Synthesis, characterization, and investigation of singlet oxygen, DNA interaction, and topoisomerase I inhibition properties of novel zinc(II) phthalocyanine

Ümit DEMİRBAŞ∗
Department of Chemistry, Faculty of Science, Karadeniz Technical University, Trabzon, Turkey

Abstract: In this work, phthalonitrile (3) and zinc(II) phthalocyanine (4) were prepared. To determine the photodynamic therapy potential of compound 4, singlet oxygen quantum yield, DNA binding and cleavage, and topoisomerase I inhibition experiments were performed. The singlet oxygen quantum yield value of compound 4 was found higher than that of the standard unsubstituted zinc(II) phthalocyanine compound (Std-ZnPc). The binding experiments showed that compound 4 interacted with ct-DNA strongly via nonintercalation mode. pBR322 plasmid DNA cleavage activity of the compound was investigated using agarose gel electrophoresis. The results showed that the compound 4 had important DNA cleavage activity. The E. coli DNA topoisomerase I inhibition effects of compound 4 were investigated using agarose gel electrophoresis. Compound 4 had an E. coli topoisomerase I inhibitory effect at increasing concentrations. The results showed that compound 4 has photosensitizer potential in photodynamic therapy.

Key words: DNA-binding, topoisomerase I, DNA-photocleavage, phthalocyanine

1. Introduction
Cancer is a common fatal disease caused by uncontrolled cell division [1,2]. The prevention of this division is the most important stage for cancer treatment. The common side effects of conventional treatment methods inspired scientists to find new cancer treatment methods [3,4]. Photodynamic therapy (PDT) is a new and alternative cancer treatment method. PDT is based on the production of singlet oxygen by a photosensitizer compound under light irradiation and the resulting singlet oxygen breaks down cancerous tissues [5,6]. PDT has advantages such as being noninvasive, having low side effects and high selectivity to tissues, and possessing the ability to be combined with other treatments. These advantages make PDT superior to other cancer treatment methods [7,8].

Phthalocyanines (Pcs) are aromatic macrocyclic compounds formed by isoindole units. Thanks to their strong π conjugation, high chemical stabilities, and optical properties they are used in many different applications [9–15]. Photodynamic therapy (PDT) is a new cancer treatment method. It takes place with the irradiation of the photosensitizer compound by light in the presence of oxygen. The singlet oxygen formed during the irradiation breaks down the cancerous tissues. [16]. Therefore, the singlet oxygen quantum yield is very important for a photosensitizer compound. Their visible region absorptions, low toxicity in the dark, and high singlet oxygen yields allow phthalocyanines to be used in PDT [17].

Topoisomerase I is an enzyme that dissolves DNA supercoiling during replication and transcription [18,19].
The level of topoisomerase I in cancerous cell is much higher than in normal cells [20,21]. The inhibition of topoisomerase I is one of the important points of cancer treatment because it can cause DNA damage and stop DNA replication [22]. To stop the proliferation of cancerous cells by preventing uncontrolled cell division, the inhibition of topoisomerase I is a useful treatment method [23].

DNA binding experiments are very important to understand the interaction of compounds with DNA. The interaction of compounds with DNA gives important information about their potential to be used in anticancer applications. DNA photocleavage experiments are important for determination of the anticancer potential of a compound with the breakdown of the DNA of the cancerous cells [24,25].

In this study, it was planned to synthesize peripherally tetra 4-(1-phenoxypropan-2-yloxy)-substituted novel zinc(II) phthalocyanine and investigate its photosensitizer potential in photodynamic therapy. To determine this potential, singlet oxygen quantum yield experiments, DNA binding studies (to investigate the interaction with DNA), DNA cleavage studies (to investigate the photono nuclease activity), and topoisomerase I inhibition properties of the novel zinc(II) phthalocyanine were determined.

2. Experimental
All information about the used equipment, materials, synthesis, singlet oxygen, DNA binding, DNA photocleavage, E. coli topoisomerase formulas, and parameters is given in the Supplementary information.

3. Results and discussion
3.1. Synthesis and characterization
The synthetic pathway of the novel compounds is shown in Figure 1. The phthalonitrile compound 4-(1-phenoxypropan-2-yloxy)phthalonitrile (3) was prepared with a reaction between 1-phenoxy-2-propanol (1) and 4-nitrophthalonitrile (2) in DMF in the presence of K$_2$CO$_3$. The novel phthalonitrile compound (3) was characterized by a combination of 1H and 13C NMR, FT-IR, and mass spectral data. In the IR spectrum, new vibrations monitored at 2229 cm$^{-1}$ demonstrated that compound 3 has nitrile groups. In the 1H NMR spectrum of compound 3, aromatic and aliphatic protons showed the expected signals. In the 13C NMR spectrum, the nitrile carbon signals at 115.698 and 115.276 ppm indicated that substitution was achieved. In the mass spectra the [M+H]$^+$ peak confirmed the proposed structure of compound 3.

Zinc(II) phthalocyanine 4 was prepared with a reaction between starting compound 3 and zinc acetate in n-pentanol. Novel phthalocyanine 4 was characterized by a combination of 1H NMR, FT-IR, UV-Vis, and mass spectral data. The evanescence of -C≡N vibrations in the IR spectrum of compound 4 confirmed completion of the cyclotetramerization reaction. In the 1H NMR spectrum of compound 4 aromatic and aliphatic protons showed the expected signals. In the mass spectrum of compound 4 the observed [M+H]$^+$ peak confirmed the proposed structure. In the UV-Vis spectrum, the Q band of compound 4 was monitored at 679 nm and the B band was monitored at 353 nm. All characterization data are in accordance with the literature about the metallophthalocyanines [26,27].

3.2. Singlet oxygen quantum yields
For the PDT performance of a photosensitizer, singlet oxygen generation is very important. An energy transfer takes place between the triplet state of a photosensitizer and the ground state molecular oxygen when the photosensitizer is irradiated by light and singlet oxygen is produced. Therefore, the singlet oxygen quantum
yield value is the most important parameter to determine the potential of compounds as photosensitizers in PDT for cancer. The singlet oxygen quantum yield (Φ_Δ) value of compound 4 was determined in DMSO by using 1,3-diphenylisobenzofuran (DPBF) as a singlet oxygen quencher. DPBF absorbance at 417 nm decreased due to the singlet oxygen generation. The Q band intensity of compound 4 did not change (Figure 2) and this showed that compound 4 did not undergo any decomposition during the experiment. The Φ_Δ value of compound 4 (0.71) was found to be higher than that of the standard zinc(II) phthalocyanine (0.67). This showed that
the substitution of 4-(1-phenoxypropan-2-yloxy) groups on the phthalocyanine ring make compound 4 more effective than standard Znpc for PDT applications. The experimental results showed that compound 4 has higher singlet oxygen quantum yield than the zinc(II) phthalocyanine derivatives in literature [28,29].

Figure 2. The determination of the singlet oxygen quantum yield of compound 4 in DMSO at 1×10^{-5} M (inset: plots of DPBF absorbance versus time).

3.3. DNA binding studies

UV-Vis absorption experiments allow the determination of the DNA binding ability of complexes. When compounds interact with ct-DNA in intercalation mode, hypochromic and bathochromic effects are observed. On the other hand, the binding of metal complexes to ct-DNA via nonintercalative mode causes hyperchromic or low hypochromic effects. In this work, the DNA interaction mode of compound 4 was investigated as described in previous studies [30,31]. The results of DNA binding studies are given in the Table. As shown in Figure 3, the maximum absorbance of compound 4 was at 681 nm. The UV-Vis spectrum of the compound demonstrated a hypochromic effect (27.97%) after the addition of ct-DNA. According to the Wolfe–Shimmer equation (Eq. 3), the binding constant (K_b) of compound 4 was calculated as $1.73 \pm 0.50 \times 10^4$ M$^{-1}$.

Table 1. ct-DNA binding data of compound 4.

<table>
<thead>
<tr>
<th>Compound</th>
<th>λ (nm)</th>
<th>Change in Abs.</th>
<th>Shift (nm)</th>
<th>K_b(M$^{-1}$)</th>
<th>H%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compound 4</td>
<td>681</td>
<td>Hypochromism</td>
<td>0</td>
<td>$1.73 \pm 0.50 \times 10^4$</td>
<td>27.97</td>
</tr>
</tbody>
</table>

To confirm the interaction mode between compound 4 and ct-DNA, an EB competitive binding study was performed as described previously [32,33]. The EB-(ct-DNA) complex was formed by adding EB:ct-DNA (75 μM : 75 μM) solution and gradually varying the concentrations of compound 4, measured as the changes
in the absorption spectra in the range of 425–550 nm. The result is shown in Figure 4. The UV spectrum of the EB competitive binding study was measured in the range of 550–425 nm and maximum absorbance was at 481 nm. After addition of ct-DNA, absorbance decreased and a red shift was observed. This result showed that EB interacted with ct-DNA via intercalation and formed the EB-(ct-DNA) complex. The absorbance did not change upon addition of varying concentrations of compound. This suggested that compound 4 interacts with ct-DNA via nonintercalation mode.

Figure 4. Absorption spectra of free EB and EB bound to ct-DNA in the absence and presence of increasing amounts of compound 4.
3.4. pBR322 plasmid DNA cleavage activities

pBR322 plasmid DNA cleavage properties of compound 4 were investigated using agarose gel electrophoresis without/with irradiation. The DNA photocleavage experiments were carried out with white light irradiation (17.5 mW cm\(^{-2}\), 10 min). When one-strand cleavage of supercoiled plasmid DNA (Sc) generates the nicked form (Nc), two-strand cleavage of Sc occurs in linear form (Ln) that moves between Sc and Nc [34,35]. The results of cleavage properties of compound 4 are shown in Figures 5 and 6. As shown in Figure 5, no concentrations of compound 4 showed any cleavage effect. On the other hand, Figure 6 shows that Nc increased in the presence of the compound at 12.5, 25, and 50 \(\mu\)M. This result reveals that compound 4 showed DNA cleavage activities due to its singlet oxygen quantum yield. In addition, \(\text{H}_2\text{O}_2\) was used as an oxidative activator to begin the DNA cleavage process. The results of oxidative cleavage experiments are presented in Figures 7 and 8. These results showed that the presence of \(\text{H}_2\text{O}_2\) did not affect the DNA cleavage effects of compound 4 in the dark but the DNA photocleavage of the compound was significantly increased with light irradiation in the presence of \(\text{H}_2\text{O}_2\) because the band intensity of Nc and Ln increased.

3.5. \(E.\) coli topoisomerase I inhibition

The \(E.\) coli DNA topoisomerase I inhibition effect of compound 4 was investigated using agarose gel electrophoresis and the result was analyzed using a computer program. The results are shown in Figure 9. \(E.\) coli topoisomerase I (2 units) and pBR322 plasmid DNA were mixed and incubated at 37 °C for 1 h as a negative control as shown in Figure 9, lane 2. This result showed that Sc converted to Nc (7.60%) and Ln (59.10%). Compound 4 had low \(E.\) coli topoisomerase I inhibitory effects at increasing concentrations.
9, lanes 3–5). At 12.5, 25, and 50 μM, the band intensity of Ln was calculated as 56.00%, 53.50%, and 46.20%, respectively.

Figure 9. The inhibitory properties of *E. coli* topoisomerase I. Lane 1: DNA control; lane 2: DNA + 2 units of topoisomerase; lanes 3–5: DNA + 2 units of topoisomerase + compound 4 (12.5, 25 and 50 μM).

3.6. Conclusions

Phthalonitrile compound 3 was prepared with a reaction between 1-phenoxy-2-propanol (1) and 4-nitrophthalonitrile (2). Peripherally tetra-substituted zinc(II) phthalocyanine complex 4 was prepared with the cyclotetramerization reaction of compound 3 in n-pentanol. Novel compounds 3 and 4 were characterized by a combination of different spectroscopic techniques such as FT-IR, 1H NMR, 13C NMR, UV-Vis, and mass analysis. The singlet oxygen quantum yield (Φ_Δ) value of compound 4 was determined in DMSO by using 1,3-diphenylisobenzofuran (DPBF) as a singlet oxygen quencher. The Φ_Δ value of compound 4 (0.71) was found higher than that of standard zinc(II) phthalocyanine (0.67), suggesting the effect of the substitution of 4-(1-phenoxypropan-2-yl)oxy groups on the phthalocyanine skeleton. UV-Vis absorption experiments were performed to determine the DNA binding ability of the compounds. UV-Vis absorption titration and EB competitive binding experiments showed that compound 4 interacted with ct-DNA strongly via nonintercalation mode. pBR322 plasmid DNA cleavage activities of the compound were investigated using agarose gel electrophoresis without/with irradiation. The results revealed that compound 4 showed DNA cleavage activities due to its singlet oxygen quantum yield. The *E. coli* DNA topoisomerase I inhibition effects of compound 4 were investigated using agarose gel electrophoresis and the results were analyzed using Image Lab Version 4.0.1. The compound had *E. coli* topoisomerase I inhibitory effects at increasing concentrations. The results showed that compound 4 can be used as a photosensitizer agent in photodynamic therapy.

References

1. Materials and equipment

All reactions were performed under an inert nitrogen atmosphere. 1-Phenoxy-2-propanol (1), 4-nitrophthalonitrile (2), 1,8-diazabicyclo[4.5.0]undec-7-ene, 1,3-diphenylisobenzofuran (DPBF), calf thymus-DNA (ct-DNA), ethidium bromide (EB), agarose, acetic acid, ethylenediaminetetraacetate (EDTA), β-mercaptoethanol (ME), bromophenol blue, xylene cyanol, glycerol, hydrogen peroxide (H₂O₂), potassium acetate, Tris-acetate, magnesium acetate, bovine serum albumin (BSA), and sodium dodecyl sulfate (SDS) were obtained from Sigma-Aldrich. Supercoiled pBR322 plasmid DNA was obtained from Thermo Scientific (SD0041). E. coli topoisomerase I enzyme was purchased from NEB (M0301L). All chemicals and reagents used were of analytical grade or higher.

¹H NMR spectra were recorded on a Varian XL-400 NMR spectrometer and chemical shifts were reported (δ) relative to Me₄Si (tetramethylsilane) as an internal standard. IR spectra were recorded on a PerkinElmer Spectrum One FT-IR spectrometer. The MS spectra were measured with a BRUKER Microflex LT by MALDI-TOF (matrix-assisted laser desorption ionization-time of flight) mass spectrometer technique using 2,5-dihydroxybenzoic acid (DHB) as a matrix. Methanol and chloroform were used as solvents in mass analysis and all mass analyses were conducted in positive ion mode. Melting points were measured by an electrothermal apparatus. The UV-Vis absorption spectra were recorded on a PerkinElmer Lambda 25 UV-Vis spectrophotometer at room temperature. The DNA cleavage and topoisomerase experiments were photographed using the Bio-Rad Gel Doc XR system and the results were calculated by the Image Lab Version 4.0.1 software program. The power density was measured using a power meter (Ophir sensor Nova II).

2. Synthesis

2.1. 4-(1-Phenoxypropan-2-yl)oxy)phthalonitrile (3)

1-Phenoxy-2-propanol (1) (3.00 g, 19.71 mmol) and 4-nitrophthalonitrile (2) (3.41 g, 19.71 mmol) were dissolved in dried DMF (20 mL). Anhydrous K₂CO₃ (4.08 g, 29.57 mmol) was added within 2 h to the reaction mixture. The mixture was stirred at 50 °C for 4 days and then it was poured into 250 mL of ice water, stirred for 1 h at room temperature, and filtered.
off. The product was crystallized from ethanol. Yield 2.63 g (48%), mp 230–232 °C. C_{17}H_{14}N_{2}O_{2}. IR \nu_{\text{max}}/\text{cm}^{-1}: 3078, 2985, 2937, 2229 (C≡N), 1590, 1489, 1321, 1239, 1054, 971, 847, 759, 692. 1H NMR (CDCl\textsubscript{3}) (\delta: ppm): 7.710 (d, 1H, aromatic proton), 7.42–7.24 (m, 3H, aromatic protons), 7.098–6.870 (m, 4H, aromatic protons), 4.907, (m, H, -CH, aliphatic proton), 4.170 (m, 2H, -CH\textsubscript{2}, aliphatic protons), 1.487 (d, 3H, -CH\textsubscript{3}, aliphatic protons).

13C NMR (CDCl\textsubscript{3}) (\delta: ppm): 161.774, 158.034, 135.199, 129.637, 129.527, 121.523, 120.347, 119.533, 116.024, 115.698 (C≡N), 115.276 (C≡N), 114.516, 114.446, 107.255, 74.025 (-CH), 70.751 (-CH\textsubscript{2}), 16.683 (-CH\textsubscript{3}).

MALDI-TOF-MS (m/z): Calculated: 278.11; Found: 279.106 [M+H]+.

2.2. Peripherally tetra-substituted zinc(II) phthalocyanine (4)

A mixture of phthalonitrile compound 3 (0.6 g, 2.16 mmol), n-pentanol (10 mL), 1,8-diazabicyclo[4.5.0]undec-7-ene (DBU) (5 drops), and equivalent amounts of anhydrous Zn(CH\textsubscript{3}COOH)\textsubscript{2} was heated to 160 °C and stirred for 24 h at this temperature. After cooling at room temperature, the reaction mixture was precipitated by the addition of hexane and filtered off. After washing with ethyl acetate, acetone, and ethanol the solid product was purified with column chromatography using silica gel. Solvent system for column chromatography was chloroform:methanol (100:2). Yield: 330 mg (52%), mp >300 °C, C\textsubscript{68}H\textsubscript{56}N\textsubscript{8}O\textsubscript{8}Zn. IR (ATR) \nu_{\text{max}}/\text{cm}^{-1}: 3059, 2973, 2928, 1598, 1486, 1393, 1336, 1223, 1116, 1086, 1044, 963, 880, 822, 744, 690. 1H NMR (DMSO-d\textsubscript{6}) (\delta: ppm): 8.146–7.258 (bm, 32H, Ar-H, aromatic protons), 4.601 (bs, 4H, -CH, aliphatic protons), 4.161 (bs, 8H, -CH\textsubscript{2}, aliphatic protons), 1.467 (bs, 12H, -CH\textsubscript{3}, aliphatic protons). UV-Vis (DMF, 1 × 10-5 M): \lambda_{\text{max}}/\text{nm (log ε): 679 (5.04), 611 (4.38), 353 (4.82). MALDI-TOF-MS, (m/z): Calculated: 1176.35, Found: 1177.056 [M+H]+.

3. Singlet oxygen quantum yield (ΦΔ)

Singlet oxygen quantum yield (ΦΔ) determinations were carried out using the experimental set-up described in the literature [1]. Typically, 3 mL of the respective phthaloxyanine (4) solutions (concentration = 1 × 10-5 M) containing the singlet oxygen quencher was irradiated in the Q band region with the photoirradiation set-up described in the literature [1]. The ΦΔ value was determined in air using the relative method with Std-ZnPc (in DMSO) as a
standard. DPBF was used as a chemical quencher for singlet oxygen in DMSO. The Φ_A values of the studied phthalocyanine was calculated using Eq. 1:

$$\Phi_A = \Phi_{A_{\text{Std}}}^S \frac{R_{I_{\text{abs}}^{\text{Std}}}}{R_{I_{\text{abs}}}^S}$$

where $\Phi_{A_{\text{Std}}}^S$ is the singlet oxygen quantum yield for the standard. Std-ZnPc ($\Phi_{A_{\text{Std}}}^S = 0.67$ in DMSO) [2] was used as standard. R and R_{Std} are the DPBF photobleaching rates in the presence of the compound 4 and the standard, respectively. I_{abs} and $I_{\text{abs}}^\text{Std}$ are the rates of light absorption by compound 4 and the standard, respectively. I_{abs} was determined by using Eq. 2:

$$I_{\text{abs}}^\text{Std} = \frac{\alpha S I}{N_A},$$

To avoid chain reactions induced by DPBF in the presence of singlet oxygen [3], the concentration of quencher (DPBF) was lowered to $\sim 3 \times 10^{-5}$ M. Solutions of sensitizer (concentration = 1×10^{-5} M) containing DPBF were prepared in the dark and irradiated in the Q band region using the setup described in the literature [1]. DPBF degradation at 417 nm was monitored. The light intensity used for Φ_A determinations was found to be 6.60×10^{15} photons s$^{-1}$ cm$^{-2}$.

4. DNA binding experiments

A solution of ct-DNA was prepared in 5 mM Tris-HCl and 50 mM NaCl (pH 7.2) followed by stirring for 3 days and kept at 4 °C for 1 week. In order to evaluate the percentage hypochromicity and intrinsic binding constant (K_b) of compound 4, experiments were carried out using fixed concentrations of the compounds while varying the concentrations of ct-DNA. Increasing amounts of ct-DNA solution including the compounds were incubated for 10 min at room temperature and changes in the absorption spectra were monitored. EB was used as a positive control. The percentage of hypochromicity of compound 4 was calculated from Eq. 3:

$$\text{Hypochromicity \%} = \left(\frac{\varepsilon_f - \varepsilon_b}{\varepsilon_f}\right) \times 100.$$ (3)

The K_b of compound 4 was calculated using Eq. 4:

$$\frac{[\text{DNA}]}{(\varepsilon_a - \varepsilon_f)} = \frac{[\text{DNA}]}{(\varepsilon_b - \varepsilon_f)} + \frac{1}{K_b(\varepsilon_b - \varepsilon_f)}.$$ (4)
where [DNA] is the concentration of ct-DNA. The apparent absorption coefficient $\varepsilon_a = A_{\text{obsd}}/[\text{compound}]$, ε_f is the extinction coefficient of the free compound, and ε_b is the extinction coefficient of the compound when fully bound to DNA, respectively. In plots of $[\text{DNA}]/(\varepsilon_a - \varepsilon_f)$ versus [DNA], K_b is given by the ratio of the slope to the intercept [4].

Competitive binding experiments of compound 4 with EB were performed using UV-Vis spectroscopy. The EB-(ct-DNA) complex was formed by adding EB:ct-DNA (75 µM : 75 µM) solution and gradually varying the concentrations of compound 4, measured as the changes in the absorption spectra in the range of 425–550 nm [5].

5. DNA cleavage experiments

DNA cleavage properties of the compound were monitored by agarose gel electrophoresis using supercoiled pBR322 plasmid DNA without/with irradiation. The DNA-photocleavage studies were performed under light irradiation using light (white, 17.5 mW/cm², 10 min). Briefly, supercoiled pBR322 plasmid DNA was treated with increasing concentrations of compound 4 (6.25–50 µM) in buffer containing 50 mM Tris-HCl (pH 7.0). All samples were incubated at 37 °C for 1 h. Then loading buffer (bromophenol blue, xylene cyanol, glycerol, EDTA, SDS) was added and the mixtures were loaded onto 0.8% agarose gel with EB staining in TAE buffer (Tris-acetic acid-EDTA). Electrophoresis was carried out at 100 V for 90 min and the results were visualized by the Bio-Rad Gel Doc XR system and analyzed using Image Lab Version 4.0.1 [6].

To determine cleavage effects of compounds with oxidative agents, supercoiled pBR322 plasmid DNA and the compound were treated by adding oxidative agents such as hydrogen peroxide (H$_2$O$_2$), ascorbic acid (AA), and 2-mercaptoethanol (ME) without or with irradiation and analyzed according to the procedure described above [6].

6. *E. coli* topoisomerase I inhibition assay

E. coli topoisomerase I assays were carried out as described previously with modifications [7]. Camptothecin was used as a positive control. A mixture containing supercoiled pBR322 plasmid DNA and 2 units of *E. coli* topoisomerase I was incubated with/without compound 4 at 37 °C for 1 h in buffer including 50 mM potassium acetate, 20 mM Tris-acetate, 10 mM magnesium acetate, and 100 µg/mL BSA (pH 7.9 at 25 °C).
loading buffer was added to the reaction mixture. These reaction mixtures were loaded onto 0.8% agarose gel with EB staining in TAE and electrophoresed at 45 V for 3 h, and the image was photographed using the Bio-Rad Gel Doc XR system and calculated using Image Lab Version 4.0.1.

References

