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Tankut Yalçınöz and Halis Altun
Department of Electrical and Electronic Engineering,
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Abstract

This paper is mainly concerned with an investigation of the suitability of Hopfield neural network

structures in solving the power economic dispatch problem. For Hopfield neural network applications to

this problem three important questions have been answered: what the size of the power system is; how

efficient the computational method; and how to handle constraints. A new mapping process is formulated

and a computational method for obtaining the weights and biases is described. A few simulation algorithms

used to solve the dynamic equation of the Hopfield neural network are discussed. The results are compared

with those of a classical technique, Hopfield neural network approaches and an improved Hopfield neural

network approach [1].

1. Introduction

Hopfield and Tank [2,3] presented the energy function approach in order to solve several optimization

problems including the travelling salesman problem (TSP), analog to digital conversion, a signal processing
problem and linear programming problems. Their results encouraged a number of researchers to apply this
network to different problems such as object recognition, graph recognition and economic dispatch problems.

However, the Hopfield neural network, which will be called the original Hopfield neural network, can
be unstable. This algorithm does not scale well to large problems either in solution quality or in reliable
convergence to a feasible solution [4]. Other criticisms are as follows:

• The network solution always has a local minimum which depends on the initial conditions.
• The robustness of the algorithm cannot be relied on, and therefore the results may be unfeasible.
• It is necessary to develop an efficient mapping method to determine weights in the energy function.

However, later researchers improved the energy function and modified the algorithm to produce reliable
feasible solutions, and various methods were developed to escape from local minima. Van den Bout and
Miller [5] improved the performance of the original Hopfield neural networks using the mean field annealing

algorithm with neural normalization. Abe [6] explained the convergence region of a local minimum in the
Hopfield neural network. He determined weights in the energy function for the TSP such that the feasible
solution becomes stable.

In addition, some researchers have developed better problem mapping to improve the overall quality
of the solutions. Aiyer et al. [7] developed a mapping technique which identified the valid constraints in
the energy function using a single constraint term. In the early mapping techniques, in contrast, the energy
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function has a constraint term for each constraint, and Aiyer [8] successfully solved the TSP. Gee, Aiyer and

Prager [9] discussed a new methodology to improve the performance of Hopfield networks, by formalizing
the mapping process and providing a computational method for obtaining the weights and biases. Gee and
Prager [10] improved their mapping to solve quadratic 0-1 programming problems with linear equality and
inequality constraints. They applied this mapping technique to a few specific problems, such as the travelling
salesman, knapsack and the Hamilton path problems. This method is quicker and more accurate and thus
more efficient than the original Hopfield neural network method [2].

The economic dispatch problem in a power system is to determine the optimal combination of power
outputs for all generating units which will minimize the total fuel cost while satisfying load and operational
constraints. Neural networks have been used for solving the economic dispatch problem and have been usually
applied to small power systems [11-16]. The Hopfield neural network was first applied successfully to the

economic dispatch problem by Park et al. [12]. The authors used a simple 3-unit system taken from reference

[17]. Then, some researchers used the Hopfield NN for solving the economic-environmental dispatch problem

[15] and the security-constrained optimal rescheduling problem [18]. References [12] and [15] showed that
the Hopfield NN converges very slowly. Recently, some researchers proposed other approaches to solving this
problem. Some kind of adaptive scheme has been used to update the slope or bias of the network to speed
up the convergence of the Hopfield NN for the economic dispatch problem [16], using piecewise quadratic
cost functions. The results for a 10-unit test system are compared with those of a numerical approach and
the traditional Hopfield NN approach [12]. The number of iterations is reduced from about 40000 to less
than 100. The slope adjustment and the bias adjustment methods take about 2 and 4 s respectively on
a Compaq 90 MHz Pentium PC. An improved Hopfield NN has been proposed for solution of large-scale
economic dispatch problems by Yalcinoz and Short [1]. The proposed method has achieved efficient and
accurate solutions for different sizes of systems having 3 and 240 units, taking only 1.7 s on the Pentium 75
MHz PC for a 20-unit test system for the ED problem.

In this paper, a method is proposed using a new mapping technique, which has been described in
[8,10], for Hopfield neural networks to solve the quadratic programming problems, subject to a number of
inequality and equality constraints, which can be handled by adding corresponding terms to the energy
function. For the mapping of quadratic programming problems, Aiyer’s approach [8] has been combined

with a slack variable technique for inequality constraints [10,19]. An efficient simulation algorithm has
been used to solve the dynamic equation of the Hopfield NN in which the time step has been calculated.
A few simulation algorithms for Hopfield neural networks are discussed. These approaches are applied to
the economic dispatch problem, which is a large scale nonlinear allocation problem with both equality and
inequality constraints.

2. Mapping Technique for Quadratic Programming Problems

The Hopfield model [20] has used a continuous nonlinear function to describe the output behaviour of the
neurons, with the following procedure. First, construct an energy function by taking a linear combination
of the objective and penalty functions. Then build a fully connected n vector of neurons and set the weights
so that the network will take a strictly descending path on the energy function. Initialize the network to
the starting point (that point which is the middle of all feasible solutions) and let the network run until it
stabilizes at a local minimum. The lowest energy state corresponds to the optimum solution, and values of
the network outputs are taken as the solution.
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If neuron i has input ui and output x i , and is connected to neuron j with a weight T ij , and each

neuron also has an input bias ibi , then the dynamic equations of the network are defined as follows:

dui
dt

= −ui
ηi

+
n∑
j=1

Tijxj + ibi (1)

xi = g(ui)

where ηi is a passive decay term, n is the number of neurons and g(u i ) is the input-output function (often

called the activation function) of neuron i , usually shown as

g(ui) =
1
2
(1 + tanh(ui/β))

where β is a coefficient that determines the shape of the input-output function. Hopfield [20] discovered a

Lyapunov function for a network of n neurons as identified by equation (1). He called this Lyapunov function
the network’s energy function and defined it as

E(x) = −1
2
xTTx− xT ib

The energy function, which is a quadratic function, is associated with the objective function for
minimizing the optimization problem. Therefore, we must first decide how to set weights T and input

biases ib for any minimization problem. This process is called mapping. The sum of the constraints and an
objective function are given as inputs to the energy function. The energy function comes from a similarity
between the network’s behaviour and the behaviour of the physical system. A physical system, such as a
pendulum, may converge towards an energy minimum whereas a network of neurons always moves towards
a minimum of the energy function.

In this paper, we combine an improved Aiyer’s mapping technique, which has been described for
quadratic 0-1 programming problems with linear equality and inequality constraints [8,10], with Abe’s

formulation [19] for inequality constraints. A similar mapping technique was proposed for the economic

dispatch by Yalcinoz and Short [1].

The quadratic problem has equality and inequality constraints and can be written as

minimize Eobj(x) = −1
2
xTTobjx− xT iobj (2)

subject to:

Aeqx = beq (3)

Ainx ≤ bin (4)

or

Ainx ≥ bin (5)

xmin,i ≤ xi ≤ xmax,i i = 1, . . . , n (6)
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where x is the n dimensional variable vector, Tobj is an nxn symmetrical constant matrix, iobj is the n
dimensional constant vector, and xmin,i and xmax,i are the lower and upper bounds respectively.

Gee and Prager [10] have first considered the simple quadratic problem without inequality constraints.
The feasible solution for equality constraints can be described as

x = Tconstrx + s (7)

where

Tconstr = I −AeqT

(AeqAeqT

)−1Aeq (8)

and

s = AeqT

(AeqAeqT

)−1beq (9)

Equation (7) defines a valid subspace on which x must lie if it is to satisfy the equality constraints. For this
case, the energy function can be written as

E = Eobj +
1
2
co||x− (Tconstrx + s)||2 (10)

By setting co to a large enough value, we can make the co||x− (T constrx+ s)||2 term dominant over Eobj .
Thus to minimize E, x remains in the valid subspace. The equality constraints have been combined into a

single penalty term in the energy function. Let us put the Eobj (2) into energy function (10), as follows:

E = −1
2
xT [Tobj + co(Tconstr − I)]x− xT(iobj + cos) +

1
2
cosT s (11)

The network’s weights and input biases are set for satisfying energy function (11) as

T = Tobj + co(Tconstr − I) (12)

ib = iobj + cos (13)

The mapping technique can be extended to include the inequality constraints which are converted to
equality constraints by introducing slack variables [10,19]. The slack variable technique as presented by Abe

et al. [19] was applied to inequality constraints where equation (4) can be converted for the i-th inequality
constraint as follows using a slack variable yi :

bin
i yi −Ain

i xi = 0 where yi ≤ 1 (14)

Equation 5 can be rewritten as

bin
i yi −Ain

i xi = 0 where yi ≥ 1 (15)

After converting inequality constraints to equality constraints we can extend the mapping technique

for the inequality constraints. For this case, variables x are set as xnew
T

= [xTyT] , where y is the vector of

slack variables [y1y2 . . .ymin]T : therefore, the size of xnew is nnew = n + m in where n and m in are the
number of variables and inequality constraints respectively. The optimization problem may be stated as
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minimize Eobj(x) = −1
2
xnewT

Tnewobj

xnew − xnewT

inewobj

(16)

subject to
Anewxnew = bnew (17)

where bnew is a vector (meq+min), Tnewobj

is equal to
[

Tobj 0
0 0

]
and inewobj

is equal to
[

iobj

0

]
. The

equality constraints (17) consist of both original equality (3) and inequality constraints (4 and 5). We can

set the network’s parameters as equations (12) and (13). Hence the Hopfield NN is created with n neurons

for variables and m in neurons for slack variables.

2.1. Side Constraints

The variables may be restricted to be within certain limits. The generator outputs which are variables for
solving the economic dispatch problem should be between the lower and upper generation limits. Therefore,
side constraints should be taken into account. Aiyer [8] and Ogier and Beyer [21] studied steepest descent

dynamics and later, Gee and Prager [10] proposed steepest descent dynamics for quadratic 0-1 programming
problems. The variables are limited to the range from zero to one. Similar dynamics can be used for solving
the economic dispatch problem in order to handle generation limits.

x i

xmax,i

xmin,i

g(xi)

Figure 1. Input output function of the variable i

A symmetric ramp function is chosen for the input-output function and is applied to each element of
x. Figure 1 shows the activation function of the variable (neuron) i, which is described as

xI = g(xi) =


xmin,i if xmin,i > xi
xi if xmin,i ≤ xi ≤ xmax,i
xmax,i if xi > xmax,i

The activation function of each neuron is modified to limit the output value between lower and upper
bounds.

3. An Efficient Simulation Algorithm

The differential equation (1) of the Hopfield NN can be solved using numerical techniques for initial value

problems if each processing element is given an initial value, u i (0). Here, a few simulation algorithms are
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discussed.
An Euler approximation of the continuous differential equation (Eq. 1) has been used for computer

simulations of the Hopfield NN [2] but it requires a very small time step ∆t at each iteration. If the time
step is increased too much it is possible for the algorithm to become unstable. The continuous Hopfield NN
is shown in Figure 2 where the change of u is given by

∆u = ∆t(−u
η

+ Tx + ib)

+
T x

i b

+

- u /

u

u

x

Figure 2. Simulation of the continuous Hopfield NN

Aiyer [8, 9] proposed the projection network implementation in order to overcome the continuous
Hopfield network’s problems. This modified network requires fewer iterations than the continuous Hopfield
network and has one parameter ∆t. In contrast, the Hopfield network [2] has five parameters (A, B, C, D

and ∆t) for the travelling salesman problem. The projection network implementation is shown in Figure 3.

Firstly, in box 2, x is updated over a finite time step ∆t using the objective term Eobj alone. Then, in box
1, updated x is directly forced to the valid region.

x
(1)

(2)

+

∆x

x = s+Tconstr xn

∆t (Tobj x + iobj)

xn

Figure 3. Aiyer’s simulation algorithm

Here we modify Aiyer’s simulation algorithm as shown in Figure 4, based on the projected gradient
technique. Each iteration has two separate stages. Firstly, in box 1, x is updated over a finite time step ∆t

using the objective term Eobj alone where the time step is usually determined empirically by running some
trial simulations. In this study, we calculate the time step instead of doing a number of trials in order to find
the time step. Time step ∆t depends on the objective function and constraints. In the next section, time
step ∆t will be mathematically derived. Then, in box 2, updated x is directly forced into the valid region.
The slack variables y i are forced into the valid region according to equations (14) and (15). For example,

slack variables y i are equal to or less than 1 for inequality constraints (4). In the convergence box in Fig.
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4, the difference between the values of the cost function calculated by the present iteration and the previous
iteration is checked. If the difference is smaller than the tolerance selected, the calculation will be stopped;
otherwise the new cost value will be calculated. This is an iterative process.

Initialize Weights
and Biases

START

Update x
x=x+∆t (Tobjx+iobj)

1

x=sTconstrx
2

Input - output
function

Constraints
Satisfied?

No

Yes

No
Converged

Yes

END

Calculate
∆t

Force the slack
variables into
valid region

Figure 4. Simulation algorithm

3.1. Calculation for the Time Step

The important question is, how big a time step should we take? From basic calculus, time step ∆t minimizes

energy function E when the directional derivative d
d(∆t)E(x(1)) is equal to zero. By the chain rule,

d

d(∆t)
E′(x(1)) = E′(x(1))T

d

d(∆t)
x(1) = E′(x(1))T r(0) (18)

where r is a residual. Let us start from the energy function (11)

E = −1
2

xT [Tobj + co(Tconstr − I)]x− xT (iobj + cos) +
1
2
cosT s

If the network’s weights and input biases are set as equations (12) and (13), then we can rewrite the
energy function as

E = −1
2
xTTx− xT ib +

1
2
cosT s
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If the directional derivative d
d(∆t)E(x(1)) is equal to zero, we can calculate the residual as

r(i) = −E′x(i)) = Tx(i) + ib (19)

Rewriting equation (18) using (19) in order to determine the time step ∆t,

d

d(∆t)
E(x(1)) = E′(x(1))T r(0) = −rT(1)r(0) = 0

and (Tx(1) + ib)T r(0) = 0, where x(1) can be calculated as x(1) = x(0) + ∆tr(0) . Then we have

(T(x(0) + ∆tr(0)) + ib)T r(0) = ((Tx(0) + ib) + ∆tTr(0))
T r(0) = 0 (20)

(r(0) + ∆tTr(0))
T r(0) = 0

According to equation (20), the time step ∆t can be calculated as

∆t = −
rT(0)r(0)

rT(0)T
T r(0)

(21)

∆t may be interpreted as the time step or, more precisely, the convergence rate.

4. Formulation of Economic Dispatch Problem

The standard economic dispatch minimizes the total thermal unit operating cost which can be described
mathematically as

min
pi

n∑
i=1

Fi(Pi) = min
pi

n∑
i=1

(ai + biPi + ciP2
i ) (22)

subject to the following constraints:

Load demand:

n∑
i=1

Pi −PD −PL = 0 (23)

PL =
n∑
i=1

BiP2
i (24)

Capacity limits of generators:

Pmin,i ≤ Pi ≤ Pmax,i (25)

where
P i : Power output of the i-th generator
a i , b i , c i : Cost coefficients of the i-th generator
n : Number of units
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F i (P i ) : Cost of generation P i

PD : Demand
PL : Transmission losses
B : Coefficients of transmission losses
Pmin,i : Minimum generation output of the i-th generator

Pmax,i : Maximum generation output of the i-th generator

5. Mapping of Economic Dispatch Problem

We can set weights and input biases for the cost of electricity using the mapping technique which was

described in Section 2. The Hopfield NN is created with n neurons for generators and m in neurons for
inequality constraints. The cost function of the economic dispatch problem (22) is considered the energy
function of the Hopfield NN. Therefore the cost function is mapped as

Tobj = −2 ·


c1 0 0 0
0 c2 0 0
. . . .
0 0 0 cn


iobj = −[b1b2..bn]

where b i and ci are the cost coefficients of the i-th generator. The constraints of the economic dispatch
problem can be handled by adding corresponding terms to the energy function. We can convert the inequality
constraints to equality constraints using equations (14) and (15), and then Anew and bnew can be written
as

Anew =
[

Aeq

Ain

]
and bnew =

[
beq

bin

]
where Aeq and beq are defined from equation (23) for the economic dispatch problem as follows:

Aeq is a vector which contains ones for units and zeros for slack variables and beq = PD + PL . Ain

and bin are defined from inequality constraint equations. Inequality constraints are converted to equality
constraints by introducing slack variables.

Yalcinoz and Short [1] have treated side constraints (generation limits) of the ED problem as inequality
constraints. Therefore, a neuron for each generator and two neurons for generation limits of each generator
have been used for solution of the economic dispatch problem.

Here, side constraints are handled by a modified activation function as explained in Section 2.1. The
activation function of each neuron is changed to limit the output value of each neuron between the minimum
and maximum generating capacity of each unit as shown in Figure 5. The activation function of neuron i
(generator i) is given as

Pi = g(Pi) =

 Pmin i if Pmin i > Pi

Pi if Pmin, i ≤ Pi ≤ Pmax i

Pmax i if Pi > Pmax i

After finding Anew and bnew , Tconstr and s can be determined using equations (8) and (9). Afterwards

we can set new weights and new input biases using (12) and (13), and then the Hopfield NN is created for
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solving the economic dispatch problem. At this stage, we have to solve the dynamic equation of the Hopfield
network using numerical techniques.

In this study, the dynamic equation of the network can be solved using the algorithms described in
Section 3. The first method is an Euler approximation of the continuous differential equation (1) which

has been used for solving the dynamic equation by Hopfield and Tank [2]. Figure 2 shows the continuous

Hopfield NN, which will be called standard Hopfield NN (SHN). The second method is projection network
implementation, which has been proposed in order to overcome the continuous Hopfield network’s problems
[8,9]. The projection network implementation is shown in Figure 3 and will be called Aiyer’s improved

Hopfield NN (AHN). Finally, the slightly modified Aiyer’s simulation algorithm shown in Figure 4 is used for
computer simulations. Side constraints of the ED problem are handled using modified activation functions as
described in Section 2.1 for solving the dynamic equations. This process will be called the proposed Hopfield
neural network algorithm (PHN).

Pi

Pmax,i

Pmin,i

g(pi)

Figure 5. The input-output function of the generator i

In this study, transmission losses are calculated using equation (24) at the end of every period, and
then assumed to be constant over the next period.

6. Simulation Results of Economic Dispatch

The proposed method is tested on 3- and 20- units systems and is compared with the classical optimization
technique (CM), which is based on the Sequential Quadratic Programming method, standard Hopfield NN

(SHN), Aiyer’s improved Hopfield NN (AHN) and an improved Hopfield NN approach IHN [1]. The classical
optimization program was written using the Matlab Optimization Toolbox, and the other programs which
implemented PHN, IHN, SHN and AHN were also written in Matlab. The programs were executed on a
Pentium 75 MHz PC with 8 Mb RAM.

Table 1. Data for 3-Generator system

Unit ]1 Unit ]2 Unit ]3
Pmax / Pmin (MW) 600 / 150 400 / 100 200 / 50
Cost coefficients 561 / 7.92 / 310 / 7.85/ 78 / 7.97 /
ai / bi / ci 0.00156 0.00194 0.00482
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The first test system, which has three units - see reference [17], - is chosen because this example has

been a popular problem used in the literature [11,12,14,15]. Details of this test system are given in Table 1.

Transmission losses are calculated using (24). The transmission loss coefficients B are given by

B = [0.000030 000090 00012]

In Table 2, the results of the PHN method are compared with the results of the classical method
(CM), SHN, AHN and IHN [1] for 3 load levels. It is seen that there is negligible difference in the values
between the proposed method and the CM. The error is calculated as the percentage difference between the
values of the cost functions of the neural networks methods and the classical method. We can formulate the
errors or differences as

Err =
NN Method’s Cost - CM’s Cost

CM’s cost
· 100%

The errors of SHN and AHN are 0.132% and 0.023% respectively but their execution times are slower than
CM. For example, SHN is about 15 times slower than CM. On the other hand, the proposed method is about
2-9 times faster than CM. The errors of IHN and PHN are around zero.

Table 2. Results of CM, SHN, AHN, IHN and PHN for 3-unit system

Methods PD+PL Output of generators (MW) Cost Error CPU Iteration
(MW) P1 P2 P3 ($/h) % time (s) no.

CM 342.762 152.18 140.57 50.00 3742.9 0.44
SHN 342.754 170.35 104.18 68.211 3748.5 0.15 12.91 7650
AHN 342.762 159.64 133.02 50.092 3743.1 0.0053 0.99 500
IHN 342.762 152.52 139.85 50.381 3742.9 0 0.16 11
PHN 342.77 152.23 140.54 50.00 3743.0 0.0026 0.38 11

Methods PD+PL Output of generators (MW) Cost Error CPU Iteration
(MW) P1 P2 P3 ($/h) % time (s) no.

CM 867.14 401.22 341.08 124.84 8351.4 0.93
SHN 867.12 373.73 310.27 183.12 8370.6 0.23 16.75 10000
AHN 867.14 383.79 331.98 151.362 8355.4 0.0479 0.99 500
IHN 867.14 401.67 340.66 124.81 8351.4 0 0.11 9
PHN 867.14 401.66 340.66 124.82 8351.4 0 0.05 11

Methods PD+PL Output of generators (MW) Cost Error CPU Iteration
(MW) P1 P2 P3 ($/h) % time (s) no.

CM 1179.1 592.33 400.00 186.77 11295 0.66
SHN 1179.07 583.55 397.93 197.58 11297 0.0177 16.86 10000
AHN 1179.1 582.96 398.77 197.36 11297 0.0177 0.99 500
IHN 1179.1 592.52 399.57 187.01 11296 0.0089 0.33 7
PHN 1179.12 591.33 400.00 187.79 11296 0.0089 0.33 11

The 20-unit test system is given in Appendix 1. The results of the proposed method are shown in
Table 3 and compared against the results of CM; SHN, AHN and IHN for the 20-unit system with a 5500
MW load demand. The operation cost obtained by SHN is 16.4% more than CM; in contrast, the operation
costs obtained by AHN and IHN are 0.5% and 0.19% more than the CM respectively. The IHN method
is approximately 4-32 times faster than the CM, the SHN and AHN, but about 3 times slower than PHN.
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PHN provides better and faster solutions than the other neural network methods. In addition, PHN is 28
times faster than CM, with 0.068% error. Oscillation is also extremely reduced from 10000 for the SHN to
less than 20 iterations for the proposed method. In contrast, the slope adjustment and the bias adjustment
methods [16] require about 100 iterations and takes about 2 and 4 s respectively on a Compaq 90 MHz
Pentium PC for a 10-unit test system. PHN takes only 0.49 sec. on a Pentium 75 MHz PC for a 20-unit
test system.

Table 3. Results of CM, SHN, AHN, IHN and PHN for 20-unit system

Methods Cost Error CPU Iteration
($/h) % time (s) no.

CM 78636 13.9
SHN 91531 16.4 45.37 10000
AHN 79031 0.5 6.31 1000
IHN 78785 0.19 1.7 10
PHN 78690 0.068 0.49 10

PHN provides significant improvements in performance over IHN, the main reason for this improve-
ment being that PHN requires fewer neurons than IHN. Therefore sizes of the weights’ matrix and the input
biases’ vector of PHN are smaller than those of IHN. Remembering that we use n neurons for generators and

min neurons for inequality constraints, in the IHN model, side constraints of the ED problem are treated as
inequality constraints. Hence, n neurons for generators and two neurons for side constraints of each generator
are used for the solution of the ED problem.

7. Conclusions

In this paper, for quadratic programming problems with inequality and equality constraints, an improved
Hopfield neural network has been outlined. Gee and Prager [10] discussed a new mapping technique
for quadratic 0-1 programming problems with linear equality and inequality constraints and this special
methodology improved the performance of Hopfield neural networks for solving combinatorial optimization
problems. A similar mapping technique has been proposed for the economic dispatch problem. Constraints
can be handled by adding corresponding terms to the energy function. For the mapping of the economic
dispatch problem, Aiyer’s approach [8] has been combined with a slack variable technique for inequality

constraints [10,19]. We used Abe’s slack variable technique [19] for inequality constraints. Simulation
algorithms have been examined and a time efficient simulation algorithm has been presented. The time step
of this algorithm has been calculated instead of undertaking a number of trials. Finally, a symmetric ramp
function has been chosen for the input-output function and has been applied to each of the elements of x for
handling side constraints.

The proposed method has been tested on 3-unit and 20-unit systems. The errors of the proposed
method for solving the economic dispatch problem are around zero for the 3-unit system. Kumar and Sheble
[14], in contrast, reported an approximately 1% error for 3-unit systems. The average errors incurred here

are less than 0.1% even for the 20-unit system. The proposed method requires fewer iterations and achieves
very fast solutions for the economic dispatch problem.
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Appendix 1 : Data of 20 - Unit System

Unit Pmax Pmin ai bi ci
1 190 80 369.03 8.1817 0.00942
2 42 24 135.48 6.9467 0.08482
3 140 68 222.33 8.0543 0.01142
4 300 110 287.71 8.0323 0.00357
5 300 135 455.76 6.6020 0.00573
6 300 130 722.82 12.9080 0.00605
7 375 94 654.69 12.7960 0.00569
8 500 125 913.40 12.5010 0.00421
9 500 125 1728.3 9.1575 0.00708
10 500 125 1728.3 9.1575 0.00708
11 500 220 647.85 7.9691 0.00313
12 550 242 647.83 7.9691 0.00313
16 70 20 1207.8 13.0520 0.25098
17 70 20 810.79 21.8870 0.16766
18 60 18 641.43 26.2580 0.18362
19 60 25 832.24 16.3390 0.23915
20 60 25 834.24 16.3390 0.23915
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