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Within the Hiickel molecular orbital framework, the effect of topological factors on the selection of

heteroatom parameters for heteroconjugated systems is discussed.

Introduction

Although a large number of advanced computational techniques! (ab initio or semiempirical?=4 eg. AM1
and PM3) are available for the quantum chemical investigation of molecules, the simple Hiickel molecular
orbital (HMO) approach continues to be in prevalent use because of its clear connection with molecular
topology, which enables one to envisage directly how topological changes affect eigenvalues and eigenvectors.
For many years, the HMO approach has been applied exclusively to polyene systems and, with certain
modifications, to heteroconjugate systems.

Heteroatoms may be approached in the HMO method by appropriate changes in the empirical «
and [ parameters associated with each atom and bond®. The problem arises of the specific values to be
used for various heteroatoms. The ideal procedure for evaluating heteroatom parameters would start with
a correlation between some experimental property and a calculated quantity established for a hydrocarbon
system and would follow with an application of this correlation to a number of compounds containing one
or more of the heteroatoms under examination with a systematic variation®. Unfortunately, more often,
parameter values have been assigned as guesses partly based either on theory or on applications of assumed
validity. The result has been a profusion of parameter values in the literature®=%. In all the guesses for
heteroatom parameters, the effective nuclear charge of the atoms have played an important role, but the
topology of the system has been overlooked so far. Below, some light has been put on the topological
constraints involved in the choice of these parameters.

Theory

Assume that graps G(2n,e) and G'(2n,e) stand for two even alternant systems possessing 2n vertices
and e edges (chemically speaking, the number of atoms (2n) and bonds (e) involved in conjugation).
Furthermore, let them be isoconjugate systems such that the corresponding chemical system for G’ can be

obtained theoretically from the chemical form of G by means of a certain set of centric perturbations?®.
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Suppose the molecular orbital energies ¢; for molecular orbital 1; and the coefficients c;, of the

atomic orbital ¢, have a relationship that may be expressed as follows:

2n
;= cjudu (1)
u=1
and ¢; is calculated according to
g5 =< 1/13|H|¢J > (2)

where H is Hamiltonian operator. Then the effect of any perturbations involving center p and bond pr on

the j;;, molecular energy is given by
bej = chpéap +2 Z CipCir6Bpr (3)
(p—r)

where the symbol (p—r) indicates that the summation extends only over the perturbed bonds between those
centers that are linked together in the o-skeleton. The symbols « and g stand for Coulomb and resonance
integrals, respectively. Inserting oy, = hp8 and 68, = kpr3, €q. 3 becomes

bej = Zh ¢l + 2 Z CipCirkprB (4)

(p—r)

where h, and kp, are known as heteroatom parameters. With the substitution of ée; = X J’ —X;, eq. 4 can

be rearranged to (in [ units).

X! X+thjp+22c]pcﬂpr ' (5)

(p—r)

where X and X; stand for 7% molecular orbital energies of the perturbed and unperturbed systems (in 3

units), respectively.

10,11

Now, let E,, be an n-dimensional Euclidean linear space and vectors A and B defined as

AX), XS, X)) B(1,1,...,1)

Then the following equations are true for the scalar product!!:1? of these vectors.
n
= X (6)
i=1

(A,B) = (nZ(X )2 cos Q (7)
where @ is the angle between these vectors. Combining egs. 6 and 7, then solving for cos @, one obtains
cosQ:ZX/nZX) )1/2 (8)
=1 i=1

Let
9= XUy (X2 ©

then eq. 8 becomes
cos Q = g(1/n)"/2 (10)
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Note that

lim cos Q = E/2(ne)'/? (11)
hy, — 0

kpr — 0

where F' and @ are the total m-electron energy and the angle of total m-electron energy of the unperturbed
system, respectively.

Upper and Lower Bounds for g.

Since cos Q =< 1, eq.10 yields g =< n'/2. On the other hand, eq. 9 can be converted into

n n
g =1+2) X/Xj/ Y (X)) (12)
i<j i=1
Since X; and X stand for occupied molecular orbital energies that are all positive in sign then eq. 12 yields
g >= 1. Hence,
1 =< g=<n'/? (13)

Results and Discussion

Since g is an implicit function of h, and kpr (see eqs. 5 and 9), ineq. 13 clearly indicates the importance of
topological factors on the selection of heteroatom parameters hy and kp.. Another important implication
of ineq. 13 is that h, and k,,. should not be chosen independently from each other. Especially for small
systems, g is confined to a narrow range. The interpretation of ineq. 13 in chemical terms is that for
a heteroatom taking part in conjugated systems and specified by a certain hybridization type etc., there
should not be any strict requirement that it be represented by the same set of heteroatom parameters (eg.
nitrogen atom in pyridine and quinoline). Normally, in the literature, the adverse has been followed so far,
because of the complete unawareness of the topological effects which consequently sometimes causes poor
correlation between the observables of the system being studied and HMO results. Fortunately, for large
systems possessing high values of n, the range of freedom to choose a set of heteroatom parameters is much
greater, so that the neglect of topological implements is justifiable. However, for heteroatoms for which h,
values are assumed to be negative®, eg. boron, silicon and germanium, etc. (more electropositive elements
than carbon), one has to be more cautious and should check whether ineq. 13 is fulfilled by the preferred

heteroatom parameters for the reliability and selfconsistency of he results.
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