Cover for Modules and Injective Modules

N. Amiri

Abstract

Let \(R \) be a commutative ring with identity and \(M \) be an \(R \)-module with \(\text{Spec}(M) \neq \emptyset \). A cover of the \(R \)-submodule \(K \) of \(M \) is a subset \(C \) of \(\text{Spec}(M) \) satisfying that for any \(x \in K, x \neq 0 \), there is \(N \in C \) such that \(\text{ann}(x) \subset (N : M) \). If we denote by \(J = \bigcap_{N \in C} (N : M) \) and assume that \(M \) is finitely generated, then \(JM = M \) implies that \(M = 0 \). \(M \) is called \(C \)-injective provided each \(R \)-homomorphism \(\phi : (N : M) \to M \) with \(N \in C \) can be lifted to an \(R \)-homomorphism \(\lambda : R \to M \). If \(R \) is a commutative Noetherian ring and \(C' = \text{Spec}(R) \), where \(C' = \{(N : M) | N \in C\} \), then every \(C \)-injective \(R \)-module is injective.

Key Words: Commutative ring, \(D \)-prime module cover, prime submodule, injective module, quasi-injective and injective hull.

Definition. Let \(M \) be an \(R \)-module. A proper submodule \(P \) of \(M \) is a prime submodule, if \(rm \in P \), for \(r \in R \) and \(m \in M \) implies that either \(m \in P \) or \(rM \subset P \). The set of all prime submodules of \(M \) is called the spectrum of \(M \) and denoted by \(\text{Spec}(M) \).

Definition. Let \(M \) be an \(R \)-module. A subset \(C \) of \(\text{Spec}(M) \) is a cover of \(M \), if for every \(0 \neq x \in M \) there exists \(P \in C \) such that \(\text{ann}(x) \subset (P : M) \). If \(C \) is a finite set, then \(C \) is called a finite cover.

Definition. An \(R \)-module \(M \) is called \(D \)-prime provided that \(M \neq 0 \) and \(\text{ann}(N) = \text{ann}(M) \), for all non-zero submodule \(N \) of \(M \).

AMS Mathematics Subject Classification: 13C13, 13C05
1. Cover for Modules and Localization

Lemma 1. Let M be a non-zero R-module and C a cover of M and $J = \bigcap_{P \in C} (P : M)$ if $JM = M$, then $M = 0$.

Proof. Suppose that $M \neq 0$ and $JM = M$, then there exists $r \in R$ such that $r - 1 \in J$ and $rM = 0$, so $rm = 0$ for all $m \in M$ and $r \in \text{ann}(m)$. Hence $r \in J$, that is a contradiction. \Box

Lemma 2. Let R be a Noetherian ring, M is a finitely generated R-module, C a cover of $M, I \subset \bigcap_{P \in C} (P : M)$. Then $\bigcap_{n=1}^{\infty} I^n M = 0$.

Proof. Let $\bigcap_{n=1}^{\infty} I^n M = K$. Then by Krull’s Theorem $IK = K$ and by Lemma 1, $K = 0$. \Box

Lemma 3. Let C be a finite subset of $\text{Spec}(M)$ such that $(P : M)$ is maximal for every $P \in C$, and $J = \bigcap_{P \in C} (P : M)$. If $\bigcap_{n=1}^{\infty} J^n M = 0$, then C is a finite cover of M.

Proof. If C is not a cover of M, then there is an element $0 \neq x \in M$ such that $\text{ann}(x) \subsetneq (P : M)$ for all $P \in C$. Hence $\text{ann}(x) + (P : M) = R$. Let $1 = r + s$ with $s \in (P : M)$ and $r \in \text{ann}(x)$. Then for every $n \in N$, $1^n = (r + s)^n = r^n + s^n, r^n \in \text{ann}(x), s^n \in (P : M)^n$, so $x = r^n x + s^n x = s^n x$. Hence $Rx = (P : M)^n x$, for every $P \in C$, and so $J^n x = R x$. Hence $\bigcap_{n=1}^{\infty} J^n M \neq 0$, which is a contradiction. \Box

Theorem 4. Let R be a Noetherian ring and M a faithful finitely generated R-module. Then M has a finite cover C and $\bigcap_{n=1}^{\infty} J^n M = 0$, where $J = \bigcap_{P \in C} (P : M)$. In particular, if $M = R$, then $\bigcap_{n=1}^{\infty} J^n = 0$.

Proof. See [1. Theorem 6]. \Box

Theorem 5. Let M be a finitely generated R-module and C is a subset of $\text{Spec}(M)$. If for every prime ideal P of R and $N \in C, N \neq M_P$, then C is a cover for M over...
R if and only if C_P is a cover for M_P over R_P, for every prime ideal P of R, where $C_P = \{N_P | N \in C\}$.

Proof. Let $\frac{m}{s} \in M_P$. Since $m \in M$ and C is a cover for M, there exists $N \in C$ such that $\text{ann}(m) \subset (N : M)$. Let $r/s \in \text{ann}(\frac{m}{s})$. Since $\text{ann}(mP) \subset (N_P : M_P), r/s \in (N_P : M_P)$ and $\text{ann}(\frac{m}{s}) \subset (N : M_P)$ so C_P is a cover for M_P over R_P. Let $m \in M$, then $\frac{m}{s} \in M_P$ so there exists $N_P \in C_P$ such that $\text{ann}(\frac{m}{s}) \subset (N_P : M_P)$. Now let $r \in \text{ann}(m)$. Then $\frac{r}{s}, \frac{r}{s} \in N_P$, where $\frac{r}{s} \in M_P$, so $\frac{r}{s} = \frac{r}{s}$ for some $n \in N$; and so there exists $s' \in R - P$ such that $rss'y = s'n \in N$. Hence $ss'(ry) \in N$, and since $ss' \notin (N : M), ry \in N$, so $rM \subset N$, and $\text{ann}(x) \subset (N : M)$.

Theorem 6. Let R be a reduced ring and C is a subset of $\text{Spec}(R)$. Then C is a cover for R as an R-module if and only if $C||x||$ is a cover for $R||x||$, where $C||x|| = \{P||x|| | P \in C\}$.

Proof. Let C be a cover for R and $g(x) \in \text{ann}(f(x))$ for $f(x), g(x) \in R||x||$. If $g(x) = \sum_{n=0}^{\infty} b_nx^n$ and $f(x) = \sum_{n=0}^{\infty} a_nx^n$, then for every $i, b_i, f(x) = 0$, so for every $i, b_i \in \text{ann}(a_0) \subset P$, for some $P \in C$ and hence $g(x) \in P||x||$. Conversely if $C||x||$ is a cover for $R||x||$ and let $a \in R, r \in R$ such that $r \in \text{ann}(a) \subset P||x||$, for some $P||x|| \in C||x||$. So $ra = 0$ and hence $r \in P||x|| \cap R$, so $r \in P$. Then $\text{ann}(a) \subset P$. Hence C is a cover for R.

Proposition 7. Let R be a ring and C is a subset of $\text{Spec}(R)$. Then C is a cover for R as an R-module if and only if $C[x] = \{P[x] | P \in C\}$ is a cover for $R[x]$ as an $R[x]$-module.

Proof. Let C be a cover for R and $f(x) \in R[x], g(x) \in \text{ann}(f(x))$, then $f(x)g(x) = 0$. If $g(x) = \sum_{i=0}^{k} b_i x^i$, and $f(x) = \sum_{i=1}^{m} a_i x^i$, then there is an element a such that $ag(x) = 0$ so $b_i \in \text{ann}(a) \subset P$ for some $P \in C$. So $g(x) \in P[x]$ and hence $C[x]$ is a cover for $R[x]$.

Conversely, let $C[x]$ be a cover for $R[x]$, and let $a \in R, r \in R$, and $r \in \text{ann}(a)$. As $\text{ann}(a) \subset P[x]$ so $r \in P[x] \cap R = P$. Thus C is a cover for R.

113
2. **C-injective Modules**

Definition. Let R be a ring M, X are R-modules, C is a cover of M. We say that X is C-injective provided every R-homomorphism $\phi : (N : M) \to X$, where $N \in C$ can be lifted to an R-homomorphism $\lambda : R \to X$. In the next results we shall be interested in ring R with the following properties:

(P1) for every proper ideal I there exists a finite set of prime ideals P_1, P_2, \cdots, P_n such that $P_1P_2\cdots P_n \leq I \leq P_1 \cap P_2 \cap \cdots \cap P_n$.

(P2) The ascending chain condition on prime ideals.

Proposition 8. Let R be a Noetherian ring. Then R satisfies (P1) and (P2).

Proof. Since R is Noetherian then R satisfies (P2). Suppose R does not satisfy (P1).

Let $S = \{ J \mid (P1) \text{ fails for } J \}$. Suppose I be a maximal element of S. Then I is not a prime ideal, so there exists ideal I_1 and I_2 properly containing I such that $I_1I_2 \leq I$. By the choice of I, (P1) holds for each I_1 and I_2, and hence for I, which is a contradiction. \square

Proposition 9. Let R be a ring which satisfies (P1) and (P2). Then every non-zero R-module contains a D-prime submodule.

Proof. Let M be a non-zero R-module. Let $I = \text{ann}(M)$. The there exists prime ideal P_1, P_2, \cdots, P_n such that $P_1P_2\cdots P_n \leq I \leq P_1 \cap P_2 \cap \cdots \cap P_n$. Suppose $P_1P_2\cdots P_n M = 0$ and it follows that there exists P_k such that $P_km = 0$, for some $m \in M$. Suppose $B = \{ P : P$ is a prime ideal and $Px = 0$ for some $x \in M \}$. Let Q be a maximal element of B and let $y \in M$ such that $Qy = 0$. We show that $N = Ry$ is a D-prime submodule of M. let K be a non-zero submodule of N. Then $Q \leq \text{ann}(K)$, we show that $Q = \text{ann}(K)$. Let $Q \neq \text{ann}(K)$. Then there exists prime ideal q_1, q_2, \cdots, q_m such that $q_1q_2\cdots q_m \leq \text{ann}(K) \leq q_1 \cap q_2 \cap \cdots \cap q_m$. If follows that $q_1q_2\cdots q_m K = 0$, and there exists $x \in K$ such that $q_i x = 0$ for some i. But $Q < \text{ann}(K) \leq q_i$, and this contradicts the choice of Q. Hence $Q = \text{ann}(K)$, and so N is D-prime submodule of M.

Theorem 10. Let M be an R-module and R satisfies (P1) and (P2), C a cover of M. Then M is C-injective if and only if M is an injective R-module.

Proof. Let M be a C-injective and I be an ideal of R and $\phi : I \to M$ an R-
homomorphism. By zorn lemma there exists an ideal J containing I maximal with respect to the property that ϕ can be lifted to a homomorphism $\lambda: J \to M$. We show that $J = R$.

Suppose $J \neq R$. Thus R/J is a non-zero R-module and so R/J has a D-prime submodule. \square

Let K be an ideal containing J such that R/J is a D-prime module. Let $P = \{r \in R | rk \in J\}$. Then $P \simeq (R/K + J)/J$ and hence P is a prime ideal of R. As $P = (N : M)$, where $N \in C$, define $\gamma : P \to M$ by $\gamma(x) = \lambda(kx)$. Then γ is a homomorphism, and because $P = (N : M)$ for $N \in C$, there exists $m \in M$ such that $\gamma(x) = mx$. Now define $\theta : kR + J \to M$ by $\theta(rk + j) = rm + \lambda(j)$, so θ is well-defined, θ is a homomorphism and θ extends λ and hence ϕ. This contradiction shows that $J = R$. it follows that M is injective.

3. Quasi-Injective Modules

Definition. An R-module M is said to be quasi-injective if every R-homomorphism $\phi : N \to M, N$ a submodule of $M,$ is induced by an R-endomorphism of M.

Notation. Let C be a cover for R-module M, denote $C(M) = \{x \in M | (N : M) \subset \text{ann}(x), \text{for some } N \in C\}$.

Lemma 11. $C(M)$ is a submodule of M.

Proof. It is obvious. \hfill \square

Theorem 12. An R-module M is quasi-injective if and only if $M = E[C(M)]$, where $E[C(M)]$ is injective hull of $C(M)$.

Proof. If M is quasi-injective. Then $M \leq E[C(M)]$, we show that $E[C(M)] \leq M$. Let $y \in E[C(M)]$, then there exists $N \in C$ such that $(N : M) \subset \text{ann}(y)$; and since C is a cover for M there exists $x \in M$ such that $\text{ann}(x) \subset (N : M)$. We define $\alpha : Rx \to Ry$ by $\alpha(x) = y$. Let $E = E[M]$, so we have the mapping
\[
\begin{array}{ccc}
0 & \to & Rx \\
\alpha & \downarrow & \lambda \\
& & E
\end{array}
\]
Now $\phi = \lambda/M$ maps x onto y; and since M is quasi-injective, it is fully invariant in E, then $y \in M$ so that $E[C(M)] \leq M$, and equality holds. Conversely, suppose that
$M = E[C(M)]$, since $E[C(M)]$ is a injective R-module so is M, and since every injective R-module is quasi-injective. Hence M is quasi-injective R-modules.

\[\square \]

Corollary 13. Let C be a cover for an R-module M. Then the following are equivalent.

1. M is quasi-injective R-module.
2. M is a injective R-module.
3. $M = E[C(M)]$.

References

N. AMIRI
Department of Mathematics,
Payame Nour University of Firouzabad,
Firouzabad, 71454, IRAN

e-mail: amiri@susc.ac.ir

Received 28.11.2006