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Abstract: In this paper, using the Boole summation formula, we obtain a new integral representation of n-th quasi-
periodic Euler functions E,(x) for n = 1,2,.... We also prove several series involving Euler zeta functions (z(s), which

are analogues of the corresponding results by Apostol on some series involving the Riemann zeta function ({(s).

Key words: Hurwitz-type Euler zeta functions, Euler zeta functions, Euler polynomials, Boole summation formula,
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1. Introduction

The Hurwitz-type Euler zeta function is defined as follows

(D"
(e(s,a) = ; (1)
e nz::() (n+ a)

for complex arguments s with Re(s) > 0 and a with Re(a) > 0, which is a deformation of the well-known

Hurwitz zeta function
oo

1
s,a) = —_— 2
i) =3 &)
for Re(s) > 1 and Re(a) > 0. Note that ((s,1) = ((s), the Riemann zeta function. The series (1) converges
for Re(s) > 0 and it can be analytically continued to the complex plane without any pole. For further results
concerning the Hurwitz-type Euler zeta function, we refer to the recent works in [10] and [14]. Let a =1 in

(1); it reduces to the Euler zeta function

(~1)"!

Cele) =Gl 1) = 32 Q
for Re(s) > 0, which is also a special case of Witten zeta functions in mathematical physics (see [20, p.
248, (3.14)]). In fact, it is shown that the Euler zeta function (g(s) is summable (in the sense of Abel) to
(1—2179%)((s) for all values of s. Several properties of (z(s) can be found in [3, 10, 12, 16]. For example, in the

form on [1, p. 811], the left-hand side is the special values of the Riemann zeta functions at positive integers,
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and the right-hand side is the special values of Euler zeta functions at positive integers. In number theory, the
Hurwitz-type Euler zeta function (1) represents the partial zeta function in one version of Stark’s conjecture of
cyclotomic fields (see [15, p. 4249, (6.13)]). The corresponding L-functions (the alternating L-series) have also
appeared in a decomposition of the (5, {2})-refined Dedekind zeta functions of cyclotomic fields (see [12, p. 81,
(3.8)]). Recently, using Log Gamma functions, Can and Dagli proved a derivative formula of these L-functions
(see [8, Eq. (4.13)]).

The Euler polynomials FE,(z) are defined by the generating function

2" S )l )
et +1 _n:O AT n!

for |t| < m (see, for details, [11, 21, 27]). They are the special values of (1) at nonpositive integers (see [10,
p. 520, Corollary 3], [9, p. 761, (2.3)], [14, p. 2983, (3.1)], [29, p. 41, (3.8)] and (46) below). The integers
E, = 2"E, (1/2),n € Ny = NU {0}, are called Euler numbers. For example, Fy = 1,Fy = —1,E4 = 5,
and Eg = —61. The Euler numbers and polynomials (so called by Scherk in 1825) appear in Euler’s famous
book, Insitutiones Calculi Differentials (1755, pp. 487-491 and p. 522). Notice that the Euler numbers with odd
subscripts vanish, that is, Fs,,11 = 0 for all m € Ng.

For n € Ny, the n-th quasi-periodic Euler functions are defined by

En(x+1)=—E,(z) (5)
for all x € R, and
E,(z)=Ep(z) for0<z <1 (6)

(see [7, p. 661]). For arbitrary real numbers 2, [x] denotes the greatest integer not exceeding x and {x} denotes

the fractional part of real number x; thus
{z} =2 —[a]. (7
Then, for r € Z and n € Ny, we have

Eu(x) = (-)¥E,({z}), Eule+r)=(-1)"Eu(2) (8)

(see [4, (1.2.9)] and [7, (3.3)]). For further properties of the quasi-periodic Euler functions, we refer to [4, 7, 8, 13].

In this paper, we obtain a new integral representation of n-th quasi-periodic Euler functions FE,(r) as
follows.

Theorem 1.1 Let n € Ny and let E,(z) be the n-th quasi-periodic Euler functions. Then for x > 0

Enfa) = (_1)7%!% /(c) F(si(:z)Jrl)CE(—s —n)z*ds,

where (c) denotes the vertical straight line from ¢ —ioco to ¢+ ioo with 0 < ¢ <1 and I'(s) denotes the Euler

gamma function.

Remark 1.2 We remark that this theorem is an analogue of a result by Li et al. on Riemann zeta functions
(see [19, Proposition 1]).
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Furthermore, we also obtain the following two theorems on series involving Euler zeta functions (g(s).
They are the analogues of the corresponding results of Apostol [2] on some series involving the Riemann zeta

function.

Theorem 1.3 Let (_Tq) denote the binomial symbol defined through the Euler gamma function I'(s) as follows

where s € C and r € N. Then the following identities hold:

1. For k odd and k > 1, we have

k_l nht K-k 54 2r) By (k
R

=1

l\')\»—l
>

2. For k odd and k > 1, we have

oo

k=1, .\ B
Z ( hls) = Z <2r j 1) %(Ezrﬂ(k) + E2r11(0)).
h=1 r=0

Theorem 1.4 Let y be the Mdobius function. Then for k odd and k > 1, we have

()Y p(d)d* _22( )gE s+ 20k~ S H(2r, k) — H(—s, k),

dlk

where

is the alternating sum of the o -th power of those integers not exceeding [g] that are relatively prime to k.

Remark 1.5 The evaluations of series involving Riemann zeta function ((s) and related functions have a
long history that can be traced back to Christian Goldbach (1690-1764) and Leonhard Euler (1707-1783) (see,
for details, [26, Chapter 3]). Ramaswami [24] presented numerous interesting recursion formulas that can be
employed to get the analytic continuation of Riemann zeta function ((s) over the whole complex plane. Apostol
[2] also gave some formulas involving the Riemann zeta function ((s); some of them are generalizations of
Ramaswami’s identities. For more results, we refer to, e.g., Apostol [2], Choi and Srivastava [26], Landau [18],
Murty and Reece [25], Ramaswami [24], and Srivastava [25].

2. Proof Theorem 1.1
To derive Theorem 1.1, we need the following lemmas.

In this section, we first present the Boole summation formula as follows:
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Lemma 2.1 (/8, Boole summation formula]) Let o, B, and 1 be integers such that o < B and | > 0. If fO(¢)

is absolutely integrable over [a, f], then

o= n <« E:(0) B—1 ¢(r) o p(r)
23 (1)) = Y = ((FD7HOB) + (1) (@)
n=ua r=0 .

1

B
L / B (-0 (0,

where E,(t) is the n-th quasi-periodic Euler functions defended by (6) and (8).

Remark 2.2 The alternating version of Euler—MacLaurin summation formula is the Boole summation formula
(see, for example, [8, Theorem 1.2] and [21, 24.17.1-2]), which is proved by Boole [5], but a similar one may
be known by Euler as well (see [22]). Recently, Can and Dagli derived a generalization of the above Boole

summation formula involving Dirichlet characters (see [8, Theorem 1.3]).

A proof of Lemma 2.1 can be found, for example, in [6, Section 5] and [8, Theorem 1.3].

Using the Boole summation formula (see Lemma 2.1 above), we obtain the following formula.
Lemma 2.3 The integral representation
1 =1 .
ha 2 r
r=0

1 (u+1) u—
(l—l)'Fu+1—l/ Bia(=)(t + o)™ dt,

holds true for all complex numbers u and Re(a) > 0, where | is any natural number subject only to the condition
that | > Re(u).

Proof The proof from Lemma 2.1 is exactly like the proof given by Can and Dagli [8, Theorem 1.4] when

X = Xo, Where X is the principal character modulo 1, and so we omit it. O

Proof of Theorem 1.1 Putting a =1 and u = s in Lemma 2.3, by (3), we find that

5 1 (s+1) o~
20p (- Z<> (l—l)'Fs+1—1/ Eia(1-erde. 9)

By Dirichlet’s test in analysis (e.g., [17, p. 333, Theorem 2.6]), the integral on the right-hand side of the above
equation converges absolutely for Re(s) < ! and the convergence is uniform in every half-plane Re(s) <1 — 4,

0 >0, and so (g(—s) is an analytic function of s in the half-plane Re(s) < I. Since
Ei_1(1—t)=(-D)"'E;_1(t) (teR) (10)
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(see [8, (2.7) with x = xo] and [13, (2.7)]), for Re(s) > 1 — 1, we have

/1E“(1 — )T ldt = (-1)"! /1E11(t)ts_ldt
0 0
=(—1)H/O B (t)t*tat an

1y mZ_ ()0

and thus the expression

-1
(Z_llw(l“s(iil / Toa(1 =ttt = 2(2>Ek(0), (12)

k=0

is valid for Re(s) > [ — 1. Therefore by (9) and (12), for I —1 < Re(s) < I, we have

1 (s+1) )
2 p(— E -
Cp(=9) = (l—l)‘Fs+1—l/ -1l =t

1 (s+1)

_1\l-1 _ s—1 1
+ (=1) (l—l)'Fs+1—l/ Ei_ ()t~ tde (13)
(=Dt T(s+1) / .

E =

T (-DIT(s+1-1) (Ot

Replacing s by s+1—1 in (13), for 0 < Re(s) < 1, we have

* = o1, 2D = 1D)IT(s)
/0 Bt = 2 e 1 s,

Finally, by Mellin’s inversion formula (see, e.g., [11, p. 49] and [19, p. 1127]), we obtain

B . B 1 I'(s)
Bia() =207 =05 | w4y

Cr(l—s—1)t%ds,

where (c) denotes the vertical straight line from ¢ — ico to ¢+ ioco with 0 < ¢ < 1 and ¢ > 0. Thus the proof

of Theorem 1.1 is completed.

3. Proofs of Theorem 1.3 and Theorem 1.4
In this section, we prove Theorem 1.3 and Theorem 1.4 by a method similar to that used by Apostol in [2].

First we need the following lemmas.

Lemma 3.1 Let a be a complex number with a positive real part. The Hurwitz-type Euler zeta function satisfies
the following:

1. Difference equation: For k € N,

(—1)* 'Ca(s,a+ k) + Ca(s.a) = > (-1)"(a+h)~*
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2. Distribution relation: For an odd positive integer k,

e
—

Cr(s,ka)=k" (-1)"(p (s,a + %) .

T

Il
=

Proof From the definition of (g(s,a), it is easy to show that (g(s,a + 1) + (g(s,a) = a=*. We can rewrite
this identity as
Ce(s,a+h+1)+Cp(s,a+h)=(a+h)"7, (14)

where h € Ny. Taking the alternating sum on both sides of the above identity as h ranges from 0 to k£ — 1, we

have
k—1
(1) Co(s,a+ k) + (e(s,a) = Y (=D (a+h)",

h=0
which completes the proof of Part 1.
Part 2 can be derived directly from the definition of (g(s,a) (see (1) above). O
Lemma 3.2 The following identities hold:

1. Let a € R and a > 0. Then

= [—s
CE(s,era)—Z( >CE(s+r,a)xT, |z| < a,
r=0 T
in which we understand 0° =1 if r =0, and 0" =0 otherwise.
2. Let |z| <a+1 with a € R and a > 0. Then

Cotoat1=0) = 3 () {Golo ) -7t a"

r=0

Remark 3.3 Part 1 of Lemma 3.2 (and then (4.8) and (4.9) below) is a special case of [23, Theorem 2.4].
Part 2 of Lemma 3.2, when a =1, is similar to Eq. (18) in a 2001 book by Srivastava and Choti [26, p. 147].

Proof of Lemma 3.2 Note that for |z| <a

Ce(s,a+a) = Cp(s,a) = Z(l)n{(n—Ha:— a)y (n—ia)s}' =

n=0

Writing the summand as

(n+a:1_|_a)s - (nia)s - (nia)s <(1+nia)s_1>
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and using the binomial theorem,

1 1 > —3 "
(n+x+a)5_(n+a)3: n+a <Z n—i—a) _1>

The right side of (15), by (16), is
oo _ oo oo —s ,
Z(T) Z 5+T_Z(T>CE(S+T7G)J: P (17)
r=1 n=0 r=1

where a > 0. By using (15) and (17), we obtain the first part.

For the second part, note that from the binomial theorem we have

oot man (-2 S () (1) <1s>

for |z| < a. Setting h = 0 and replacing a by a — x in (14), we get
(e(s,a—z+1)+(p(s,a—z)=(a—2)"" (19)

If we replace by —x in Part 1 and use (18) and (19), we get

oo

Z(—l)r (_Ts> {Ce(s+ra)—a*"}a" =(p(s,a—x)— (a—2)"°

r=0
= —(p(s,a+1—2z).
Thus the result follows.

Lemma 3.4 Suppose k is an odd positive integer. Then we have

Cols) (1—k°) =S (~1) (‘j) CE](:j r) B, (k) —;ET(O)_

r=1

Proof Suppose k is an odd positive integer. If we take a =1 and = —h/k,0 < h < k —1 in Part 1 of
Lemma 3.2, multiply by (—1)", and sum over h, then we have

k—1 00 k—1

h —s\ Ce(s+7)
h _ r hpr
S0 (s ) = 3oy () D e, (20)

h=0 r=0 h=0

in which we understand 0" =1 if » = 0, and 0" = 0 otherwise. Note that for an odd positive integer k£ we

1 k—1 1 2 1 k—1

have
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If we put @ = 1/k in Part 2 of Lemma 3.1 and use (21), we get

S (1 (s1-3) = 3R (5)

h=0 h=0 (22)
= kSCE(S, 1)
S kSCE(S)
Hence, by (20) and (22), we have
00 k 1
, Ce(s+r)
celo) =21 () R
r=0 h=0
(23)
_ C (S)k—s + i(_ly —S CE kzl hh7
e r k5+7"
r=1 h=0
for odd k. Moreover, it is easily seen that
— E, (k) + E,(0)
EE:(_l)hhr::41;442;41;47 for odd k (24)
h=0
(see [21, Equation 24.4.8] and [27, Theorem 2.1]). Thus, the proof is completed by (23) and (24). O

Lemma 3.5 Suppose k is an odd positive integer with k > 1. Then we have

k
Ce(s) (1-k7°) =

1 h 1 [e%s)
—s\ Ce(s+7r) E.(k) + E.(0)
RN e

=1 r=

=

Proof Suppose k € N. If we take a = 1 and z = h/k,0 < h < k —1 in Part 1 of Lemma 3.2, multiply by

(—1)", and sum over h, then we have

k—1 0o k 1
h (s+71)
—1)" ,1+) ( ) I
hgo( ) CE (S k r=0 i;)
(25)
> s+7" E.(k)+ E.(0
Now, setting a = 1 in Part 1 of Lemma 3.1, we obtain
k—1
(=" Cp(s, b+ 1) +¢u(s, ) = D (-D"(h+ 1)~ (kEN),
h=0
which is equivalent to
k-1
(=1)*Cr(s,k) +Cals) = ) (=) 1A (26)
h=1

1173



KIM/Turk J Math

for k> 2. We set a =1 in Part 2 of Lemma 3.1 and use (26); then the first term of (25) equals

k—1

h
S (-1 < 1y k) — ECa(s, b)
h=0
(27)
k—1
= k* (gE(s) - Z(—l)h‘lh_s>
h=1
for odd k > 1, and so by combining (25) and (27) we obtain the result. O

Now we give proofs of Theorem 1.3 and Theorem 1.4, respectively.
Proof of Theorem 1.3 It needs to be noted that

E(0) =0

if k is even ([27, p. 5, Corollary 1.1(ii)]). Using the above identity, adding Lemma 3.4 and Lemma 3.5, we

obtain Part 1 of Theorem 1.3. Subtracting Lemma 3.5 from Lemma 3.4, we have Part 2 of Theorem 1.3.

Proof of the Theorem 1.4 For o € C, we introduce the alternating sum

From now on, let k& denote an odd integer and k > 1. By taking a = 1 and « = h/k,(h,k) = 1 in Part 1 of
Lemma 3.2, 1 < h < [%] , multiplying by (—1)", and summing over h, we obtain

(-1)'¢g (s 1+ Z) = i) (_:> Ce(s+r)k~"H(r k). (28)
(k=1 "~
Similarly, we have
[Zg]: (=)™ '¢p (s 1- Z) = - i(—nT(;s) Ce(s+ )k~ "H(r, k). (29)
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If k is odd, (k—1)/2 is an integer and so we get

o RN

res [
o[- [

Hence

that is,

(—1)" {CE (S, Z) —(E (S, 1- Z)} = zk: (-1)"¢e <S, Z) .

h=1

(h}f:)1=1 (h,k)=1
Now subtracting (28) from (29), from (30) and (32), we have
3 (=1)"¢g (s h) = k*H Z( )CE s+ 2r)k~ 2 H(2r k).
Tk

=1
(h,k)=1

By the definition of the M&bius functions, for n € N, we have
1 1 ifn=1
dould)=|-|=4q. .
n 0 ifn>1
d|n
(see [2, p. 25, Theorem 2.1]). Recalling from Part 2 of Lemma 3.1 that
Cr( ska—ks CE(sa+k>

and letting a = 1/k in (34), we obtain

(31)

(32)

(34)
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where k is odd. Hence the left-hand side of (33) may be rewritten as

h=1

(hk)=1

S (1 (Z) S Y e (’;)
)

) 3 (1) (5.5 (30

) S (1" (5,575

dlk m=1

(use replace k/d by k in (35))

= —k*Cu(s) > p(d)d,

dlk

since d is odd in the case k is odd. Thus, by combining (33) and (36), the proof of Theorem 1.4 is completed.

4. Some further identities

In the spirit of Euler, by working with the formal power series, we have

3 GG $5 (S 00

n=0 n=0

. . (37)
e ()
k=1 n=0
The last term of (37) converges to
et :— 1 (38)
Thus, directly from definition (4), (38) may be written
Applying the reflection formula of Euler polynomials (see [21, 24.4.4)):
E,(1—-z)=(-1)"E,(x), (40)
with z = 0, by (37), (38), and (39), we obtain
¢ = L m0) = L) ()
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for n € Np, which imply (g(—1) = 1/4,(rg(—2) = 0,{g(—3) = —1/8,... (see [10, p. 520, Corollary 3]). The

following identity involving Euler polynomials
E,(z) =2z" — Z (n) (=) "E,—(0)z" (n € Np) (42)

follows from the known formula (see [11, p. 41, (6)] and [21, 24.4.2])
E,(x +1)+ E,(z) =22" (n € Ny), (43)

in the case we replace E,(z +1) by "' (") E,_,(1)z" in (43), then set # = 0, and replace n by n —r in
(40).

Putting a =1 and s = —n in Part 1 of Lemma 3.2, we obtain the result
" /n
CE(—n,x+1)—Z( )CE(r—n):cT, |z| < 1. (44)
r=0 "
Next setting a = x,s = —n, and h =0 in (14), we have
Ce(—n,z+ 1)+ (p(—n,z) = z™. (45)

Combining (44) and (45), we have

Ce(—n,x) =a" — Zn: (:) Ce(r—n)a’,

r=0

and by (41) and (42), we have

r=0 (46)
1
= iEn(x)
for n € Ny (see [10, p. 520, (3.20)], [16, p. 4, (1.22)], and [29, p. 41, (3.8)]).
For a =1, Part 2 of Lemma 3.2 yields
Cels2 =)= 3 (-1 (7) s +n -1y, (47)

where |z| < 2 (cf. [26, p. 146, (18)]). Replacing the summation index r in (47) by r + 1, and setting =z = 1,

we arrive immediately at an analogue form of (2.3) in [25]:

Sy () dGals 4 1) = 1)+ 26(0) = 1. (48)

r=1
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Letting x = —1 in (47) and using (14) with ¢ = 1,2 and h = 0, that is, (g(s,3) = (g(s) + 1/2° — 1, we find
that

oo

() =1 - g~ 5 2 () el + ) - 13, (19)

r=1

which provides a companion of Landau’s formula (see [18, p. 274, (3)] and [28, p. 33, (2.14.1)]). Setting x =1/2
in (47), and using (14) with @ = 1/2 and h = 0, that is, (g(s,3/2) + (g(s,1/2) = 2°, we obtain a series

representation for 3(s):

(50)
=1 [(s+r—1
:1+22r+5( ){CE(s—i-r)—l},
r=0
where 3(s) denotes the Dirichlet beta function defined by (see [1, p. 807, 23.2.21])
(D"
pls) = go @2n+ 1)
The above series converges for all Re(s) > 0. Setting s =2 in (50), we deduce
) - r
Catalan’s constant G = 3(2) =1+ Z s {Cp(r+1)—1}, (51)
r=1

which is one of the basic constants whose irrationality and transcendence (though strongly suspected) remain
unproven (cf. [26, p. 29, (16)]).
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