mathbb{Q}$-$\mathcal{KS}(N)$. Then for each (i, j) with $1 \leq i < j \leq m$, we have

\[
\begin{aligned}
\alpha_2p_i - \alpha_1 &\mid N - p_i \\
\alpha_2p_j - \alpha_1 &\mid N - p_j.
\end{aligned}
\]

This implies that there are two distinct divisors d and δ of $N - p_i$ and $N - p_j$, respectively, such that

\[
\begin{aligned}
\alpha_2p_i - \alpha_1 &= d \\
\alpha_2p_j - \alpha_1 &= \delta.
\end{aligned}
\]

Solving the system we get

\[
\begin{aligned}
\alpha_1 &= \frac{dp_j - \delta p_i}{p_i - p_j}, \\
\alpha_2 &= \frac{d - \delta}{p_i - p_j},
\end{aligned}
\]

and so $\alpha = \frac{dp_j - \delta p_i}{d - \delta}$. Since α_1 and α_2 are integers we conclude that $\alpha \in A_{ij}$ and hence

\[
\mathbb{Q}$-$\mathcal{KS}(N) \subseteq \bigcap_{1 \leq i < j \leq m} A_{ij}.
\]

Next let $\alpha \in \bigcap_{1 \leq i < j \leq m} A_{ij}$. Then $\alpha \in A_{ij}$, for each pair (i, j) such that $1 \leq i < j \leq m$. This implies that $\alpha = \frac{dp_j - \delta p_i}{d - \delta}$, for some divisors d and δ of $N - p_i$ and $N - p_j$, respectively, with $(p_i - p_j) \mid (d - \delta)$.

Setting $\alpha_1 = \frac{dp_j - \delta p_i}{p_i - p_j}$ and $\alpha_2 = \frac{d - \delta}{p_i - p_j}$, then $\alpha_1, \alpha_2 \in \mathbb{Z}$ and

\[
\alpha_2p_i - \alpha_1 = d \mid N - p_i \quad \text{for} \quad i = 1 \ldots m.
\]

Therefore, $\alpha = \frac{\alpha_1}{\alpha_2} \in \mathbb{Q}$-$\mathcal{KS}(N)$.

By the previous proposition, we immediately get the following result.

Theorem 2.3 For any given squarefree composite number N, there are only finitely many rational numbers α for which N is a K_{α}-number.

By the characterization of the \mathbb{Q}-Korselt set of a squarefree composite number N, given in Proposition 2.2, and with a simple Maple program, we provide in Table 1 and Table 2 data representing some squarefree composite numbers and their \mathbb{Q}-Korselt sets as follows:

- Table 1 gives for each integer $2 \leq d \leq 8$ the \mathbb{Q}-Korselt set of the smallest \mathbb{Q}-Korselt number N_d with d prime factors.

- Table 2 gives for each integer $0 \leq k \leq 10$ the smallest squarefree composite number N_k such that \mathbb{Q}-$\mathcal{KW}(N_k) = k$.

2755
Table 1. \(\mathbb{Q} \cdot \mathbb{K}S(N_d)\) where \(N_d\) is the smallest \(\mathbb{Q}\)-Korselt number with \(d\) prime factors.

<table>
<thead>
<tr>
<th>(d)</th>
<th>(N_d)</th>
<th>(\mathbb{Q} \cdot \mathbb{K}S(N_d))</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>6 = 2 \cdot 3</td>
<td>{3, 10, 14, 8, 5, 18, 12, 9}</td>
</tr>
<tr>
<td>3</td>
<td>30 = 2 \cdot 3 \cdot 5</td>
<td>{4, 15, 40, 5, 10, 15, 24}</td>
</tr>
<tr>
<td>4</td>
<td>210 = 2 \cdot 3 \cdot 5 \cdot 7</td>
<td>{6, 21}</td>
</tr>
<tr>
<td>5</td>
<td>2730 = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13</td>
<td>{15}</td>
</tr>
<tr>
<td>6</td>
<td>255255 = 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17</td>
<td>{15}</td>
</tr>
<tr>
<td>7</td>
<td>8580495 = 3 \cdot 5 \cdot 7 \cdot 11 \cdot 17 \cdot 19 \cdot 23</td>
<td>{15}</td>
</tr>
<tr>
<td>8</td>
<td>294076965 = 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 \cdot 19 \cdot 23 \cdot 29</td>
<td>{21}</td>
</tr>
</tbody>
</table>

Table 2. The smallest squarefree composite number \(N_k\) such that \(\mathbb{Q} \cdot \mathbb{K}W(N_k) = k\).

<table>
<thead>
<tr>
<th>(k)</th>
<th>(N_k)</th>
<th>(\mathbb{Q} \cdot \mathbb{K}S(N_k))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>138 = 2 \cdot 3 \cdot 23</td>
<td>{12}</td>
</tr>
<tr>
<td>1</td>
<td>22 = 2 \cdot 11</td>
<td>{12}</td>
</tr>
<tr>
<td>2</td>
<td>102 = 2 \cdot 3 \cdot 17</td>
<td>{12, 17}</td>
</tr>
<tr>
<td>3</td>
<td>14 = 2 \cdot 7</td>
<td>{8, 6}</td>
</tr>
<tr>
<td>4</td>
<td>42 = 2 \cdot 3 \cdot 7</td>
<td>{6, 21, 28, 9}</td>
</tr>
<tr>
<td>5</td>
<td>10 = 2 \cdot 5</td>
<td>{4, 6, 10, 5, 14}</td>
</tr>
<tr>
<td>6</td>
<td>273 = 3 \cdot 7 \cdot 13</td>
<td>{-7, 8, 9, 78, 19, 21}</td>
</tr>
<tr>
<td>7</td>
<td>70 = 2 \cdot 5 \cdot 7</td>
<td>{4, 6, 5, 7, 56, 25, 48}</td>
</tr>
<tr>
<td>8</td>
<td>30 = 2 \cdot 3 \cdot 5</td>
<td>{4, 6, 15, 40, 5, 10, 15, 24}</td>
</tr>
<tr>
<td>9</td>
<td>6 = 2 \cdot 3</td>
<td>{4, 3, 10, 14, 8, 5, 18, 12, 9}</td>
</tr>
<tr>
<td>10</td>
<td>110 = 2 \cdot 5 \cdot 11</td>
<td>{8, 20, 44, 55, 88, 22, 31, 13, 35, 46}</td>
</tr>
</tbody>
</table>

3. \(\mathbb{Q}\)-Korselt numbers with two prime factors

In this section, we shall discuss the case where \(N\) is a squarefree composite number with two prime factors. Let \(p\) and \(q\) be two prime numbers such that \(p < q\), \(N = pq\) and \(\alpha = \frac{a_1}{a_2}\) be a rational number.

Proposition 3.1 If \(N\) is a \(K_\alpha\)-number such that \(\gcd(\alpha, N) = 1\), then

\[q - p + 1 \leq \alpha \leq q + p - 1.\]
Proof Since N is a K_N-number, then

$$\begin{align*}
(S_1) & \quad \left\{ \begin{array}{l}
\alpha_2 p - \alpha_1 | p(q - 1) \\
\alpha_2 q - \alpha_1 | q(p - 1).
\end{array} \right.
\end{align*}$$

As, in addition, $\gcd(\alpha_1, p) = \gcd(\alpha_1, q) = 1$, it follows that

$$\begin{align*}
(S_2) & \quad \left\{ \begin{array}{l}
\alpha_2 p - \alpha_1 | q - 1 \\
\alpha_2 q - \alpha_1 | p - 1.
\end{array} \right.
\end{align*}$$

Hence, by (3.2), we get

$$-p + 1 \leq \alpha_1 - \alpha_2 q \leq p - 1.$$

Knowing that $\alpha_2 \geq 1$, we deduce that

$$q - p + 1 \leq q - \frac{p - 1}{\alpha_2} \leq \alpha = \frac{\alpha_1}{\alpha_2} \leq q + \frac{p - 1}{\alpha_2} \leq q + p - 1.$$

\[\square\]

In order to establish the set of $\alpha = \frac{\alpha_1}{\alpha_2} \in \mathbb{Q}$ with $\gcd(\alpha_1, N) \neq 1$ and for which N is a K_N-number, we need the next two results.

Proposition 3.2 Let N be a K_N-number such that $\alpha < q - p + 1$. Then the following assertions hold:

1) q divides α_1.

2) If p divides α_1 (i.e. N divides α_1 and so $\gcd(\alpha_1, N) = N$), then $\alpha_1 = N$ and $\alpha_2 = 2p - 1$.

Proof

1) Since $\alpha = \frac{\alpha_1}{\alpha_2} < q - p + 1$, we have $\alpha_2(p - 1) < \alpha_2 q - \alpha_1$.

If $\gcd(q, \alpha_1) = 1$, then by (3.2) it follows that

$$\alpha_2(p - 1) < \alpha_2 q - \alpha_1 \leq p - 1.$$

Hence, $\alpha_2 < 1$, which contradicts $\alpha_2 \in \mathbb{N} \setminus \{0\}$. Thus, $q | \alpha_1$.

2) Let $\alpha_1 = \alpha'' p q$ with $\alpha'' \in \mathbb{N} \setminus \{0\}$. Then (S_1) gives

$$\begin{align*}
(S_3) & \quad \left\{ \begin{array}{l}
\alpha_2 - \alpha'' q | q - 1 \\
\alpha_2 - \alpha'' p | p - 1.
\end{array} \right.
\end{align*}$$

Let us show that $\alpha_1 = N$ and $\alpha_2 = 2p - 1$.

As $\alpha = \frac{\alpha_1}{\alpha_2} < q - p + 1$, then

$$\alpha_2(p - 1) < \alpha_2 q - \alpha_1 = (\alpha_2 - \alpha'' p)q.$$
It follows by (3.4), that
\[\alpha_2(p - 1) < q(\alpha_2 - \alpha''_1 p) \leq q(p - 1). \]
Hence, \(\alpha_2 < q \). Furthermore, since by (3.3), \(\alpha''_1 q - \alpha_2 < q - 1 \), it follows that \(\alpha''_1 q < \alpha_2 + q - 1 < 2q - 1 \), and this forces \(\alpha''_1 = 1 \). Therefore, \(\alpha_1 = pq = N \).

Now let us prove that \(\alpha_2 = 2p - 1 \). First, as \(pq \leq q < q + 1 \), then \(p < \alpha_2 \left(\frac{q - p + 1}{q} \right) < \alpha_2 \).

Consequently, as \(\alpha''_1 = 1 \) and \(\alpha_2 - p > 0 \), it follows by (3.4) that \(\alpha_2 - p = \frac{p - 1}{k} \) with \(k \in \mathbb{N} \setminus \{0\} \). We claim that \(k = 1 \). Indeed, suppose by contradiction that \(k \neq 1 \); then \(\alpha_2 - p \leq \frac{p - 1}{2} \) and hence
\[\alpha_2 \leq \frac{3p - 1}{2}. \tag{3.5} \]

Furthermore, since by hypothesis \(\frac{pq}{\alpha_2} = \alpha < q - p + 1 \), it follows by (3.5) that \(pq < \alpha_2(q - p + 1) \leq \frac{3p - 1}{2}(q - p + 1) \). This is equivalent to \(q - 3p + 1 < p(q - 3p + 1) \) and hence
\[3p - 1 < q. \tag{3.6} \]

However, as in addition \(\alpha \neq N \), i.e. \(\alpha_2 \neq 1 \) and \(\alpha''_1 = 1 \), we get by (3.3) \(q - \alpha_2 \leq \frac{q - 1}{2} \). This yields by (3.5) \(q < 2\alpha_2 - 1 \leq 3p - 2 \), a contradiction with (3.6). Thus, \(k = 1 \) and so \(\alpha_2 = 2p - 1 \).

\[\Box \]

Lemma 3.3 If \(N \) is a \(K_\alpha \)-number such that \(\gcd(\alpha_1, N) \neq 1 \) and \(q + p - 1 < \alpha \), then \(\alpha_1 = pq = N \).

Proof As \(q + p - 1 < \alpha = \frac{\alpha_1}{\alpha_2} \), then we have
\[0 < \alpha_2(q - 1) < \alpha_1 - \alpha_2 p \tag{3.7} \]
and
\[0 < \alpha_2(p - 1) < \alpha_1 - \alpha_2 q. \tag{3.8} \]

First we claim that \(\gcd(p, \alpha_1) \neq 1 \). Indeed, if not, then by combining (3.1) and (3.7), we get
\[0 < \alpha_2(q - 1) < \alpha_1 - \alpha_2 p \leq q - 1. \]

This implies that \(\alpha_2 < 1 \), which contradicts \(\alpha_2 \in \mathbb{N} \setminus \{0\} \). Thus, \(p \mid \alpha_1 \).

Similarly, by (3.2) and (3.8) we get \(q \mid \alpha_1 \). Hence, \(\alpha_1 = \alpha''_1 pq \) with \(\alpha''_1 \in \mathbb{N} \). Let us show that \(\alpha''_1 = 1 \). By (3.3) and (3.4), we get respectively
\[\alpha''_1 q - \alpha_2 \leq q - 1 \tag{3.9} \]
and
\[\alpha''_1 p - \alpha_2 \leq p - 1. \tag{3.10} \]

2758
Multiplying (3.9) by \(p \) and combining it with (3.7), we obtain

\[
\alpha_2(q - 1) < \alpha_1 - \alpha_2 p = p(\alpha'' q - \alpha_2) \leq p(q - 1),
\]
and hence

\[
\alpha_2 < p. \tag{3.11}
\]

Now, combining (3.10) and (3.11), we get

\[
(\alpha'' - 1)p < \alpha_1' p - \alpha_2 \leq p - 1.
\]

This implies that \(\alpha_1'' = 1 \), so \(\alpha_1 = pq = N \).

\[\square \]

Proposition 3.4 Suppose that \(N \) is a \(K_\alpha \)-number with gcd\((\alpha_1, N) \neq 1 \). Then the following assertions hold:

1) If \(\alpha \in \mathbb{Z} \) (i.e. \(\alpha_2 = 1; \alpha = \alpha_1 \)), then \(q \nmid \alpha, \ p \mid \alpha \) and

\[
\alpha \in \left\{ \left\lfloor \frac{q}{p} \right\rfloor, \left\lceil \frac{q}{p} \right\rceil \right\}.
\]

2) If \(\alpha \in \mathbb{Q} \setminus \mathbb{Z} \), then \(\frac{q}{p} \leq \alpha \leq q + p - 1 \).

Proof

1) See [7, Corollary 3.6].

2) Let \(\alpha \in \mathbb{Q} \setminus \mathbb{Z} \) be such that gcd\((\alpha_1, N) \neq 1 \). Let us show that \(\alpha \leq q + p - 1 \).

Assume that \(q + p - 1 < \alpha \). Then, by Lemma 3.3, (S1), and (3.11), we have \(0 < q - \alpha_2 = \frac{q - 1}{k} \).

with \(k \in \mathbb{N} \). Since \(\alpha \neq N \) (i.e. \(\alpha_2 \neq 1 \)) and hence \(k \geq 2 \), it follows that \(q - \alpha_2 \leq \frac{q - 1}{2} \); therefore, \(\alpha_2 \geq \frac{q + 1}{2} > \frac{q}{2} \). As by Lemma 3.3, \(\alpha_1 = pq = N \), it yields that \(\alpha = \frac{pq}{\alpha_2} < \frac{2pq}{q} = 2p < p + q - 1 \), which contradicts the assumption \(\alpha > q + p - 1 \).

It remains to prove that \(\frac{q}{p} \leq \alpha \). First, since \(\frac{q}{p} < q - p + 1 \), we may suppose that \(\alpha < q - p + 1 \).

By Proposition 3.2, \(\alpha_1 = \alpha_1' q \) with \(\alpha_1' \in \mathbb{Z} \). Let us prove that \(\alpha_1' > 0 \). The result is immediate by Proposition 3.2 when \(p \mid \alpha_1 \). Now, if gcd\((p, \alpha_1) \neq 1 \) and by (3.1) we have

\[
\alpha_2 p - \alpha_1' q = \alpha_2 p - \alpha_1 \leq q - 1,
\]

this implies that \(p < \alpha_2 p + 1 \leq q(1 + \alpha_1') \), which forces \(\alpha_1' > 0 \).

On the other hand, we have by (S1)

\[
(\alpha_2 - \alpha_1')q = \alpha_2 q - \alpha_1 \leq q(p - 1).
\]
Hence, \(\alpha_2 \leq \alpha'_1 + p - 1 \), so
\[
\alpha = \frac{\alpha_1}{\alpha_2} = \frac{\alpha'_1 q}{\alpha_2} \geq \frac{\alpha'_1 q}{\alpha_1 + p - 1}.
\]
Since, in addition, \(\frac{\alpha'_1}{\alpha_1 + p - 1} \) is minimum when \(\alpha'_1 = 1 \), it follows that \(\alpha \geq \frac{q}{p} \).

\(\Box \)

By Propositions 3.4 and 3.1, the next two results follow immediately.

Corollary 3.5 Let \(\alpha \in \mathbb{Q} \setminus \{0\} \).

If \(N \) is a \(K_\alpha \)-number, then \(\frac{q}{p} \leq \alpha \leq q + p - 1 \).

Theorem 3.6 Let \(\alpha \in \mathbb{Q} \setminus \{0\} \). If \(\alpha \leq 1 \), then each \(K_\alpha \)-number has at least three prime factors.

The next result shows that an \(\alpha > 1 \) can belong to only finitely many \(\mathbb{Q} \)-KS\((pq)\).

Theorem 3.7 Let \(\alpha \in \mathbb{Q} \setminus \{0\} \) with \(\alpha > 1 \), and suppose that \(N \) is a \(K_\alpha \)-number. Then the following assertions hold:

(a) If \(\alpha \in \mathbb{Z} \), then \(p < q \leq 4\alpha - 3 \).

(b) If \(\alpha = \frac{\alpha_1}{\alpha_2} \in \mathbb{Q} \setminus \mathbb{Z} \), then \(p < q \leq \alpha_1 \).

Proof

(a) See [3, Theorem 1.10].

(b) First, if \(q \) divides \(\alpha_1 \), then the result is immediate.

Now assume that \(\gcd(q, \alpha_1) = 1 \). As \(N = pq \) is a \(K_\alpha \)-number, it follows by \((S_2)\) that \(\alpha_2 q - \alpha_1 \) divides \(p - 1 \). This implies that \(\alpha_2 q - \alpha_1 \leq p - 1 < q - 1 \). Thus, \(q < \frac{\alpha_1 - 1}{\alpha_2 - 1} < \alpha_1 \).

\(\Box \)

Remark 3.8 In case (b) of Theorem 3.7, the upper bound can be reached when \(q = 3, p = 2 \), and \(\alpha = \frac{3}{2} \).

We obtain immediately from Theorem 3.7 the following result.

Theorem 3.9 Let \(\alpha \in \mathbb{Q} \setminus \{0\} \). Then there are only finitely many \(K_\alpha \)-numbers with exactly two prime factors.

Now we ask: do there exist (and how many) rationals \(1 < \alpha < C \), where \(C \) is a fixed rational number, for which there are no \(K_\alpha \)-numbers with two prime factors? Computationally, this problem can be solved by running a computer program with exhaustive research (see [3, Example 1.11]). However, for the case \(\alpha \in \mathbb{Q} \setminus \mathbb{Z} \), it seems to be more difficult computationally and theoretically to find such a solution. This does not prevent us from providing, by the next proposition, all rationals \(1 < \alpha < 2 \) for which there are no \(K_\alpha \)-numbers with two prime factors.
Proposition 3.10 Let $\alpha \in \mathbb{Q}$ be such that $1 < \alpha < 2$. $N = pq$ is a K_α-number if and only if $\alpha = \frac{q}{p}$ with $(p, q) \in \{(2, 3), (3, 5)\}$.

Proof Suppose that $\alpha \in \mathbb{Q}$-$KS(N)$. Since $\alpha < 2 \leq q - p + 1$, then by Proposition 3.2, q divides α_1. Hence, $\alpha_1 = \alpha_1'q$ with $\alpha_1' \in \mathbb{N}$.

First we claim that $\gcd(p, \alpha_1) = 1$. Suppose by contradiction that p divides α_1' (i.e. $N | \alpha_1$). Then, by Proposition 3.2, $\alpha = \frac{pq}{2p - 1}$, but, as by hypothesis $\frac{pq}{2p - 1} = \alpha < 2$, we obtain $p(q - 4) < -2$. Hence, $q = 3$ and $p = 2$, and so $\alpha_1 = pq = 6$ and $\alpha_2 = 2p - 1 = 3$, which contradicts the fact that $\gcd(\alpha_1, \alpha_2) = 1$.

Now, as $\gcd(p, \alpha_1) = 1$, then (3.2) gives

\[
\begin{cases} \alpha_2 p - \alpha_1' q | q - 1 \\ \alpha_2 - \alpha_1' | p - 1 \end{cases}
\]

(3.12)\hspace{2cm} (3.13)

Since $\alpha = \frac{\alpha_1}{\alpha_2} < 2$, i.e. $\frac{\alpha_1'q}{2} = \frac{\alpha_1}{2} < \alpha_2$, we get by (3.12)

\[
\frac{\alpha_1'}{2} q p - \alpha_1' q \leq \alpha_2 p - \alpha_1' q \leq q - 1.
\]

Hence, $\alpha_1' q (\frac{p}{2} - 1) < q$, so $p = 2$ or ($\alpha_1' = 1$ and $p = 3$).

- If $p = 2$, then by (3.13), we get $\frac{\alpha_1' q}{2} - \alpha_1 < \alpha_2 - \alpha_1' \leq p - 1 = 1$. Hence, $\alpha_1' (q - 2) < 2$, and consequently $\alpha_1' = 1$, $q = 3$, and $\alpha = \frac{3}{2}$.

- Now assume that $p = 3$ and $\alpha_1' = 1$. As $\alpha_1 = q$ and $\alpha_2 > \frac{q}{2}$, then by (3.13), we get $\frac{q}{2} - 1 < \alpha_2 - \alpha_1' = \alpha_2 - 1 \leq p - 1 = 2$. Therefore, $q < 6$. However, as in addition $q > p = 3$, necessarily $q = 5$, and so $\alpha_2 = 3$ and $\alpha = \frac{5}{3}$

Conversely, we verify easily that $2 \times 3 = 6$ is a $K_{\frac{3}{2}}$-number and $3 \times 5 = 15$ is a $K_{\frac{5}{3}}$-number.

\[\square\]

By Proposition 3.10, we may say that for each $1 < \alpha < 2$ with $\alpha \neq \frac{3}{2}$ and $\alpha \neq \frac{5}{3}$, there is no squarefree composite number N with two prime factors such that N is a K_α-number. The question about the infinitude of the K_α-numbers for a given $\alpha \in \mathbb{Q}$ remains posed. This can not be easily solved with an idea inspired by the proof of the case $\alpha = 1$ given by Alford et al. in [1]. However, following the heuristic ideas of Erdos, we believe the following:

Conjecture 3.11 For any given $\alpha \in \mathbb{Q} \setminus \{0\}$ there exist infinitely many K_α-numbers.

Acknowledgment I thank the referee for his/her report improving both the presentation and the mathematical content of the paper.

2761
References

[2] Beeger NGWH. On composite numbers \(n \) for which \(a^{n-1} \equiv 1 \pmod{n} \) for every \(a \) prime to \(n \). Scripta Math 1950; 16: 133-135.
[4] Carmichael RD. On composite numbers \(P \) which satisfy the Fermat congruence \(a^{P-1} \equiv 1 \pmod{P} \). Am Math Mon 1912; 19: 22-27.