
Turk J Elec Eng & Comp Sci, Vol.18, No.6, 2010, c© TÜBİTAK

doi:10.3906/elk-0904-9

Fast computation of determination of the prime

implicants by a novel near minimum minimization

method

Fatih BAŞÇİFTÇİ1, Şirzat KAHRAMANLI2

1Selçuk University, Department of Electronic and Computer Education, Technical Education Faculty,
42003, Selçuklu, Konya-TURKEY

e-mail: basciftci@selcuk.edu.tr
2Selçuk University, Department of Computer Engineering, Engineering and Architecture Faculty,

42003 Selçuklu, Konya-TURKEY
e-mail: sirzat@selcuk.edu.tr

Abstract

In this study proposed is an off-set-based direct-cover near-minimum minimization method for single-

output Boolean functions represented in a sum-of-products form. To obtain the complete set of prime impli-

cants including given on-cube (on-minterm), the proposed method uses off-cubes (off-minterms) expanded by

this On-cube. The amount of temporary results produced by this method does not exceed the size of the off-

set. To make fast computation, we used logic operations instead of standard operations. Expansion off-cubes,

commutative absorption operations and intersection operations are realized by logic operations for fast com-

putation. The proposed minimization method is tested on several different kinds of problems and benchmarks

results of which are compared with logic minimization program ESPRESSO. The results show that proposed

algorithm obtains good results and faster than ESPRESSO.

Key Words: Boolean minimization, logic operations, prime implicants, direct cover.

1. Introduction

Two-level logic minimization is a basic problem in logic synthesis [1, 2]. The minimization of Boolean Functions

(BFs) can lead to more effective computer programs and circuits. Minimizing functions can be important
because, electrical circuits consist of individual components that are implemented for each term or literal for a
given function. This allows designers to make use of fewer components, thus reducing the cost of a particular
system [3].

A wide variety of Boolean minimization techniques have been explained in [4-10], most of which work on a

two-step principles: first, identifying the prime implicants (PIs) of chosen On-minterm and second, determining

1041

Turk J Elec Eng & Comp Sci, Vol.18, No.6, 2010

a set of the essential prime implicants (EPIs) [4-6, 11]. Since the size of the PIs can be as large as 3n/n for

a function of n variables [11, 12], the PIs identification step can become computationally impractical as n

increases [2, 11, 13, 14]. In particular, according to [15], if each PI of a BF includes exactly l ones, l zeros,

and l don’t care literals, then the size of the PI is equal to |S PI |=(3 l)!/(l !)3 . For example, for l = n/3

= 6, 7, 8, 9, 10 the values of |S PI | are equal to 17.1×106 , 39.9×107 , 94.7×108 , 228×109 , 555×1010 ,

respectively. According to [16], all of the procedures for minimizing the BFs into prime and irredundant form

have O(2n)complexity. On the other hand, it is evident that a zero-cube (minterm) can be covered by a
small subset of the set of PI. This fact allows avoiding the data set complexity of the given problem by using
two cube expansion concepts: tautology-based and Off-set based [17]. The heuristic tautology-based schemes

are generally slower and often give somewhat inferior results [2, 14, 16-18]. The Off-set based scheme usually
provides expansion quickly and in a more global way and its performance is increased with the decreasing of
the size of an Off-set that usually can be reduced significantly [2, 17].

2. Definitions and notations

An incompletely-specified Boolean function F with n inputs and m outputs is a mapping F : Bn → Y m ,
where B ={0,1,x} where x is a non-appearing coordinate value and Y ={0,1,d} where d is a unspecified value.
Bn is called the domain and Y m is called the range of the function. A point in the domain of the function is
called a minterm [3, 21].

F is called an incompletely-specified single-output function if m=1. The On-set SON , Do not care
set SDC ,and Off-set SOFF of an incompletely-specified single-output function F are sets of minterms that
are mapped by F to 1, x, and 0, respectively. The function is customarily denoted by the triplet F =
(SON , SOFF , SDC). Since SON , SOFF andSDC partition Bn, only SON and SDC are usually specified. SOFF

is obtained by complementing the union of SON and SDC . If SDC = ∅ , the function is called a completely-
specified single-output function [19, 20].

For shortness and formality of the explanations and following sections of this study the following notations
are used. The number of variables of a function: n ; a set of On-cubes:SON ; a yet uncovered part of SON :
SONi ; a set of Off-cubes: SOFF ; a set of don’t care cubes: SDC ; an element of the set SOFF : B ; an element
of the set SON to be handled: A ; the set of Off-cubes expanded by on cube A : SE(A); the subset of SE(A)

containing only prime cubes: SEP (A); the complete set of prime implicants including the cube A : SPI (A); the

essential prime implicant covering the cube A : SEPI (A); a set of prime implicants: SPI ; A set of essential prime

implicants: SEPI ; coordinate subtraction (sharp product) operation: #; commutative absorption operation:

∇ ; the size of the PI: |SPI | , logic OR operation: ∨ ; logic AND operation: ∧ ; unite operation: ∪ ; intersection

operation: ∩ ; EXOR (EXCLUISIVE OR) operation: ⊕ .

3. The basics and application of the proposed method

In order to obtain a minimum sum of product (SOP) for the given function, the typical minimization method

is realized by repeating the following steps until SON is covered completely [2, 6, 8, 22].

1042

BAŞÇİFTÇİ, KAHRAMANLI: Fast computation of determination of the prime implicants...,

Minimization // Input: S ON , SOFF ; Output: A minimum form of the given function.

• An On-cube to be covered is chosen form the SON ,

• The set of PIs covering given minterm is generated,

• The essential prime implicant (EPI) chooses from the among of the PIs,

• A covering operation is performed.

3.1. Determination of the all PIs

The determination process of SPI (A) may be simplified significantly via the separate handling of each A ∈ SON

by SOFF . However, a special filter is necessary in order to convert SOFF into a form which provides a separate

computing of SPI (A). If SOFF = {Bi}J
j=1 is a set of Off-cubes and A is an On-cube of a BF then to obtain

the set SPI (A) containing all of prime cubes including the cube A by the formula [13, 21, 23],

SPI (A) = {x}n#{BEP
k }K

k=1, where k = 1, 2, ..., K and K ≤ J. (1)

It is necessary, first, to expand all cubes from the set SOFF on rule [13, 21, 23],

If bi
j = aj then Cj = x else Cj = bj, where ∀j = 1, 2, . . ., n; (2)

then, second, form the set SEP (A) to eliminate all of the non-prime cubes from the set SE (A)={C j } j=1,i ;

and third, to subtract the remaining set SEP (A) from the n-cube.

Example 1 Table 1 shows expansion of the elements of the set SOFF ={0011, 0110, 1000, 1010, 1011, 1110}
on the A=0001∈ SON , where the set of expanded Off-cubes and its prime cubes subset are denoted by SE(A)

and SEP (A), respectively.

Table 1. The A=0001 oriented expansion of SOFF .

j Bj ∈ SOFF A ∈ SON SE(A) Cube Status s SEP (A)
1 0011

0001

xx1x Prime 1 xx1x
2 0110 x110 Non-Prime -
3 1000 1xx0 Prime 2 1xx0
4 1010 1x10 Non-prime -
5 1011 1x1x Non-prime -
6 1110 1110 Non-prime -

As seen from the Table 1 the result of the set SE(A)={xx1x, x110 ,1xx0 ,1x10 ,1x1x,1110}, where the

cubes (x110 ,1x10 ,1x1x,1110)∈ SE(A) are absorbed by the cubes (xx1x , 1xx0)∈ SE(A). Consequently, the

result is SEP (A)={xx1x , 1xx0}.
At third step the result of the second step is subtracted from the n-cube and SPI (A) is obtained by

removing the non-prime cubes.

The result of the second step (Example 1) is SEP (A)={xx1x, 1xx0}. Therefore the complete set of prime
implicants covering the On-cube A=0001 is obtained by the formula 1 as

1043

Turk J Elec Eng & Comp Sci, Vol.18, No.6, 2010

SPI (0001)=xxxx # S EP (A)=xxxx # {xx1x,1xx0}=(xxxx # xx1x) # 1xx0={0x0x,xx01}.
Note that the details of the subtraction operation (#) and the absorption operation (∇) used in this

study exist in references [3, 13, 21, 24, 25].

3.2. The EPI identification procedure

It is evident that if the result of the SPI (A) consists of a single PI then it is necessary to fix this PI as SEPI (A).
Otherwise, in order to identify the EPI the largest prime implicant is chosen as the essential one. If there is
more than one largest then the one generated first is chosen. Note that, largest prime implicant is that one
covering the largest number of yet uncovered On-cubes. The largest prime implicant identification procedure
may be expressed as following.

Let H and L be prime implicants covering a cube A .

If |H ∩ SONi| > |L ∩ SONi| then H > L ,

If |L ∩ SONi| > |H ∩ SONi| then L > H (3)

If |L ∩ SONi| = |H ∩ SONi| then either H or L may be chosen.

3.3. The On-set covering procedure

This procedure consists of the following steps:

1. Perform covering by the formula SONi = SON(i−1) # SEPI (A)

2. Form the new state of the EPIs set by the formula SEPI = SEPI ∪ SEPI (A).

3.4. Minimization algorithm

This algorithm based on operation defined in part 3.1, 3.2 and 3.3. Figure 1 shows the near minimum
minimization algorithm, Figure 2 shows the determination of SPI (A) and Figure 3 shows the cover procedure
algorithms.

4. Speed up of the prime implicants determination

The cube algebra operations are used for minimizing the BFs. These cube operations are realized by bit string
operations. We show that each cube operations realized by logic operations. In this section, expansion of Off-set
minterms with On-set minterms in the given BF, the intersection operations and the commutative absorption
operations are realized by logic operations. The proposed algorithm performed for simplifying of BFs has been
done by both the cube algebra operations and the logic operations. These performed algorithms have been
compared according to the period of solution.

The expressions of the coordinate values of cubes are shown below. Each coordinate value of a cube is
represented by two bits as shown in the following [21,26]:

The value of logic 0 of the main coordinate: 01.

The value of logic 1 of the main coordinate: 10.

The value of the nonessential coordinate shown by the term x : 11.

1044

BAŞÇİFTÇİ, KAHRAMANLI: Fast computation of determination of the prime implicants...,

����������	�
��	
���������� �����

�����

��	
��

��
���� � ∅� ���� ���� ���

� ← ������ 	�� �� �����
� �
�� ��� ��� ���

�	�� �����	
�
�����
�

�� ⏐�����	⏐�� ���� ����
�����

������ �� ���� �� ��!�
 ��� ���� �����
� �
�� ��� ���

������

�
�����← �������� �����	

���
��
�����← �
�����

�	�� ��!�
 �
�����
�

���� ��	
�

����

���

"��

Figure 1. Near minimum minimization algorithm.

�
	����
� ���	
�

�����

�� ← �#�	�� ��

 ��� $� �
����� %�
���	
&

�� ← '���� ��� ������	��!� '$��
����� ���
	���� �� ��

�����	 ←
���� (��

)���
�
��������

"��

Figure 2. Determination of SPI(A) .

�	��
 �
	����
�

�����

���� ← �������	 (�
�����

�
�� ←��
�� ∪ �
�����

)���
�
����� 	�� �
���

"��

Figure 3. Pseudo code describing cover procedure.

The coordinate values of the cube have been enabled to be represented by the bit pairs expressed here,
because the symbol “x” has been used for the nonessential coordinate values shown among the coordinate
values of the cube. To express this symbol in the type of 1 and 0, this kind of projection has been used. Table
2 shows the each coordinate value of the cube is expressed with two bits for the cube C =10x0x1.

1045

Turk J Elec Eng & Comp Sci, Vol.18, No.6, 2010

Table 2. The expressions of each coordinate value of a cube with two bits.

The value of the cube 1 0 x 0 x 1
The expression of each coordinate with two bits 10 01 11 01 11 10

Each cube K = kn−1kn−2 . . . k i . . . k 0 is represented by a pair of bit series.

KL = ln−1ln−2. . .li. . .l0 and KR = rn−1rn−2. . .ri. . .r0. (4)

Here, the expressed values of li and ri are the values of left and right bits in each pair of bit series
respectively. For instance, the expression of K=01x0x1 as the pair of bit series will be like the following.

Table 3. The expression of a cube as the pair of bit series.

K 0 1 x 0 x 1 Represented cube
KL 0 1 1 0 1 1 The expression of the cube
KR 1 0 1 1 1 0 as the pair of bit series

According to the obtained results, the cube K =01x0x1 has been altered to bit series KL =011011 and
KR =101110.

The operations expressed above have been used for expansion of minterms existing in off-set, in the
operations that necessitate to determine whether cubes include each other or whether a cube covers a minterm
or not. These operations are explained in the next section.

4.1. Expansion of Off-set minterms with On-set minterms by logic operations

According to rule 2, while performing these operations, we obtain the cube C by comparing each Off-minterm
with the On-minterm, bit by bit. This causes loss of time. The generation of SE(A) with logic operations is
showed in Figure 4. We can perform these rules via logic operations as follows:

A = an−1an−2 . . . a i . . . a 0 the minterm in the On-set

B = bn−1bn−2 . . . b i . . . b 0 the minterm in the Off-set

����
��� ��	
���
�
��

�����
**

� ��� � �∨�

**

� ��� � �∨�

� �� � �= ∪

)���
� �

"��

Figure 4. Generate SE(A) with logic operations.

Example 2

A = 0 1 0 0 1 0 The minterm in the On-set.
B = 1 0 0 1 1 0 The minterm in the Off-set.

1046

BAŞÇİFTÇİ, KAHRAMANLI: Fast computation of determination of the prime implicants...,

Each bit of the minterm of the On-set (A) and the one of the Off-set (B) is operated as the pair of bit
series

AL =010010, AR=101101, B L =100110, B R = 011001

CL=AL ∨ BL = 101101∨ 100110 = 101111

CR=AR ∨ BR = 010010∨ 011001 = 011011.

The cube C is obtained by uniting the bit series pairs (CL, CR) as shown in Table 4.

Table 4. Determination of the cube C for Example 2.

CL 1 0 1 1 1 1
CR 0 1 1 0 1 1
C 1 0 x 1 x x

4.2. Performing the intersection of two cubes by logic operations

Suppose the intersection operation is applied to cubes H = h1h2 . . . h i . . . h n and L = l1l2 . . . l i . . . l n ,
giving cube C. The operation can be denoted as

C = H ∩ L. (5)

Bit series pairs CL and CR obtained from the intersection of H and L can be obtained via logical
“AND” operation on the bit series components from cubes H and L :

CL = HL ∧ LL and CR = HR ∧ LR. (6)

On obtaining the bit series of CL and CR , the intersection value of the cubes H and L can be found.
Determination of cube C follows from application of the following operations:

i) Checking the result for empty set

The following operations allow one to test if CL and CR give rise to a value or an empty set:

D = (CL ∨CR) ⊕ {1}n

If D
= 0, then C = ∅. (7)

If the obtained cube D is not zero, then cube C is an empty set. That is, no value has been obtained
by the intersection of cubes H and L . If cube D is equal to zero, a value will be obtained by the intersection
of the cubes H and L .

ii) Comparing of the cubes H and L with the result cube C

The cube C is obtained from the intersection of cubes H and L . If cube C has any value, we can find
out to which cubes H or L belongs to this value via the following operations.

• If CL = HL and CR = HR then C = H ;

• If C = H then remove cube H , else save the cube H ;

• If C = L then remove cube L , else save the cube L .

1047

Turk J Elec Eng & Comp Sci, Vol.18, No.6, 2010

The inclusion condition is also determined by the same results.

• Only if C
= H then the cube H includes the cube of L (H ⊃ L);

• Only if C
= L then the cube L includes the cube of H (L ⊃ H);

• If both C
= H and C
= L then neither cubes include each other.

Example 3 Suppose that H = 10x0x1 and L = 10x001 are two cubes. If we examine the intersection between
these cubes and the inclusion of each other by logic operations, we form the bit series HL – HR and LL – LR :

HL = 101011, HR = 011110, LL = 101001, LR = 011110.

The bit series CL and CR , and consequently the cube C is obtained by formula (6):

CL = HL ∧ LL = 101011 ∧ 101001 = 101001
CR = HR ∧ LR = 011110 ∧ 011110 = 011110

C (CL, CR) = H ∩ L = 10x001

Now we apply tests (i) and (ii) from above.

i) Checking the result for empty set:

D = (CL ∨ CR)⊕ {1}n = (101001 ∨ 011110) ⊕ 111111 = 0

Thus, as D=0, C
= ∅ . That is, as a result of these operations a value has been obtained by the
intersection of the cubes H and L .

ii) Comparing of the cubes H and L with the result cube C :

CL = LL = 101001 and CR = LR = 011110 C = L .
As C = L , the result of the intersection operation is the cube L :
C = H ∩ L = L .
Looking at the inclusion condition between the cubes, we see cube H includes cube L as C
= H

(H ⊃ L).

5. The experimental results

The algorithm realizing the near minimum method (NMM) was tested against 30 benchmarks to evaluate the
runtime and quality of the results. The tests were conducted on a PC with Intel r© Core 2 Duo T7200 2.0 GHz
and 1024 MB RAM. Quality of the results was measured by numbers of EPIs forming the minimized functions.
Benchmarks were solved by ESPRESSO-EXACT, near minimum method realizing with cube algebra operations
(NMM-CAO), and near minimum method realizing with logic operations (NMM-LO). The number of EPIs are
the same for the NMM-CAO and NMM-LO, but the runtimes are different.

The results of solutions of 30 benchmarks are shown in Table 5. As seen from Table 5, for 7 benchmarks
the results generated by NMM are significantly better than those obtained by ESPRESSO. But there are
3 benchmarks, e , exps and spla, for which NMM generated a little worse result than ESPRESSO. For the
remaining 20 benchmarks both methods obtained the same results. In general, our method generated better,
equivalent and worse result for 23.3%, 66.7% and 10% of the benchmarks, respectively. Our method (NMM-

CAO) has proved faster than ESPRESSO for all of the benchmarks by a factor of 1.7. And also NMM-LO has
proved faster than ESPRESSO for all of the benchmarks by a factor of 2.1. Near minimum method realizing

1048

BAŞÇİFTÇİ, KAHRAMANLI: Fast computation of determination of the prime implicants...,

with cube algebra operations (NMM-CAO) is slower than near minimum method realizing with logic operations

(NMM-LO) by a factor of 1.3.

Table 5. Number of cubes and runtimes for each benchmark.

Number of Cubes Runtime (msec.)
Benchmarks n / |SON | / |SOFF |

NMM ESPRESSO
NMM-CAO NMM-LO ESPRESSO TC

TL
/TE

TC
/TE

TL(TC) (TL) (TE)
check 04/4/9 1 1 44.77 35.82 58.16 1.2/1.3/1.6
check3 04/8/5 2 2 44.66 36.46 57.30 1.2/1.3/1.6
p82 05/11/13 4 5 45.54 35.63 70.50 1.3/1.5/2
m 06/27/5 4 4 46.54 36.30 71.85 1.3/1.5/2

poperom 06/56/8 7 7 44.55 37.04 70.49 1.2/1.6/1.9
sqr 06/18/46 2 2 44.69 35.37 70.95 1.3/1.6/2
inc 07/12/22 6 7 45.31 35.29 71.32 1.3/1.6/2

linrom 07/65/63 24 24 47.77 36.44 72.84 1.3/1.5/2
max128 07/29/99 8 8 46.73 36.06 71.39 1.3/1.5/2
max3 07/12/116 7 7 45.74 40.62 77.31 1.1/1.7/1.9
sqn 07/48/48 8 12 45.27 37.25 72.18 1.2/1.6/1.9

z5xp1 07/25/103 3 3 45.62 36.22 70.33 1.3/1.5/1.9
dist 08/53/203 12 12 45.85 35.86 70.48 1.3/1.5/2
e 08/65/128 21 20 45.98 35.58 70.79 1.3/1.5/2

ex5 08/33/223 2 2 44.60 38.07 72.05 1.2/1.6/1.9
exp 08/18/52 3 4 45.29 35.81 71.48 1.3/1.6/2
exps 08/65/131 21 20 45.14 36.54 73.42 1.2/1.6/2
f51m 08/128/128 23 23 46.49 36.13 73.99 1.3/1.6/2
mlp4 08/32/224 9 9 47.02 35.98 75.39 1.3/1.6/2.1
root 08/15/241 4 4 46.64 36.19 76.52 1.3/1.6/2.1
rd84 08/120/136 84 84 45.74 37.55 75.80 1.2/1.7/2
apex4 09/4/434 4 4 44.53 35.94 71.96 1.2/1.6/2

max512 09/258/254 10 10 45.24 38.32 73.27 1.2/1.6/1.9
prom2 09/142/145 7 8 48.12 36.03 74.18 1.3/1.5/2.1

max1024 10/516/508 4 4 46.47 36.96 74.50 1.3/1.6/2
br1 12/29/5 5 8 44.79 38.57 58.91 1.2/1.3/1.5
t3 12/27/121 6 6 44.84 36.32 73.18 1.2/1.6/2

spla 16/67/2036 31 29 46.90 37.14 72.56 1.3/1.5/2
bcb 26/10/289 2 5 45.67 38.29 74.68 1.2/1.6/2
bcc 26/3/242 2 2 45.24 36.39 71.43 1.2/1.6/2

6. Conclusion

In this study is proposed an Off-set based direct-cover near-minimum minimization method for single-output
Boolean functions represented in a sum-of-products form. To favor fast computation, we used logic operations
instead of standard cube algebra operations. The experiments on single-output benchmarks show that this
approach can speed up the minimization process. The proposed simplification method (NMM) is faster and
the results generated by NMM are significantly better than ESPRESSO. This method may be relatively slower
only for functions with the Off-set significantly greater than the On-set. Our method can be useful especially in

1049

Turk J Elec Eng & Comp Sci, Vol.18, No.6, 2010

fields such as image processing, logic synthesis, artificial intelligence and many others field related to processing
large Boolean data sets.

Acknowledgement

This work is supported by the Coordinatorship of Selcuk University’s Scientific Research Projects.

References

[1] T. Sasao, “Worst and Best Irredundant Sum-of–Product Expressions”, IEEE Transactions on Computers, Vol.

50(9), pp. 935-947, 2001.

[2] A. Mishchenco, T. Sasao, “Large-Scale SOP Minimization Using Decomposition and Functional Properties”, IEEE

CNF, Design Automation Conference, Proceedings, pages:149-154, 2-6 June 2003.

[3] S. Kahramanli, F. Başçiftçi, “Boolean Functions Simplification Algorithm of O(N) Complexity”, Journal of Math-

ematical And Computational Applications Vol. 8, No 4, pp. 271–278, 2002.

[4] O. Coudert, “Two-Level Logic Minimization: an Overview”, The VLSI Journal, 17-2, pp. 97-140, October 1994.

[5] D.L. Dietmeyer, “Logical Design of Digital Systems”, 2nd ed. Boston, 1978.

[6] R. K. Brayton, G.D. Hachtel, C.T. McMullen, A. Singiovanni-Vincentelli, “Logic Minimization Algorithms for VLSI

Synthesis”, Boston, Kluwer Academic, 1984.

[7] E. Hong, S. Muroga, “Absolute Minimization of Completely Specified Switching Functions”, IEEE Trans. Comput-

ers, vol. 40, no 11, pp 53-65, January, 1991.

[8] P.R. Tirumalai, J.T. Butler, “Minimization Algorithms for Multiple-Valued Programmable Logic Arrays”, IEEE

Trans. Comp, vol.40, no:2, pp:167-178, 1991.

[9] T. Sasao, “A Simplification Algorithm for Exclusive OR-Sum-of Products Expressions for Multiple–Valued- Input

Two- Valued – Output Functions”, IEEE Trans. Computer Aided Design, vol. 12, no 5, pp.621-632, May, 1993.

[10] P. McGeer, J. Sanghavi, R.K. Brayton, A. Sangiovanni-Vincentelli, “ESPRESSO-SIGNATURE: A New Exact

Minimizer for Logic Functions”, IEEE Transactions on VLSI, Vol. 1, No. 4, pp. 432-440, 1993.

[11] R. S. Perkins, T. Rhyne, “An Algorithm for Identifying and Selecting The PI’s of a Multiple-Output Boolean

Function”, IEEE Trans. Computer Aided Design, vol. 7, no 11, pp.1215-1218, November 1988.

[12] B. Gurunath, N. N. Biswas, “An Algorithm for Multiple Output Minimization”, IEEE Trans. Comp.Aided Design,

Vol. 8, no 9, September 1989.

[13] Ş. Kahramanlı,S. Güneş, S. Şahan, F. Başçiftçi, “A New Method Based on Cube Algebra for The Simplification

of Logic Functions”, The Arabian Journal For Science and Engineering Volume 32, Number 1B, pages:1-14, April

2007.

[14] P. Fisher, J. Hlavicka, H. Kubatova, “FC-Min: “A Fast Multi-Output Minimizer”, IEEE CNF, Digital System

Design, Proceedings, Euromicro Symposium on, 1-6, pages:451-454, Sept. 2003.

1050

BAŞÇİFTÇİ, KAHRAMANLI: Fast computation of determination of the prime implicants...,

[15] R. E. Miller, “Switching Theory”, Vol. 1. New York: Wiley, 1965.

[16] K.A. Bartlett, R.K. Brayton, G. D. Hachtel, R. M. Jacoby, C. R. Morrison, R. L. Rudell, A. Sangiovanni-Vincentelli,

Albert R. Wang, “Multilevel Logic Minimization Using Implicit Don’t Cares”, IEEE Trans. Computer Aided Design,

vol. 7, no 6, pp. 723-740, June 1988.

[17] A.A. Malik, R.K. Brayton, A.R. Newton, A.Singiovanni-Vincentelli, “Two-Level Minimization of Multi valued

Functions with Large Offsets”, IEEE Trans. Comput., vol. 42, no 11, pp. 1325-1342, November 1993.

[18] T. Sasao, J.T. Butler, “Worst and Best Irredundant Sum-of-Product Expressions”, IEEE Trans. Comput., vol. 50,

no 9, pp. 935-947, September 2001.

[19] A.A. Malik, R.K. Brayton, A.R. Newton, A. Singiovanni-Vincentelli, “Reduced Offsets for Minimization of Binary-

Valued Functions”, IEEE Trans. Comput., vol. 10, no 4, pp. 413-426, April 1991.

[20] C. Umans, T.Villa and A. Singiovanni-Vincentelli, “Complexity of Two-Level Logic Minimization”, IEEE Trans.

Comput. Aided Design of Integrated Circuits and Systems, vol. 25, no 7, pp. 1230-1246, July 2006.

[21] F. Başçiftçi, “Local Simplification Algorithms for Switching Functions”, PhD Thesis, Graduate School of Natural

and Applied Sciences, Selcuk University, 2006.

[22] De Micheli Giovanni, “Synthesis and Optimization of Digital Circuits”, New York, Mccraw-Hill, 1994.

[23] F. Başçiftçi, Ş. Kahramanlı, “An Off-Cubes Expanding Approach to the Problem of Separate Determination of the

Essential Prime Implicants of the Single-Output Boolean Functions” EUROCON 2007, Warsaw-Poland, ISBN:1-

4244-0813-X, pages: 432-438, 09-12 September 2007.

[24] F. Başçiftçi, “Simplification of Single Output Boolean Functions by Exact Direct Cover Algorithm Based on Cube

Algebra” EUROCON 2007, Warsaw-Poland, ISBN:1-4244-0813-X, pages: 427-431, 09-12 September 2007.

[25] E. Nadjafov and. Ş. Kahramanlı, “On The Synthesis of Multiple Output Switching Scheme”, Scientific Notes of

Azerbaijan Institute of Petroleum and Chemistry, 9(3), pp. 65-69, 1973.

[26] F. Başçiftçi, Ş. Kahramanlı, “The Modelling of Cube Algebra Operations by the Basic Computer Operations”,

Proceeding of The International Conference on Modeling and Simulation, The Association for Modeling and

Simulation in Enterprises (AMSE), Selçuk Uni., Vol.II, pages:595-599, 2006.

1051

