Abstract: Let $T(X)$ be the full transformation semigroup on the set $X$. For a fixed nonempty subset $Y$ of $X$, let \begin{equation*} PG_Y(X) = \{\alpha\in T(X) : \alpha|_Y\in G(Y)\} \end{equation*} where $G(Y)$ is the permutation group on $Y$. It is known that $PG_Y(X)$ is a regular subsemigroup of $T(X)$. In this paper, we give a simpler description of Green's relations and characterize the ideals of $PG_Y(X)$. Moreover, we prove some isomorphism theorems for $PG_Y(X)$. For finite sets, we investigate the cardinalities of $PG_Y(X)$ and of its subsets of idempotents, and we also calculate their ranks.

Keywords: Green's relations, ideal, isomorphism theorem, rank

Full Text: PDF