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Abstract

The linear quadratic optimal regulator is one of the most powerful techniques for designing multivariable

control systems. The performance of the system is specified in terms of a cost, which is the integral of a

weighted quadratic function of the system state and control inputs, that is to be minimized by the optimal

controller. The components of the state cost weighting matrix, Q, and the control cost weighting matrix,

R, are ours to choose in mathematically specifying the way we wish the system to perform. Changing these

matrices, we can modify the transient behavior of the closed-loop system. This paper addresses the stabilization

and performance of the load-frequency controller by using the theory of the optimal control. A new technique,

based on pole placement using optimal regulators, to overcome the difficulties of specifying weighting matrices

Q and R is proposed. The design method employs successive shifting of either a real pole or a pair of complex

conjugate poles at a time. The proposed technique builds Q and R in such a way that the system response

also obeys conventional criteria for the system pole location. The effectiveness of the proposed method is

illustrated by numerical examples.

Key Words: Power systems, load-frequency control, optimal control, weighting matrices

1. Introduction

Large-scale power systems are normally divided into control areas based on the principle of coherency. The
coherent areas are interconnected through tie-lines, which are used for contractual energy exchange between
areas and provide interarea support during abnormal operations.
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The objective of the automatic generation control (AGC) or load-frequency control (LFC) of a power

system is to maintain the frequency of each area and tie-line power flow (in interconnected systems) within
a specified tolerance. Many investigations in the area of AGC problems of interconnected systems have been
reported in the past. The suggestions for dynamic modeling for AGC purposes that are followed in this paper
are contained in [1-3], and are discussed thoroughly in [4]. A number of control schemes have been employed in
the design of load-frequency controllers in order to achieve better dynamic performance, such as classical control
[5,6], optimal control [7,8], and H-infinity methods with variable structure control [9]. Recently, load-frequency

control as well the related voltage control have also been proposed, based on genetic algorithms [10,11], and the

role of artificial intelligence in the reliability evaluation of electric power systems was addressed in [12]. In [13],
combined intelligent techniques were used for autonomous AGC.

Among the aforementioned controllers, the most widely employed is the conventional proportional integral
(PI) controller, due to its low cost and high reliability in operation. Although the PI controller is simple for
implementation, it generally exhibits oscillatory frequency deviation responses.

The application of the optimal control theory to power systems has shown that an optimal load-frequency
controller can improve the dynamic stability of a power system [14]. To achieve the desired response of a system
without the expenditure of high control effort, optimal control is often employed. The optimal control law
results from the minimization of a performance index, which is specified in terms of a cost defined by the
integral of a weighted quadratic function of the system state and control inputs.

However, the application of optimal control theory has 2 fundamental (yet complementary) difficulties

[15-17]: how to specify the matrices Q and R , and how to define the quality of the load-frequency controller.

The problem of selecting weighting matrices Q and R has shown up in optimal control design [15-18]. To assign
appropriate values for matrices Q and R in a systematic manner, avoiding the burdensome process of search
by trial and error is a major concern, and it is the main point addressed in this paper.

The present paper develops a method to design a linear quadratic regulator that achieves the desired
pole placement while satisfying the optimality. It follows the basic concept of shifting a single real pole or a pair
of complex conjugate poles at a time. A weighting matrix is constructed in such a way that the desired pole
location is achieved by the optimal feedback gain, which corresponds to the weighting matrix of the performance
index. The feasibility of the pole shifting can be verified in each step of the design procedure, since this method
utilizes the complete region of assignable closed-loop poles.

This paper is organized as follows: Section 2 presents the main results of the optimal control theory.
Section 3 proposes an approach to perform the specification of the weighting matrices. Section 4 illustrates the
proposed approach with numerical results. Section 5 concludes the paper.

2. Optimal control theory

To design a linear optimal control, a linearized model of the power system is sought. The linear time-invariant
system model is described in state-space form as:

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t) x ∈ �nx , u ∈ �nu , y ∈ �ny , (1)

where A and B are system matrices, x is the state vector, u is the control signal vector, y is the output vector,
and nx , nu , and ny are the number of state, control, and output variables, respectively.
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Once the complete state x is available for feedback, it is possible to allocate the set of closed-loop system
poles to an arbitrary position, by means of a suitable linear state feedback. Thus, the control law is [7]:

u(t) = −Kx(t), (2)

where K is the feedback gain matrix, and the closed-loop system model can be rewritten as:

ẋ = [A − BK ] x. (3)

For the linear system described in Eq. (1), with a given controllable pair (A , B), and if A is a nonsingular
matrix, then the optimal control signal u that minimizes the performance index J , given by:

J =
∫ ∞

0

[
xT Q x + uT R u

]
dt, (4)

is a function of the present states of the system weighted by the components of a constant gain matrix K as:

u = −K x = −R−1BT P x, (5)

where Q and R are the weighting matrices, K is the feedback gain matrix, and P is the solution of the linear
matrix Riccati equation:

AT P + PA− PBR−1BT P + Q = 0. (6)

The Riccati equation is the key to obtaining the optimal control. Once matrices Q and R are known, matrix P

can be obtained by solving the Riccati equation. From Eq. (5), we get the optimal control vector u . However,
the relationship between the weighting matrices and the closed-loop poles is not simple. The most common
procedure for specifying matrix Q is searching by trial and error. Different matrices Qi result in different gain
matrices Ki , which in turn result in different dynamic performances for the closed-loop system. There are many
possibilities to test by trial and error, which makes this procedure burdensome.

The present paper develops a method based on [19] for constructing a linear quadratic regulator that
achieves the desired pole placement while satisfying the optimality. It follows the basic concept of shifting a
single pole or a pair of complex conjugate poles at a time.

3. Project procedure

The proposed approach, based on optimal pole shift, assumes that the pair (A , B) in Eq. (1) is controllable,
as was previously stated, and that the coefficient matrix A has distinct eigenvalues.

Consider now a specific mode of the system, which can be obtained from an appropriate linear transfor-
mation. The above assumption guarantees that the selected mode is controllable so that it can be chosen as a
nonsingular matrix, M , according to:

MAM =

⎡
⎢⎣

A11 · · · 0
...

. . .
...

0 · · · Ann

⎤
⎥⎦ , (7)

and

M−1BR−1BT
(
M−1

)T =

⎡
⎢⎣

V11 · · · V1n

...
. . .

...
V T

1n · · · Vnn

⎤
⎥⎦ , (8)
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where A11 =
[

α β
−β α

]
and V11 = υ0

[
1 0
0 υ

]
,

with υ0 > 0, 0 ≤ υ ≤ 1.
The first 2 columns of the transformation matrix, A11 , result from the real part and the imaginary part

of the eigenvectors of A , corresponding to the eigenvalues α± jβ . Let this transformation matrix be M1 , with
the other columns of the transformation matrix assumed to be irrelevant.

Matrix V11 is symmetric and positive semidefinite in general. Thus, it can be diagonalized and the
arbitrary ordering of the eigenvalues is possible with an orthogonal transformation matrix, appending the
identity matrix to this orthogonal matrix to form a block diagonal matrix with the size of A . Let us denote
this matrix as M2 , and then the transformation matrix M is M = M1M2 .

The selection of weighting matrix R is arbitrary, and it is used as a scaling factor for the input channels.
Nevertheless, scaling R for the inputs of the system has no effect, since it will only result in same amount of
scaling on Q .

The weighting matrix Q is to be constructed according to the pole assignment; let Q11 be a positive
semidefinite matrix with the same size as A11 , and set a weighting matrix Q that satisfies:

Q =
(
M−1

)T
[

Q11/υ0
0

0 0

]
M−1 (9)

The eigenvalues of A11 can then be shifted while keeping all other eigenvalues of A unchanged.

3.1. Pole shifting: weighting matrices specification

When a real pole is to be shifted, the matrices A11 , V11 , and Q11 reduce to scalar. In this case, the assignable
region of optimal closed-loop poles is readily determined. It turns out that a real pole, either stable or unstable,
can only be shifted along the real axis within the left half of the complex plane, and that the absolute value of the

closed-loop pole is larger than that of the open-loop pole and can be given by Eq. (9), with Q11 = (αd)
2−(α)2 .

When a complex conjugate pole is to be shifted, the matrices A11 , V11 , and Q11 are 2 × 2 matrices. In
this case, the Hamilton matrix assumes the form:

H =
[

A11 V11

−Q11 −AT
11

]
(10)

and is associated with the regulator problem of the second-order system. Let the entries of Q11 be described
as:

Q11 =
[

q1 q2

q3 q4

]
(11)

The characteristic equation of H then has the form:

s4 + C2s
2 + C0 = 0. (12)

The coefficients C2 and C0 turn out to be:

C2 = 2
(
β2 − α2

)
− C2, (13)

C0 =
(
β2 + α2

)2 − C0, (14)

370



MARIANO, POMBO, CALADO, FERREIRA: A procedure to specify the weighting matrices for an...,

where:
C2 = q1 + v q3, (15)

C0 =
(
α2 + v β2

)
q1 + 2 (1 − v) αβq2 +

(
vα2 + β2

)
q3 + v

(
q1q3 − q2

2

)
. (16)

Here, C2 and C0 represent the terms that depend on weighting matrix Q11 .

Let weighting matrix Q11 correspond to the optimal closed-loop poles αd±jβd , and then the coefficients
C2 and C0 are described by:

C2 = 2
(
β2

d − α2
d

)
, (17)

C0 =
(
β2

d + α2
d

)2
. (18)

Assume that the 2 × 2 weighting matrix, Q11 , is restricted to be singular. In this case, it can be described in
dyadic form as:

Q11 =
[

ρ cos2 (θ) ρ sin (θ) cos (θ)
ρ sin (θ) cos (θ) ρ sin2 (θ)

]
(19)

where ρ > 0 and 0 ≤ θ < π .

Now parameters C2 and C0 can be expressed in terms of ρ and θ as:

C2 =
ρ

2
((1 + υ) + (1− υ) cos (2θ)) , (20)

C0 =
ρ

2
(
α2 − β2

)
((1 + υ) + (1 − υ) cos (2θ + φ)) , (21)

where φ satisfies:

sin (φ) =
−2αβ

α2 + β2
, cos (φ) =

α2 − β2

α2 + β2
. (22)

Resolving the system given by Eqs. (20) and (21) for ρ , and θ Q11 is obtained through Eq. (19). Substituting

in Eq. (9), the eigenvalues of A11 can be shifted while keeping all other eigenvalues of A unchanged. To
shift all poles together, the weighting matrix Q and the corresponding optimal feedback gain matrix K are,
respectively,

Q =
nx∑
i=0

Qi and K =
nx∑
i=0

Ki. (23)

3.2. Algorithm to specify the weighting matrices

The adopted method to perform the pole shifting is now summarized in the following steps.

Algorithm

Step 1 - Calculate the feedback closed-loop eigenvalues and the eigenvectors corresponding to gain matrix
Ki .

Step 2 - Choose a transformation matrix M so that the partitioned matrices A11 and V11 represent
either a real pole or a pair of complex conjugate poles to be shifted.

Step 3 - Find a weighting matrix Q11 with which the desired pole positioning is accomplished.
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Step 4 - Calculate the weighting matrix Q and the corresponding optimal feedback gain K for the whole
system, and then form a closed-loop system with K .

Step 5 - Go to Step 1 while there are remaining poles to be shifted.

Step 6 - Calculate the sum of the matrices Q and K in each step to obtain the weighting and optimal
feedback gain matrices, which achieve the desired pole location.

An illustration of the proposed algorithm is shown in the flowchart of Figure 1.

Start

Calculate eigenvalues 
and eigenvectors  

i == n

Choose M for the 
eigenvalue to be shifted

Calculate Q
n

Calculate Q

Calculate the sum of 
Q

End

Calculate optimal 
feedback gains K

Figure 1. Flowchart of the proposed algorithm.

4. Results and discussion

To illustrate the proposed algorithm, a system of 4 different interconnected areas were considered: an area with
hydropower plants (area 1); 2 areas with fossil power plants, 1 with a nonreheat steam system configuration (area

2) and the other with a tandem compound, single reheat steam system configuration (area 3); and the last area

considered to have infinite kinetic energy (area 4).

This case study can be compared to an interconnection of the power systems of individual utilities.
Each company operates independently within its own jurisdiction, but there are contractual agreements about
intercompany exchanges of power through the tie-lines and other agreements about operating procedures to
maintain system frequency. The adjustment of the command increment, ΔPri , is done automatically and
according to the contractual agreements.

We combined the 4-area system and a model was obtained. This model is shown in Figure 2, using a
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block diagram representation, and the system is defined by the symbols and parameters shown in the List of
Symbols, where Kp = 1/Di and Tp = 2Hi/Di .

Figure 2. Block diagram of 4-area perturbation model.

As a result, a linear model of the system, in state-space form, is obtained:

ẋ = Ax + Bu + ΓΔPD. (24)

The state vector is defined as:

x = [ Δf1 Δf2 Δf3

... Δpint,1 Δpint,2 Δpint,3

...

ΔpM1 ΔpM2 Δpx1 Δpx2 ΔpM3

...

ΔxE1 ΔxE2 ΔxE3

... ΔpC1 ΔpC2 ΔpC3 ]

.
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The control vector and incremental load demand change vector are defined, respectively, as:

u =

⎡
⎣ Δpr1

Δpr2

Δpr3

⎤
⎦ and ΔPD =

⎡
⎣ ΔpD1

ΔpD2

ΔpD3

⎤
⎦ .

Substituting the definition of the states and the control into the 17 differential equations that define the
4-area system, we can obtain, respectively, the state matrix A , the control matrix B , and the disturbance
matrix Γ, resulting in a completely controllable and observable system.

−

−

−

−

−−

−−

−
−−−−

−

−

−

−+−
++−−

−++−

−−++

−−

−−

−−

=

B′ =

⎡
⎢⎣

0 0 0 0 0 0 −1
0.5TG1

0 0 0 0 1
TG1

0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1

TG2
0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1
TG3

0 0 0

⎤
⎥⎦ ,

Γ′ =

⎡
⎢⎢⎣

−KP1
TP1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 −KP2
TP2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 −KP3
TP3

0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎦ .

Applying the proposed algorithm defined in Section 3.2, for the parameters given in the List of Symbols, we can
specify the weighting matrix Q , while R is specified as the identity matrix since, as stated above, it is only used
as a scaling factor on the input channels to penalize for large control effort. Gain matrix K , for convenience
and with the aim of generating more understandable results, is subdivided into 5 submatrices,

K =
[
KSP

... KINT

... KT

... KR

... KCI

]
,

corresponding to the feedback gains of the state variable and respectively defining KSP , the feedback gains for
the incremental frequency deviation; KINT , the feedback gains for the net incremental real power exported
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from area i ; KT , the feedback gains for the governor; KR , the feedback gains for the regulator; and KCI , the
feedback gains for the integral control.

The weighting matrix Q and the gain matrix K are, respectively,

−−−−−−−−

−−−−−−−−−−−−−

−−−−

−−−

−−

−−−−

−−−−−−−−−−

−−−−−

−−−−−−

−

−−−−

−−−−

−−

−−−−−

−−−−−−−−

−−−

−−−−

=

and

KSP =

⎡
⎣ 0.49 0.18 −1.01

0.44 1.9 0.82
1.25 0.94 14.7

⎤
⎦ , KINT =

⎡
⎣ −0.37 0.23 −0.18

1.48 2.34 0.78
5.83 6.99 4.77

⎤
⎦ ,

KT =

⎡
⎣ 0.23 0.11 0.25 2.67 −1.10

0.07 2.01 −0.35 −1.08 1.67
0.51 0.56 −2.62 −13.34 16.35

⎤
⎦ ,

KR =

⎡
⎣ 0.96 0.03 −0.03

0.88 0.33 0.16
1.39 0.26 2.13

⎤
⎦ , KCI =

⎡
⎣ −0.27 0.09 2.72

−0.61 −3.28 −2.16
−4.63 −7.05 −34.4

⎤
⎦ .

Since the closed-loop system eigenvalues can be arbitrarily placed anywhere in the left side of the complex
plane, from an optimization point of view, the amount of improvement in system transients can be as large as
we want. Optimal control has, when compared with other methods, especially effective results in damping fast
and oscillatory responses of the state variables. However, the larger the distance of the pole’s location to the
imaginary axis is, the more demanding the physical control signal output will be. Thus, a careful study must
be performed before the pole location assignment, in order to keep the control effort similar to that required by
the classical proportional integral controller.

A 10% step-load increase (ΔPD = 0.1 pu MW) was applied to area 1 to illustrate the time evolution
of frequency deviations Δf1 , Δf2 , and Δf3 ; the tie-line power deviations ΔPint,1, ΔPint,2, ΔPint,3, and

ΔPint,∞ ; and the optimal output control signal. Figures 3 and 4 illustrate, respectively, the time evolution of
the system frequency deviations for each area with classical control and with optimal control. Figures 5 and 6
illustrate the time evolution of the tie-line power deviation for each area with classical control and with optimal
control, respectively.
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From these results, along with many others obtained but not discussed herein, some conclusions can be
made. First, the performance of the system with optimal state feedback controller (Figures 4 and 6) exhibits

better damping than with the conventional control (Figures 3 and 5); optimal controllers are especially effective
in damping fast the oscillatory frequency deviations and tie-line load. Second, considering the specified system
pole location, the increase of the stability margin of optimal solution, as can be seen in Figures 4 and 6, was
expected.
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Figure 3. Step response of system frequency deviations

with classical control.

Figure 4. Step response of system frequency deviations

with optimal control.

A significant improvement in system transients of the tie-line power deviations for the same steady-state
performance was obtained, as shown in Figures 5 and 6. It can also be seen that, since area 4 is considered to
have infinite kinetic energy, it is the area that contributes most to satisfying the step-load increase in area 1.
Thus, the interconnection is effective in delivering power to control area 1, especially with optimal control.
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Figure 5. Step response of system tie-line power deviation

with classical control.

Figure 6. Step response of system tie-line power deviation

with optimal control.
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It can also be noted that the solution presented here does not require the elimination of conventional
integral control. Therefore, the tie-line power deviations of each area are back to normal, or the basic principles
of pool operation (scheduled interchanges of tie-line power are maintained and each area absorbs its own load

changes) are satisfied.

Figures 7-9 illustrate the obtained output control signals u for area 1, area 2, and area 3, respectively.
It is seen that, for all output control signals, classical control lead to results physically more demanding than
those from the optimal controller. The optimal output control signals in area 2 and area 3 also have a high
value of initial slope, while classical control exhibits zero initial slope. Only in area 1 does the output control
signal exhibit high initial slope with classical control, because the step load is applied in this area. Note that
the final value of the output control signal in area 1 (Figure 7) is equal to the step-load increase, forcing area 1
to absorb its own load changes. In the other areas, the final values of the output control signals are zero, despite
the important contribution to load change in the transient responses.
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Figure 7. Signal control in area 1. Figure 8. Signal control in area 2.
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Figure 9. Signal control in area 3.
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5. Conclusions

The paper has presented an optimal controller solution of the load-frequency control problem of large inter-
connected power systems (a multiarea electric energy system). A new technique that allows the specification
of weighting matrices Q and R, avoiding the burdensome task of trial and error, was described and applied.
The proposed method builds Q and R in such a way that the systems response also obeys conventional criteria
for the system pole location while satisfying the optimality, following the basic concept of shifting a single real
pole or a pair of complex conjugate poles at a time. An algorithm for the proposed methodology was clearly
described, and a practical realization of this optimal approach for a 4-area interconnected power system was
carried out and compared with the classical control. The obtained illustration results showed that the optimal
controller yields results that are robust, with a highly improved performance.

List of symbols

Δfi incremental frequency deviation in area i
ΔPMi incremental generated real power (mechanical power) deviation in area i
ΔPint,i net incremental real power exported from area i
Hi inertia constant (H1 = 0.06, H2 = 0.1, and H3 = 0.16 s)
TGi governor time constant (TG1 = 0.08, TG2 = 0.1, and TG3 = 0.2 s)
Ri drop constant (R1 = 5, R2 = 2.5, and R3 = 2.6Hz/pu MW)
Tij transmission constant (considered equal for all interconnections, Tij = 0.5pu MW/Hz)
Tw hydro turbine time constant (Tw = 0.1 s)
TT nonreheat turbine time constant (TT = 0.3 s)
Di system damping (D1 = D2 = D3 = 0.01pu MW/Hz)
ΔPx1, ΔPx2 incremental fraction generated power in tandem compound, single reheat turbine
T1, T2, T3 tandem compound and single reheat turbine time constants (T1 = 0.2, T2 = 6, and T3 = 0.4 s)
K1, K2, K3 tandem compound and single reheat cylinder fractions (K1 = 0.3, K2 = 0.4, and K3 = 0.3)
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