Synthesis and characterization of unsaturated diacyl and alkyl-acyl piperazine derivatives

Sait SARI, Seda ÜNALAN, Mehmet YILMAZ

Department of Chemistry, Faculty of Arts and Sciences, Kocaeli University, Umuttepe, Kocaeli, Turkey

Received: 08.07.2019 • Accepted/Published Online: 07.11.2019 • Final Version: 09.12.2019

Abstract: The aim of this study is to obtain new unsaturated piperazine compounds by the reactions of piperazine (1a) and piperazine derivatives (1b–1d) with acylation reactive groups (2a–2j). Methacryloyl piperazine (1b) was synthesized from the reaction of methacrylic anhydride with piperazine (1a). Acyl chlorides (2b–2d) were prepared from the reaction of thionyl chloride with carboxylic acids (3a–3c) obtained as a result of the reaction with malonic acid and suitable aldehyde (5-methylfuran-2-carbaldehyde for 3a, cinnamaldehyde for 3b, and thiophene-2-carbaldehyde for 3c), respectively, by literature methods. Acyl chlorides 2e and 2f were obtained from the reaction of commercially purchased carboxylic acids 3d and 3e with thionyl chloride. Acyl chlorides (2g–2j) were synthesized from the reaction of thionyl chloride with carboxylic acids (3d–3g) transformed from hydrolyzation of esters (4a–4d) obtained as a result of the reaction of triethyl phosphonoacetate with a suitable ketone (acetophenone for 4a, benzophenone for 4b, 1-(5-methylfuran-2-yl)ethan-1-one for 4c, and 1-(thiophen-2-yl)ethan-1-one for 4d), respectively, by literature methods. Unsaturated piperazine derivatives 5a and 5b were obtained from the reaction of 1b with 2b and 2e, respectively. In addition, from the reaction of 1b and acyl chlorides (2b–2j), unsaturated piperazines (5c–5k) were synthesized in medium to good yields (63%–84%). Also, 5l–5g and 5r–5w were obtained from the reaction of allyl piperazine (2c) and cinnamyl piperazine (2d) with acyl chlorides (2a–2f).

Key words: Piperazine, acylation, heterocycle

1. Introduction

Heterocycles are organic molecules that have great importance both biologically and industrially. Many synthetic and naturally occurring drugs contain heterocyclic moieties [1–3]. Heterocycles bearing nitrogen (piperazine, thiazole, imidazole, etc.) have drawn much attention due to their biological properties [4,5]. In medicinal chemistry the piperazine scaffold is considered a privileged structure for its capability of binding to multiple receptors with high affinity [6] and it can be found in drugs such as imatinib [7], sildenafil [8], indinavir [9], and gatifloxacin [10] (Figure 1). Piperazine is also a useful linker for bioactive structures. Many biological activity studies were performed on piperazine-containing structures, such as anticonvulsant [11], antibacterial [12], antituberculosis [13], antiviral [14], anticancer [15], antimalarial [16], and acetylcholine esterase inhibition [17].

Cinnamyl piperazine derivatives were reported to show anticonvulsant activity [18], monoacylglycerol lipase inhibition [19], and antimicrobial [20] and antiinflammatory activity [21]. Some acrylamide piperazine

*Correspondence: mehmet.yilmaz@kocaeli.edu.tr

This work is licensed under a Creative Commons Attribution 4.0 International License.
derivatives were also reported to show antimiycobacterial [22], antiischemic [23], and antiparasitic activities [24]. Additionally, some dienoyl-substituted piperazines were reported to show γ-aminobutyric acid receptor [25], monoamine oxidase [26], and *Staphylococcus aureus* [27] inhibition. In this study, based on these properties of piperazines, we obtained various unsaturated diacyl and alkyl-acyl cinnamyl, ally, and acrylamide piperazines bearing unsaturated moieties, which are potential bioactive compounds and starting reagents for synthesizing many other potential bioactive molecules. All new synthesized compounds were characterized by 1H NMR, 13C NMR, HRMS, and FTIR spectroscopy. Other compounds that are available in the literature were characterized by 1H NMR spectroscopy.

2. Results and discussion

Synthesis of methacryloyl piperazine (1b) was performed by the reaction of piperazine (1a) and methacryloyl chloride as an acylating reagent in the literature [28]. However, we did not succeed in synthesizing 1b using this method; dimethacryloyl piperazine was obtained instead. In this study, synthesis of 1b (77%) was achieved by the reaction of methacrylic anhydride (2a) with piperazine (1a) in mild conditions (Figure 2).

![Figure 2. Synthesis of methacryloyl piperazine (1b).](image)

Unsaturated acyl chlorides (2b–2j) were prepared from the reaction of suitable carboxylic acid and SOCl$_2$ according to literature (see Section 3). Diacyl (5a–5k) and alkyl-acyl (5l–5w) piperazine compounds were obtained from the reactions of these acyl chlorides with piperazine (1a) and piperazine derivatives (1b–1d).

As can be seen in Table 1, symmetrical unsaturated piperazine derivatives 5a (84%) and 5b (66%) were synthesized from the reactions of piperazine (1a) and (E)-3-(5-methylfuran-2-yl)acryloyl chloride (2b) and (2E,4E)-hexa-2,4-dienoyl chloride (2e), respectively.

Reactions of 1b with (2E,4E)-5-phenylpenta-2,4-dienoyl chloride (2c) and 2e gave 5c (72%) and 5d (66%) in high yields, respectively. Additionally, reactions of 1b with 2b and (E)-3-(thiophen-2-yl)acryloyl chloride (2d) gave piperazine derivatives 5e (75%) and 5f (81%), respectively.

Diacyl piperazine compounds 5g (65%), 5h (79%), and 5i (70%) were obtained from the reaction of 1b with cinnamoyl chloride (2f), (E)-3-phenylbut-2-enoyl chloride (2g), and 3,3-diphenylacryloyl chloride (2h) in medium to high yields, respectively (Table 2).

Similarly, 5j (65%) and 5k (63%) were synthesized from the reaction of 1b with (E)-3-(5-methylfuran-
Table 1. Synthesis diacyl piperazine compounds 5a-f.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Piperazine</th>
<th>Acylating reagent</th>
<th>Diacyl piperazine product</th>
<th>Product and Yield (%)a</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1a</td>
<td>2b</td>
<td>5a</td>
<td>84%</td>
</tr>
<tr>
<td>2</td>
<td>1a</td>
<td>2e</td>
<td>5b</td>
<td>66%</td>
</tr>
<tr>
<td>3</td>
<td>1b</td>
<td>2c</td>
<td>5c</td>
<td>72%</td>
</tr>
<tr>
<td>4</td>
<td>1b</td>
<td>2e</td>
<td>5d</td>
<td>66%</td>
</tr>
<tr>
<td>5</td>
<td>1b</td>
<td>2b</td>
<td>5e</td>
<td>75%</td>
</tr>
<tr>
<td>6</td>
<td>1b</td>
<td>2d</td>
<td>5f</td>
<td>81%</td>
</tr>
</tbody>
</table>

a) Isolated yields are based on piperazine derivative (1a or 1b).

2-yl)but-2-enoyl chloride (2i) and (E)-3-(thiophen-2-yl)but-2-enoyl chloride (2j), respectively.

Synthesis of alkyl-acyl piperazine (5l–5q) compounds obtained from the reactions of allyl piperazine (1c) and suitable acyl chloride (2a–2f) can be seen in Table 3.

Piperazine compounds 5l (63%) and 5m (70%) were obtained from the reaction of 1c with 2b and 2d, respectively. Treatments of 1c with 2f and 2a also gave piperazine derivatives 5n (90%) and 5o (76%) in high yields, respectively. Moreover, reactions of 1c with 2c and 2e gave 5p (75%) and 5q (81%), respectively.

Syntheses of alkyl-acyl piperazines (5r–5w) were obtained from the reactions of cinnamyl piperazine (1d) and suitable acyl chloride (2a–2f) (Table 4).

Reactions of 1d with 2b and 2d gave piperazine compounds 5r (87%) and 5s (81%) in high yields, respectively. Additionally, 5t (87%) and 5u (94%) were obtained from the reactions of 1d with 2f and 2a.
Table 2. Synthesis diacyl piperazine compounds 5g-k.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Piperazine</th>
<th>Acylating reagent</th>
<th>Diacyl piperazine product</th>
<th>Product and Yield (%)a</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5g</td>
<td>2f</td>
<td>5g</td>
<td>65</td>
</tr>
<tr>
<td>2</td>
<td>5h</td>
<td>2g</td>
<td>5h</td>
<td>79</td>
</tr>
<tr>
<td>3</td>
<td>5i</td>
<td>2h</td>
<td>5i</td>
<td>70</td>
</tr>
<tr>
<td>4</td>
<td>5j</td>
<td>2i</td>
<td>5j</td>
<td>65</td>
</tr>
<tr>
<td>5</td>
<td>5k</td>
<td>2j</td>
<td>5k</td>
<td>63</td>
</tr>
</tbody>
</table>

* a) Isolated yields are based on piperazine derivative (1b).

Moreover, 5v (75%) and 5w (81%) were synthesized from the reactions of 1d with 2c and 2e in high yields.

In conclusion, novel diacyl (5a–5k) and alkyl-acyl (5l–5w) unsaturated piperazine compounds were synthesized by the acylation reactions of piperazine (1a), methacryloyl piperazine (1b), allyl piperazine (1c), and cinnamyl piperazine (1d) with suitable acyl chlorides and methacrylic anhydride in medium to high yields for the first time. All new compounds were characterized by 1H NMR, 13C NMR, HRMS, and FTIR spectroscopy. The others were characterized by only 1H NMR.

Many piperazine derivatives are known for their bioactive properties and can be used as linkers for many other bioactive structures like imatinib [7], sildenafil [8], indinavir [9], and gatifloxacin [10]. On the other hand, these diacyl (5a–5k) and alkyl-acyl (5l–5w) piperazine compounds bear unsaturated moieties and for that reason they are potential starting reagents for many reactions such as Heck coupling, polymerizations, and α-β unsaturated Michael additions.

These compounds are also starting reagents for Mn(OAc)$_3$ mediated radical cyclization reactions for
Table 3. Synthesis of allyl-acyl piperazine compounds (5l-q).

<table>
<thead>
<tr>
<th>Entry</th>
<th>Piperazine</th>
<th>Acylating reagent</th>
<th>Alkly-Acyl piperazine product</th>
<th>Product and Yield (%)a</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1c</td>
<td>Cl$\text{CH}_2\text{CH}_2\text{CH}=\text{CH}$</td>
<td>Cl$\text{CH}_2\text{CH}_2\text{CH}=\text{CH}$</td>
<td>5l, 63</td>
</tr>
<tr>
<td>2</td>
<td>1c</td>
<td>Cl$\text{CH}_2\text{CH}_2\text{CH}=\text{CH}$</td>
<td>Cl$\text{CH}_2\text{CH}_2\text{CH}=\text{CH}$</td>
<td>5m, 70</td>
</tr>
<tr>
<td>3</td>
<td>1c</td>
<td>Cl$\text{CH}_2\text{CH}_2\text{CH}=\text{CH}$</td>
<td>Cl$\text{CH}_2\text{CH}_2\text{CH}=\text{CH}$</td>
<td>5n, 90</td>
</tr>
<tr>
<td>4</td>
<td>1c</td>
<td>Cl$\text{CH}_2\text{CH}_2\text{CH}=\text{CH}$</td>
<td>Cl$\text{CH}_2\text{CH}_2\text{CH}=\text{CH}$</td>
<td>5o, 76</td>
</tr>
<tr>
<td>5</td>
<td>1c</td>
<td>Cl$\text{CH}_2\text{CH}_2\text{CH}=\text{CH}$</td>
<td>Cl$\text{CH}_2\text{CH}_2\text{CH}=\text{CH}$</td>
<td>5p, 75</td>
</tr>
<tr>
<td>6</td>
<td>1c</td>
<td>Cl$\text{CH}_2\text{CH}_2\text{CH}=\text{CH}$</td>
<td>Cl$\text{CH}_2\text{CH}_2\text{CH}=\text{CH}$</td>
<td>5q, 81</td>
</tr>
</tbody>
</table>

a) Isolated yields are based on piperazine derivative (1c).

Synthesizing acetylcholine esterase inhibitor dihydrofuran-piperazine molecules and this work is an ongoing research interest of our group.

3. Experimental
3.1. Equipment and used chemicals
Melting points were determined on a Gallenkamp capillary melting point apparatus. IR spectra (ATR) were obtained with a Bruker Tensor27 spectrophotometer in the 400–4000 cm$^{-1}$ range with 2 cm$^{-1}$ resolution. 1H NMR and 13C NMR spectra were recorded on Varian Mercury-400 High Performance Digital FT-NMR and
Table 4. Synthesis of cinnamyl-acyl piperazine compounds (5r-w).

<table>
<thead>
<tr>
<th>Entry</th>
<th>Piperazine</th>
<th>Acylating reagent</th>
<th>Alkyl-Acyl piperazine product</th>
<th>Product and Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1d</td>
<td>2b</td>
<td>Ph(\text{N}=\text{N})-\text{NH}</td>
<td>5r, 87</td>
</tr>
<tr>
<td>2</td>
<td>1d</td>
<td>2d</td>
<td>Ph(\text{N}=\text{N})-\text{NH}</td>
<td>5s, 81</td>
</tr>
<tr>
<td>3</td>
<td>1d</td>
<td>2f</td>
<td>Ph(\text{N}=\text{N})-\text{NH}</td>
<td>5t, 87</td>
</tr>
<tr>
<td>4</td>
<td>1d</td>
<td>2a</td>
<td>Ph(\text{N}=\text{N})-\text{NH}</td>
<td>5u, 94</td>
</tr>
<tr>
<td>5</td>
<td>1d</td>
<td>2c</td>
<td>Ph(\text{N}=\text{N})-\text{NH}</td>
<td>5v, 75</td>
</tr>
<tr>
<td>6</td>
<td>1d</td>
<td>2e</td>
<td>Ph(\text{N}=\text{N})-\text{NH}</td>
<td>5w, 81</td>
</tr>
</tbody>
</table>

a) Isolated yields are based on piperazine derivative (1d).

Varian Oxford NMR300 spectrometers. High-resolution mass time-of-flight spectra (TOF) were measured on an Agilent 1200/6210 LC/MS spectrophotometer. Thin-layer chromatography (TLC) was performed on Merck aluminum-packed silica gel plates. Purification of products was performed by column chromatography on silica gel (Merck silica gel 60, 40–60 \(\mu\)m) or preparative TLC on silica gel (Merck, PF \(254\) nm). All solvents (chloroform, methanol, ethyl acetate, hexane, THF, diethyl ether, ethanol, HCl) were of the highest purity and anhydrous. Malonic acid, 5-methyl-2-carbaldehyde, cinnamaldehyde, thiophene-2-carbaldehyde, pyridine, piperidine, SOCl\(_2\), NaH, triethyl phosphonoacetate, acetophenone, benzophenone, 2-acetyl-5-methylfuran, 2-acetyl-thiophene, NaOH, Na\(_2\)SO\(_4\), 2,4-hexadienoic acid, cinnamic acid, piperazine, 1-allylpiperazine, 1-cinnamylpiperazine, and metacrylic anhydride were purchased from Sigma Aldrich. Please note that the \(^1\)H
NMR spectra for known compounds and 1H NMR, 13C NMR, and HRMS spectra for all novel compounds can be found in the Supplementary information.

3.2. General synthesis of unsaturated acyl chlorides (2b–2j)

Thionyl chloride (22 mL, 0.3 mol, freshly distilled) was added to a solution of suitable carboxylic acid (3a–3g) (0.1 mol) in 100 mL of chloroform at room temperature. The mixture was allowed to stand for 12 h. Then the solvent and excess SOCl$_2$ were distilled in vacuo. The residue was pure enough to be used as an acylating reagent without further purification.

All necessary carboxylic acids (except 2,4-hexadienoic acid and cinnamic acid) were prepared according to methods described in Sections 3.3 and 3.4.

3.3. General synthesis of (E)-3-(5-methylfuran-2-yl)acrylic acid (3a), (2E,4E)-5-phenylpenta-2,4-dienoic acid (3b), and (E)-3-(thiophen-2-yl)acrylic acid (3c)

Molecular structures of carboxylic acids (3a–3c) are given in Figure 3.

$$\text{3a}$$

$$\text{3b}$$

$$\text{3c}$$

Figure 3. Carboxylic acids (3a–3c).

Malonic acid (20 g, 0.2 mol), the corresponding aldehyde (0.1 mol), (5-methylfuran-2-carbaldehyde for 3a, cinnamaldehyde for 3b, and thiophene-2-carbaldehyde for 3c), 50 mL of freshly distilled pyridine, and 1 mL of piperidine were put into a two-necked reaction flask. The mixture was heated for 2 h to a temperature not exceeding 90–95 °C and boiled for 5 min after that. The mixture was left to cool and diluted with water. After cooling, concentrated HCl was added dropwise. Formed precipitates were filtered and crystallized in EtOH-water.

(E)-3-(5-Methylfuran-2-yl)acrylic acid (3a) [29]: Yield: 13 g, 85%. Mp: 155–156 °C, (lit: 154–155 °C). 1H NMR (400 MHz, CDCl$_3$), δ (ppm): 7.43 (1H, d, J = 15.6 Hz), 6.56 (1H, d, J = 3.2 Hz), 6.22 (1H, d, J = 15.6 Hz), 6.10 (1H, d, J = 3.2 Hz), 2.35 (3H, s).

(2E,4E)-5-Phenylpenta-2,4-dienoic acid (3b) [30]: Yield: 12 g, 70%. Mp: 164–166 °C, (lit: 164–166 °C). 1H NMR (400 MHz, CDCl$_3$), δ (ppm): 7.57–7.46 (3H, m), 7.39–7.30 (3H, m), 6.98–6.87 (2H, m), 6.00 (1H, d, J = 15.2 Hz).

(E)-3-(Thiophen-2-yl)acrylic acid (3c) [31]: Yield: 13.8 g, 90%. Mp: 140–141 °C, (lit: 140–142 °C). 1H NMR (400 MHz, CDCl$_3$), δ (ppm): 7.88 (1H, d, J = 15.6 Hz), 7.42 (1H, d, J = 4.8 Hz), 7.30 (1H, d, J = 3.2 Hz), 7.07 (1H, dd, J = 4.8, 3.2 Hz), 6.24 (1H, d, J = 15.6 Hz).

3.4. General synthesis of substituted carboxylic acids (3d–3g)

Carboxylic acids (3d–3g) were prepared from the hydrolysis of esters (4a–4d) synthesized from the reaction of suitable ketones and triethyl phosphonoacetate in NAH/THF (Figure 4).
3.4.1. General synthesis of unsaturated esters (4a–4d)

To a suspension of NaH (60%, 8.3 g, 0.12 mol) in THF, a solution of triethyl phosphonoacetate (34.5 mL, 0.12 mol) in THF was added dropwise in an ice bath. After instillation the mixture was stirred for 30 min at room temperature and a solution of corresponding ketone (0.1 mol) (acetophenone for 4a, benzophenone for 4b, 1-(5-methylfuran-2-yl)ethan-1-one for 4c, and 1-(thiophen-2-yl)ethan-1-one for 4d) in THF was poured into the reaction mixture and stirred for 2–3 h. The reaction was monitored with TLC, and in the case of remaining ketone, the mixture was heated until no more ketone remained. THF was evaporated and water was added. The mixture was extracted with diethyl ether. The combined organic phase was dried with Na$_2$SO$_4$ and ether was evaporated. The crude product was purified with column chromatography with hexane/ethyl acetate (5:1) as eluent.

(E)-Ethyl 3-phenylbut-2-enoate (4a) [32]: Yield: 17.81 g, 94%. Oily product. 1H NMR (400 MHz, CDCl$_3$), δ (ppm): 7.51 (2H, m), 7.40 (3H, m), 6.17 (1H, m), 4.25 (2H, q, $J = 7.2$ Hz), 2.62 (3H, d, $J = 1.2$ Hz), 1.36 (3H, t, $J = 7.2$ Hz).

Ethyl 3,3-diphenylacrylate (4b) [32]: Yield: 23.5 g, 93%. Oily product. 1H NMR (400 MHz, CDCl$_3$), δ (ppm): 7.27–7.45 (10H, m), 6.41 (1H, m), 4.11 (2H, q, $J = 7.2$ Hz), 2.62 (3H, d, $J = 1.2$ Hz), 1.36 (3H, t, $J = 7.2$ Hz).

Ethyl (E)-3-(5-methylfuran-2-yl)but-2-enoate (4c): Yield: 17.9, g 92%. Oily product. 1H NMR (400 MHz, CDCl$_3$), δ (ppm): 6.52 (1H, d, $J = 3.6$ Hz), 6.28 (1H, d, $J = 1.2$ Hz), 6.03 (1H, d, $J = 3.6$ Hz), 4.17 (2H, q, $J = 7.2$ Hz), 2.40 (3H, d, $J = 1.2$ Hz), 2.30 (3H, s), 1.28 (3H, t, $J = 7.2$ Hz). 13C NMR (100 MHz, CDCl$_3$), δ (ppm): 167.35, 154.35, 152.78, 142.24, 112.71, 110.82, 108.36, 59.57, 14.48, 14.33, 13.74.

Ethyl (E)-3-(thiophen-2-yl)but-2-enoate (4d) [33]: Yield: 16 g, 93%. Oily product. 1H NMR (400 MHz, CDCl$_3$), δ (ppm): 7.34 (2H, d, $J = 4.2$ Hz), 7.06 (1H, t, $J = 4.2$ Hz), 6.22 (1H, d, $J = 1.2$ Hz), 4.22 (2H, q, $J = 7.2$ Hz), 2.63 (3H, d, $J = 1.2$ Hz), 1.34 (3H, t, $J = 7.2$ Hz).
3.4.2. General synthesis of unsaturated carboxylic acids (3d–3g)

Unsaturated esters (4a–4d) obtained by the method described above were transformed into their corresponding carboxylic acids (3d–3g) by the method described below.

Unsaturated ester (4a–4d) (0.1 mol) was boiled with 5 N NaOH under a reflux condenser for 2–3 h and left to stir at room temperature overnight. The formed carboxylate salt was dissolved in water and diluted HCl was added. The obtained solid product was filtered and crystallized with EtOH-water.

(E)-3-Phenylbut-2-enoic acid (3d) [34]: Yield: 15 g, 94%. Mp: 90–92 °C, (lit: 90–92 °C). 1H NMR (400 MHz, CDCl$_3$), δ (ppm): 7.51–7.49 (3H, m), 7.40–7.38 (2H, m), 6.18 (1H, s), 2.61 (3H, s).

3,3-Diphenylacrylic acid (3e) [35]: Yield: 14.5 g, 65%. Mp: 159–161 °C (lit: 161–162 °C). 1H NMR (400 MHz, CDCl$_3$), δ (ppm): 7.38–7.19 (10H, m), 6.33 (1H, s).

(E)-3-(5-Methylfuran-2-yl)but-2-enoic acid (3f): Yield: 10 g, 60%. Mp: 138–140 °C. 1H NMR (400 MHz, CDCl$_3$), δ (ppm): 6.08 (1H, d, $J = 3.2$ Hz), 6.33 (1H, d, $J = 1.2$ Hz), 6.07 (1H, d, $J = 3.2$ Hz), 2.43 (3H, d, $J = 1.2$ Hz), 2.43 (3H, s).

13C NMR (100 MHz, CDCl$_3$), δ (ppm): 172.3, 155, 152.6, 144.5, 113.7, 109.8, 108.6, 14.8, 13.8.

(E)-3-(Thiophen-2-yl)but-2-enoic acid (3g) [36]: Yield: 11 g, 65%. Mp: 113–115 °C (lit: 114–114.8 °C). 1H NMR (400 MHz, CDCl$_3$), δ (ppm): 7.37 (2H, d, $J = 4.4$ Hz), 7.07 (1H, t, $J = 4.4$ Hz), 6.29 (1H, s), 2.63 (3H, s).

3.5. Synthesis procedure for 2-methyl-1-(piperazin-1-yl)prop-2-en-1-one (1b) [28]
Piperazine (1a) (20 g, 0.232 mol) was dissolved in 50 mL of chloroform in a reaction flask. The solution was stirred in an ice-salt bath for 15 min. Then a dilute solution of methacrylic anhydride (2a) (18 g, 0.116 mol) was added. After instillation, the reaction was removed from the ice-salt bath and allowed to stir overnight. Water was added and crude product was extracted with chloroform. Combined organic phases were dried over anhydrous Na$_2$SO$_4$ and evaporated. The crude product was purified by column chromatography on silica gel using EtOAc-methanol (1:1) as eluent. Yield: 30 g, 77%. Oily product. 1H NMR (400 MHz, CDCl$_3$), δ (ppm): 5.16 (1H, q, $J = 1.6$ Hz), 5.00 (1H, q, $J = 1.2$ Hz) 3.55 (4H, s) 2.84 (4H, s), 1.93 (3H, t, $J = 1.2$ Hz).

3.6. General synthesis procedure for symmetrical diacyl piperazine compounds (5a, 5b)
Piperazine (2a) (860 mg, 10 mmol) and Et$_3$N (22 mmol) were dissolved in 10 mL of chloroform in a reaction flask. The solution was stirred in an ice bath for 15 min. Then a dilute solution of the related acylating agent (1a, 1b) (22 mmol) in CHCl$_3$ was added dropwise. After instillation, the reaction was removed from the ice bath and allowed to stir overnight. Water was added and crude product was extracted with chloroform. Combined organic phases were dried over anhydrous Na$_2$SO$_4$ and evaporated. The crude product was purified by column chromatography on silica gel using EtOAc-methanol (1:1) as eluent. Yield: 3.1 g, 84%. Mp: 275–277 °C. IR (ATR): 980, 1209, 1426, 1603, 1644, 1748, 2850, 2921, 3686 cm$^{-1}$. 1H NMR (400 MHz, CDCl$_3$), δ (ppm): 7.43 (2H, d, $J = 14.8$ Hz), 6.69 (2H, d, $J = 14.8$ Hz), 6.47 (2H, d, $J = 2.8$ Hz), 6.07 (2H, d, $J = 2.8$ Hz), 3.74 (8H, s), 2.35 (6H, s). 13C NMR (100 MHz, CDCl$_3$), δ (ppm): 165.80, 154.83, 150.09, 130.48, 116.06, 111.81, 108.75, 45.6, 42.3, 13.89. HRMS (ESI): (m/z) calcd. for C$_{20}$H$_{22}$N$_2$O$_4$, (M+Na)$^+$ 377.14717, found: 377.14695.
(2E,2′E,4E,4′E)-1,1′-(Piperazine-1,4-diyl)bis(hexa-2,4-dien-1-one) (5b): Yield: 1.9 g, 66%. Mp: 153–155 °C. IR (ATR): 938, 1207, 1236, 1426, 1620, 1648, 2336, 2912 cm⁻¹. ¹H NMR (400 MHz, CDCl₃), δ (ppm): 7.28 (2H, dd, J = 14.8, 10 Hz), 6.25–6.07 (6H, m), 3.64 (8H, s), 1.85 (6H, d, J = 6.4 Hz). ¹³C NMR (100 MHz, CDCl₃), δ (ppm): 166.02, 143.99, 138.40, 129.99, 117.07, 41.99, 38.70, 18.59. HRMS (ESI): (m/z) calcd. for C₁₆H₂₂N₂O₂, (M+Na)⁺ 297.15734, found: 297.15706.

3.7. General synthesis procedure for nonsymmetrical diacyl piperazine compounds (5c-k)

Methacryloyl piperazine (1b, 10 mmol) and Et₃N (22 mmol) was dissolved in 10 mL of chloroform in a reaction flask. The solution was stirred in an ice bath for 15 min. Then a dilute solution of the related acylating agent (2c–2j) (22 mmol) in CHCl₃ was added dropwise. After distillation, the reaction was removed from the ice bath and allowed to stir overnight. Water was added and crude product was extracted with chloroform. Combined organic phases were dried over anhydrous Na₂SO₄ and evaporated. The crude product was purified by column chromatography on silica gel using EtOAc-methanol (1:1) as eluent.

(2E,4E)-1-(4-Methacryloylpiperazine-1-yl)-5-phenylpenta-2,4-dien-1-one (5c): Yield: 2.2 g, 72%. Mp: 178–180 °C. IR (ATR): 759, 989, 1194, 1225, 1430, 1460, 1615, 2861, 2908 cm⁻¹. ¹H NMR (400 MHz, CDCl₃), δ (ppm): 7.51–7.44 (3H, m), 7.36–7.25 (3H, m), 6.89 (2H, t, J = 15.2 Hz), 6.43 (1H, d, J = 15.2 Hz), 5.24 (1H, s), 5.06 (1H, s), 3.63 (8H, s), 1.96 (3H, s). ¹³C NMR (100 MHz, CDCl₃), δ (ppm): 171.38, 165.71, 143.75, 139.71, 136.18, 128.78, 127.04, 126.52, 119.39, 116.12, 45.22, 41.56, 20.47. HRMS (ESI): (m/z) calcd. for C₁₉H₂₂N₂O₂, HRMS (ESI): (m/z) calcd. for C₁₉H₂₂N₂O₂, (M+Na)⁺ 311.17540, found: 311.17543.

(2E,4E)-1-(4-Methacryloylpiperazine-1-yl)hexa-2,4-dien-1-one (5d): Yield: 1.78 g, 66%. Mp: 110–112 °C. IR (ATR): 924, 1198, 1253, 1432, 1614, 1645, 2912 cm⁻¹. ¹H NMR (400 MHz, CDCl₃), δ (ppm): 7.30 (1H, t, J = 14.8 Hz), 6.24–6.09 (3H, m), 5.24 (1H, t, J = 1.6 Hz), 5.05 (1H, t, J = 1.2 Hz), 3.60 (8H, s), 1.96 (3H, t, J = 1.6 Hz), 1.84 (3H, d, J = 6.4 Hz). ¹³C NMR (100 MHz, CDCl₃), δ (ppm): 171.38, 166.03, 144.10, 139.97, 138.49, 129.97, 116.99, 116.08, 42, 46, 20.46, 18.60. HRMS (ESI): (m/z) calcd. for C₁₄H₂₀N₂O₂, (M+Na)⁺ 271.14169, found: 271.14216.

(E)-1-(4-Methacryloylpiperazine-1-yl)-3-(5-methylfuran-2-yl)prop-2-en-1-one (5e): Yield: 2.33 g, 75%. Mp: 142–144 °C IR (ATR): 977, 1196, 1247, 1426, 1606, 1644, 1705, 2859, 2919, 3047 cm⁻¹. ¹H NMR (400 MHz, CDCl₃), δ (ppm): 7.40 (1H, d, J = 15.2 Hz), 6.66 (1H, d, J = 15.2), 6.45 (1H, d, J = 3.2 Hz), 6.05 (1H, m) 5.23 (1H, t, J = 1.2 Hz), 5.05 (1H, t, J = 1.2 Hz), 3.66 (8H, s), 2.33 (3H, s), 1.96 (3H, t, J = 1.2 Hz). ¹³C NMR (100 MHz, CDCl₃), δ (ppm): 171.36, 165.75, 154.81, 150.05, 139.97, 130.49, 116.06, 111.75, 108.75, 45.47, 42.19, 20.46, 13.87. HRMS (ESI): (m/z) calcd. for C₁₅H₂₀N₂O₃, (M+Na)⁺ 311.13661, found: 311.13582.

(E)-1-(4-Methacryloylpiperazine-1-yl)-3-(thiophen-2-yl)prop-2-en-1-one (5f): Yield: 2.5 g, 81%. Mp: 101–103 °C. IR (ATR): 967, 1202, 1271, 1433, 1606, 1642, 2190, 2860, 2923, 2997 cm⁻¹. ¹H NMR (400 MHz, CDCl₃), δ (ppm): 7.84 (1H, d, J = 15.2 Hz), 7.51 (1H, dd, J = 5.2, 3.6 Hz), 7.34 (1H, d, J = 5.2 Hz), 7.24 (1H, d, J = 3.6 Hz), 6.65 (1H, d, J = 15.2 Hz), 5.25 (1H, t, J = 1.6 Hz), 5.07 (1H, t, J = 1.6 Hz), 3.66 (8H, s), 1.98 (3H, t, J = 1.2 Hz). ¹³C NMR (100 MHz, CDCl₃), δ (ppm): 171.38, 165.33, 140.13, 139.94, 136.46, 130.67, 128.08, 127.57, 116.13, 114.96, 46, 42, 20.4. HRMS (ESI): (m/z) calcd. for C₁₅H₁₈N₂O₂S, (M+Na)⁺ 313.09811, found: 313.09941.
(E)-1-(4-Cinnamoylpiperazine-1-yl)-2-methylprop-2-en-1-one (5g):
Yield: 1.9 g, 65%. Mp: 100–102 °C. IR (ATR): 748, 996, 1133, 1209, 1367, 1436, 1618, 1739, 2362, 3003 cm\(^{-1}\). \(^1\)H NMR (400 MHz, CDCl\(_3\)), \(\delta\) (ppm): 7.71 (1H, d, J = 16 Hz), 7.54–7.52 (2H, m), 7.41–7.36 (3H, m), 6.86 (1H, d, J = 16 Hz), 5.26 (1H, s), 5.08 (1H, s), 3.60 (8H, s), 1.98 (3H, s). \(^1^3\)C NMR (100 MHz, CDCl\(_3\)), \(\delta\) (ppm): 171.38, 165.68, 143.66, 139.94, 134.97, 129.88, 128.85, 127.82, 116.39, 116.14, 42, 46, 20.47. HRMS (ESI): (m/z) calcd. for C\(_{17}\)H\(_{20}\)N\(_2\)O\(_2\), (M + Na)\(^+\) 307.14169, found: 307.14038.

(E)-1-(4-Methacryloylpiperazine-1-yl)-3-phenylbut-2-en-1-one (5h):
Yield: 2.6 g, 79%. Mp: 84–86 °C. IR (ATR): 766, 910, 1208, 1433, 1460, 1612, 2867, 2917, 2995 cm\(^{-1}\). \(^1\)H NMR (400 MHz, CDCl\(_3\)), \(\delta\) (ppm): 7.46–7.43 (2H, m), 7.38–7.33 (3H, m), 6.25 (1H, t, J = 1.2 Hz), 5.24 (1H, d, J = 1.2 Hz), 5.06 (1H, d, J = 1.2 Hz), 3.62 (8H, s), 2.28 (3H, d, J = 1.2 Hz), 1.96 (3H, t, J = 1.2 Hz). \(^1^3\)C NMR (100 MHz, CDCl\(_3\)), \(\delta\) (ppm): 171.4, 167.3, 146.9, 141.4, 140, 128.54, 128.51, 125.9, 118.83, 116.1, 46.89, 42.29, 20.47. HRMS (ESI): (m/z) calcd. for C\(_{18}\)H\(_{22}\)N\(_2\)O\(_2\), (M + Na)\(^+\) 337.13129, found: 337.13041.

1-(4-Methacryloylpiperazine-1-yl)-3,3-diphenylprop-2-en-1-one (5i):
Yield: 2.7 g, 70%. Mp: 126–128 °C. IR (ATR): 760, 916, 1199, 1431, 1592, 1628, 2856, 2890, 2978 cm\(^{-1}\). \(^1\)H NMR (400 MHz, CDCl\(_3\)), \(\delta\) (ppm): 7.37–7.27 (10H, m), 6.30 (1H, s), 5.17 (1H, s), 4.94 (1H, s), 3.5 (2H, s), 3.30 (4H, s), 2.91 (2H, s), 1.88 (3H, s). \(^1^3\)C NMR (100 MHz, CDCl\(_3\)), \(\delta\) (ppm): 171.09, 167.31, 147.68, 140.54, 139.84, 138.65, 129.50, 128.84, 128.77, 128.44, 128.40, 120.11, 115.92, 46.20, 41.32, 20.39. HRMS (ESI): (m/z) calcd. for C\(_{23}\)H\(_{24}\)N\(_2\)O\(_2\), (M + Na)\(^+\) 383.17300, found: 383.17366.

(E)-1-(4-Methacryloylpiperazine-1-yl)-2-methyl-3-(5-methylfuran-2-yl)prop-2-en-1-one (5j):
Yield: 2.1 g, 65%. Mp: 142–144 °C. IR (ATR): 988, 1195, 1219, 1421, 1441, 1426, 1612, 2856, 2900, 2978 cm\(^{-1}\). \(^1\)H NMR (400 MHz, CDCl\(_3\)), \(\delta\) (ppm): 6.45 (1H, d, J = 1.2 Hz), 6.39 (1H, d, J = 2.8 Hz), 6.00 (1H, m), 5.21 (1H, t, J = 1.6 Hz), 5.03 (1H, t, J = 1.2 Hz), 3.62 (8H, s), 2.3 (3H, s), 2.19 (3H, d, J = 1.2 Hz), 1.94 (3H, t, J = 1.2 Hz). \(^1^3\)C NMR (100 MHz, CDCl\(_3\)), \(\delta\) (ppm): 171.33, 167.03, 153.45, 152.67, 140, 136.70, 115.98, 112.15, 111.12, 108.10, 46.66, 41.54, 20.46, 14.93, 13.78. HRMS (ESI): (m/z) calcd. for C\(_{17}\)H\(_{22}\)N\(_2\)O\(_3\), (M + Na)\(^+\) 325.15226, found: 325.15113.

(E)-1-(4-Methacryloylpiperazine-1-yl)-3-phenylbut-2-en-1-one (5k):
Yield: 2 g, 63%. Mp: 102–104 °C. IR (ATR): 856, 1195, 1219, 1426, 1612, 2911, 2974 cm\(^{-1}\). \(^1\)H NMR (400 MHz, CDCl\(_3\)), \(\delta\) (ppm): 7.26 (1H, d, J = 1.2 Hz), 7.19 (1H, dd, J = 3.6, 1.2 Hz), 7.02 (1H, dd, J = 5.2, 3.6 Hz), 6.37 (1H, d, J = 1.2 Hz), 5.24 (1H, t, J = 1.2 Hz), 5.06 (1H, t, J =1.6 Hz), 3.61 (8H, s), 2.33 (3H, d, J = 1.2 Hz), 1.96 (3H, t, J = 1.2 Hz). \(^1^3\)C NMR (100 MHz, CDCl\(_3\)), \(\delta\) (ppm): 171.37, 166.61, 145.17, 140.69, 139.96, 127.80, 125.82, 125.54, 116.2, 3 116.09, 46, 42, 20.5, 17.8. HRMS (ESI): (m/z) calcd. for C\(_{16}\)H\(_{20}\)N\(_2\)O\(_2\)S, (M + Na)\(^+\) 327.11376, found: 327.11506.

3.8. General synthesis procedure for alkyl-acyl piperazine compounds (5l–5w)

Ally piperazine (2c) or cinnamyl piperazine (2d) (10 mmol) and Et\(_3\)N (20 mmol) were dissolved in 10 mL of chloroform. The solution was stirred in an ice bath for 15 min. Then a dilute solution of related acylating reagents (13 mmol) in CHCl\(_3\) was added dropwise. After instillation, the reaction was removed from the ice bath and allowed to stir overnight. Water was added and crude product was extracted with chloroform. Combined
organic phases were dried over anhydrous Na$_2$SO$_4$ and evaporated. The crude product was purified by column chromatography on silica gel using EtOAc-methanol (1:1) as eluent.

3.8.1. (E)-1-(4-Allylpiperazine-1-yl)-3-(5-methylfuran-2-yl)prop-2-en-1-one (5l):

Yield: 1.7 g, 63%. Oily product. IR (ATR): 1001, 1220, 1367, 1428, 1647, 1739, 2360, 2799, 2943 cm$^{-1}$. 1H NMR (400 MHz, CDCl$_3$), δ (ppm): 7.39 (1H, d, $J = 14.8$ Hz), 6.69 (1H, d, $J = 14.8$ Hz), 6.44 (1H, d, $J = 3.2$ Hz), 6.05 (1H, d, $J = 3.2$ Hz), 5.87 (1H, ddt, $J = 17.2$, 10, 6 Hz), 5.24 (1H, dd, $J = 17.2$, 1.2 Hz), 5.20 (1H, dd, $J = 10$, 1.2 Hz), 3.73 (4H, s) 3.06 (2H, d, $J = 6.8$ Hz), 2.51 (4H, t, $J = 5.2$ Hz), 2.34 (3H, s). 13C NMR (100 MHz, CDCl$_3$), δ (ppm): 165.45, 154.47, 150.24, 133.94, 129.87, 118.90, 115.50, 112.40, 108.60, 61.42, 53.16, 52.58, 45.45, 41.88, 14. HRMS (ESI): (m/z) calcd. for C$_{15}$H$_{18}$O$_2$N$_2$, (M+Na)$^+$ 283.1417, found: 283.14169.

(E)-1-(4-Allylpiperazine-1-yl)-3-(thiophen-2-yl)prop-2-en-1-one (5n):

Yield: 1.9 g, 70%. Mp: 64–66 ºC. IR (ATR): 971, 1223, 1366, 1441, 1582, 1630, 1739, 2359, 2818, 2941 cm$^{-1}$. 1H NMR (400 MHz, CDCl$_3$), δ (ppm): 7.80 (1H, d, $J = 15.2$ Hz), 7.31 (1H, d, $J = 5.2$ Hz), 7.20 (1H, d, $J = 3.6$ Hz), 7.03 (1H, dd, $J = 5.2$, 3.6 Hz), 6.67 (1H, d, $J = 15.2$ Hz), 5.87 (1H, ddt, $J = 17.2$, 10.8, 6 Hz), 5.21 (1H, dd, $J = 17.2$, 1.2 Hz), 5.19 (1H, dd, $J = 10.8$, 1.2 Hz), 3.70 (4H, s), 3.04 (2H, d, $J = 6$ Hz), 2.49 (4H, s). 13C NMR (100 MHz, CDCl$_3$), δ (ppm): 164.96, 140.42, 135.60, 134.13, 130.20, 127.96, 127.15, 118.73, 115.70, 61.45, 53.16, 52.62, 45.60, 42.02. HRMS (ESI): (m/z) calcd. for C$_{14}$H$_{18}$N$_2$OS, (M+Na)$^+$ 285.10321, found: 285.10448.

1-(4-Allylpiperazine-1-yl)-2-methylprop-2-en-1-one (5o):

Yield: 2.1 g, 76%. Oily product. IR (ATR): 998, 1221, 1436, 1590, 1643, 1739, 2360, 2943 cm$^{-1}$. 1H NMR (400 MHz, CDCl$_3$), δ (ppm): 7.66 (1H, d, $J = 15.2$ Hz), 7.51 (2H, d, $J = 1.6$ Hz), 7.39–7.33 (3H, m), 6.87 (1H, d, $J = 15.2$ Hz), 5.86 (1H, ddt, $J = 17.2$, 10.4, 6.4 Hz), 5.23 (1H, dd, $J = 17.2$, 1.2 Hz), 5.18 (1H, dd, $J = 10.4$, 1.2 Hz), 3.71 (4H, s), 3.03 (2H, dd, $J = 6.4$, 1.2 Hz) 2.48 (4H, s). 13C NMR (100 MHz, CDCl$_3$), δ (ppm): 165.39, 142.69, 135.29, 134.42, 129.56, 128.76, 127.71, 118.48, 117.12, 61.52, 53.24, 52.67, 45.79, 42.13, 29.66. HRMS (ESI): (m/z) calcd. for C$_{14}$H$_{20}$N$_2$O, (M+Na)$^+$ 279.14678, found: 279.14752.

1-(4-Allylpiperazine-1-yl)-2-methylfuran-3-one (5q):

Yield: 1.48 g, 76%. Mp: 128–130 ºC. IR (ATR): 791, 920, 998, 1207, 1368, 1435, 1624, 1739, 2360, 2967 cm$^{-1}$. 1H NMR (400 MHz, CDCl$_3$), δ (ppm): 5.82 (1H, ddt, $J = 17.2$, 10, 6 Hz), 5.20 (1H, d, $J = 1.2$ Hz), 5.16 (2H, d, $J = 1.2$ Hz), 3.57 (4H, s), 2.99 (2H, dd, $J = 6$, 1.2 Hz), 2.41 (4H, s), 1.96 (3H, t, $J = 1.2$ Hz). 13C NMR (100 MHz, CDCl$_3$), δ (ppm): 171.04, 140.42, 134.36, 118.37, 115.27, 61.49, 52.88, 42, 46, 20.44. HRMS (ESI): (m/z) calcd. for C$_{11}$H$_{18}$N$_2$O, (M+H)$^+$ 195.14919, found: 195.14906.

(E)-1-(4-Allylpiperazine-1-yl)-5-phenoxyhexa-2,4-dien-1-one (5q):

Yield: 2.1 g, 76%. Oily product. IR (ATR): 758, 1009, 1227, 1447, 1595, 1636, 1739, 2360, 2792, 3005 cm$^{-1}$. 1H NMR (400 MHz, CDCl$_3$), δ (ppm): 7.48–7.42 (3H, m), 7.36–7.26 (3H, m), 6.88 (2H, q, $J = 14.4$ Hz), 6.44 (1H, d, $J = 14.4$ Hz), 5.85 (1H, ddt, $J = 17.2$, 10.4, 6.4 Hz), 5.22 (1H, dd, $J = 17.2$, 1.2 Hz), 5.19 (1H, dd, $J = 10.4$, 1.2 Hz), 3.73 (2H, s), 3.61 (2H, s), 3.03 (2H, d, $J = 6.4$ Hz), 2.47 (4H, t, $J = 5.2$ Hz). 13C NMR (100 MHz, CDCl$_3$), δ (ppm): 165.42, 142.88, 138.99, 136.35, 134.39, 128.74, 128.66, 126.97, 126.81, 120.19, 118.53, 61.53, 53.21, 52.68, 45.68, 41.99. HRMS (ESI): (m/z) calcd. for C$_{18}$H$_{22}$N$_2$O, (M+H)$^+$ 283.18049, found: 283.18153.
(E)-1-(4-Cinnamylpiperazine-1-yl)-3-(5-methylfuran-2-yl)prop-2-en-1-one (5r):

Yield: 2 g, 84%. Mp: 62–64 °C. IR (ATR): 923, 1228, 1266, 1421, 1621, 1648, 1739, 2360, 2810, 2958 cm⁻¹. ¹H NMR (400 MHz, CDCl₃), δ (ppm): 7.25 (1H, dd, J = 14.8, 10.4 Hz), 6.23–6.04 (3H, m), 5.85 (1H, ddt, J = 17.2, 10.4, 6.4 Hz), 5.23–5.16 (2H, m), 3.70 (2H, s), 3.58 (2H, s), 3.01 (2H, d, J = 6.4 Hz), 2.45 (4H, t, J = 5.2 Hz), 1.83 (3H, d, J = 6.4 Hz). ¹³C NMR (100 MHz, CDCl₃), δ (ppm): 165.71, 143.17, 137.55, 134.27, 130.12, 118.56, 117.68, 61.49, 53.14, 52.66, 45.51, 41.86, 18.53. HRMS (ESI): (m/z) calcd. for C₁₃H₂₀N₂O₂, (M+Na)⁺ + 359.174. found: 359.17447.

(E)-1-(4-Cinnamylpiperazine-1-yl)-3-(thiophen-2-yl)prop-2-en-1-one (5s):

Yield: 2.9 g, 81%. Mp: 111–113 °C. IR (ATR): 969, 1212, 1364, 1427, 1647, 1739, 2360, 2801, 2944 cm⁻¹. ¹H NMR (400 MHz, CDCl₃), δ (ppm): 7.39 (1H, d, J = 14.8 Hz), 7.37–7.21 (5H, m), 6.69 (1H, d, J = 14.8 Hz), 6.53 (1H, d, J = 16 Hz), 6.42 (1H, d, J = 3.2 Hz), 6.26 (1H, dt, J = 16, 6.8 Hz), 6.04 (1H, d, J = 3.2 Hz), 3.75 (2H, s), 3.60 (2H, s), 3.18 (2H, d, J = 6.8 Hz), 2.52 (4H, t, J = 4.8 Hz), 2.33 (3H, s). ¹³C NMR (100 MHz, CDCl₃), δ (ppm): 165.46, 154.44, 150.29, 136.70, 133.51, 129.82, 128.59, 127.64, 126.33, 115.44, 112.53, 108.60, 60.89, 53.44, 52.86, 45.66, 42.11, 13.86. HRMS (ESI): (m/z) calcd. for C₂₁H₂₄N₂O₂, (M+Na)⁺ + 359.173, found: 359.17447.

(E)-1-(4-Cinnamylpiperazine-1-yl)-3-(phenylprop-2-en-1-one (5t):

Yield: 3.1 g, 87%. Mp: 122–124 °C. IR (ATR): 965, 1208, 1230, 1421, 1587, 1629, 2152, 2941 cm⁻¹. ¹H NMR (400 MHz, CDCl₃), δ (ppm): 7.80 (1H, d, J = 14.8 Hz), 7.38–7.20 (7H, m), 7.02 (1H, dd, J = 5.2, 3.6 Hz), 6.67 (1H, d, J = 14.8 Hz), 6.53 (1H, d, J = 16.4 Hz), 6.25 (1H, dt, J = 16.4, 7.2 Hz), 3.70 (2H, s), 3.60 (2H, s), 3.18 (2H, d, J = 3.2 Hz), 2.53 (4H, t, J = 4.8 Hz). ¹³C NMR (100 MHz, CDCl₃), δ (ppm): 165.01, 140.47, 136.70, 135.60, 133.52, 130.20, 128.60, 127.98, 127.64, 127.14, 126.33, 125.89, 115.76, 60.88, 53.44, 52.86, 44.1. HRMS (ESI): (m/z) calcd. for C₂₀H₂₂N₂O₂, (M+Na)⁺ + 361.13541, found: 361.13598.

(E)-1-(4-Cinnamylpiperazine-1-yl)-3-phenylprop-2-en-1-one (5u):

Yield: 3 g, 94%. Mp: 100–102 °C. IR (ATR): 787, 1000, 1241, 1437, 1596, 1640, 1738, 2358, 2949 cm⁻¹. ¹H NMR (400 MHz, CDCl₃), δ (ppm): 7.67 (1H, d, J = 15.2 Hz), 7.51 (2H, dd, J = 7.6, 2 Hz), 7.39–7.22 (8H, m), 6.87 (1H, d, J = 15.2 Hz), 6.54 (1H, d, J = 16 Hz), 6.26 (1H, dt, J = 16, 6.8 Hz), 3.73 (2H, s), 3.62 (2H, s), 3.19 (2H, d, J = 6.8 Hz), 2.54 (4H, t, J = 4.8 Hz). ¹³C NMR (100 MHz, CDCl₃), δ (ppm): 165.40, 142.75, 136.70, 135.29, 133.50, 129.57, 128.77, 128.60, 127.73, 127.65, 126.33, 125.91, 117.11, 60.89, 53.40, 52.86, 45.85, 42.17. HRMS (ESI): (m/z) calcd. for C₂₂H₂₄N₂O₂, (M+Na)⁺ + 355.17918, found: 355.17952.

(E)-1-(4-Cinnamylpiperazine-1-yl)-2-methylprop-2-en-1-one (5v):

Yield: 2.9 g, 75%. Mp: 120–121 °C. IR (ATR): 787, 1000, 1241, 1437, 1596, 1640, 1738, 2359, 2803, 2945 cm⁻¹. ¹H NMR (400 MHz, CDCl₃), δ (ppm): 7.49–7.22 (11H, m), 6.91 (1H, d, J = 14.8 Hz), 6.87 (1H, d, J = 14.8 Hz), 6.53 (1H, d, J = 15.6 Hz), 6.44 (1H, d, J = 14.8 Hz), 6.26 (1H, dt, J = 15.6, 7.2 Hz), 3.68

1668
(4H, s), 3.18 (2H, d, J = 7.2 Hz), 2.52 (4H, t, J = 5.2 Hz). 13C NMR (100 MHz, CDCl$_3$), δ (ppm): 165.44, 142.94, 139.03, 136.68, 136.35, 133.57, 128.76, 128.68, 128.61, 127.68, 126.99, 126.81, 126.35, 125.82, 120.17, 60.88, 53.33, 52.85, 45.68, 42.03. HRMS (ESI): (m/z) calcd. for C$_{24}$H$_{26}$N$_2$O, (M + Na)$^+$ 381.19373, found: 381.19241.

(2E,4E)-1-(4-Cinnamylpiperazine-1-yl)hexa-2,4-dien-1-one (5w):

Yield: 2.5 g, 81%. Mp: 85–87 °C. IR (ATR): 787, 1048, 1242, 1433, 1617, 1734, 2359, 2764, 2907 cm$^{-1}$.

1H NMR (400 MHz, CDCl$_3$), δ (ppm): 7.36–7.18 (6H, m), 6.49 (1H, d, J = 15.6 Hz), 6.22 (1H, dt, J = 15.6, 7.2 Hz), 6.18–6.00 (3H, m), 3.61 (4H, s), 3.13 (2H, d, J = 7.2 Hz), 2.46 (4H, t, J = 5.2 Hz), 1.80 (3H, d, J = 6.8 Hz). 13C NMR (100 MHz, CDCl$_3$), δ (ppm): 165.70, 143.15, 137.50, 136.69, 133.40, 130.16, 128.61, 127.61, 126.31, 125.96, 117.75, 60.85, 53.31, 52.85, 45.61, 41.97, 18.55. HRMS (ESI): (m/z) calcd. for C$_{19}$H$_{24}$N$_2$O, (M + Na)$^+$ 319.17808, found: 319.17952.

Acknowledgments
The authors are indebted to the Scientific and Technological Research Council of Turkey (TÜBİTAK, TBAG-116Z455) and Kocaeli University BAP (2018/056). Sait Sarı thanks TÜBİTAK for doctoral fellowship.

References

SUPPLEMENTARY INFORMATION

Synthesis and characterization of unsaturated diacyl and alkyl-acyl piperazine derivatives

Sait SARI, Seda ÜNALAN, Mehmet YILMAZ*

Department of Chemistry, Faculty of Arts and Sciences, Kocaeli University, 41380 Umuttepe, Kocaeli, Turkey

*Correspondence: mehmet.yilmaz@kocaeli.edu.tr

1H-NMR and 13C-NMR spectra

1b. 1H-NMR

![1H-NMR spectrum of 1b](image_url)
3a. 1H-NMR

3b. 1H-NMR
3c. 1H-NMR

3d. 1H-NMR
3e. 1H-NMR

![NMR spectrum of 3e](image)

3f. 1H-NMR

![NMR spectrum of 3f](image)
3f. 13C-NMR

$3f$

\[\text{HO-} \]
\[\text{C} \]
\[\text{O} \]

3g. 1H-NMR

$3g$

\[\text{HO-} \]
\[\text{C} \]
\[\text{O} \]
4a. 1H-NMR

![Diagram of 4a with NMR spectrum]

4b. 1H-NMR

![Diagram of 4b with NMR spectrum]
4c. 1H-NMR

![H-NMR spectra](image)

4c. 13C-NMR

![C-NMR spectra](image)
4d. 1H-NMR

5a. 1H-NMR
5a. 13C-NMR

5b. 1H-NMR
5b. 13C-NMR

5c. 1H-NMR
$5c$ 13C-NMR

$5d$. 1H-NMR
5d. 13C-NMR

5e. 1H-NMR
5e. 13C-NMR

5f. 1H-NMR
$5f. \ ^{13}\text{C-NMR}$

$5g. \ ^1\text{H-NMR}$
$5g. ^{13}C$-NMR

$5h. ^1H$-NMR
5h. 13C-NMR

![13C-NMR spectrum of 5h](image)

5i. 1H-NMR

![1H-NMR spectrum of 5i](image)
5i. $^{13}\text{C-NMR}$

![13C-NMR spectrum of compound 5i](image)

5j. $^{1}\text{H-NMR}$

![1H-NMR spectrum of compound 5j](image)
5j. 13C-NMR

5k. 1H-NMR
5k. 13C-NMR

![13C-NMR spectrum](image)

5l. 1H-NMR

![1H-NMR spectrum](image)
5l. 13C-NMR

5m. 1H-NMR
5m. 13C-NMR

5n. 1H-NMR
5n. 13C-NMR

5o. 1H-NMR
5o. 13C-NMR

5p. 1H-NMR
5p. 13C-NMR

5q. 1H-NMR
5q. 13C-NMR

5r. 1H-NMR
5r. 13C-NMR

5s. 1H-NMR
5s. 13C-NMR

5t. 1H-NMR
5t. 13C-NMR

![NMR spectrum of 5t](image)

5u. 1H-NMR

![NMR spectrum of 5u](image)
$5u. \ ^{13}C$-NMR

$5v. \ ^1H$-NMR
5v. $^{13}\text{C-NMR}$

5w. $^1\text{H-NMR}$
13C-NMR
HRMS spectra

5a

5b

5c