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1. Introduction
Autosomal recessive polycystic kidney disease (ARPKD, 
OMIM:263200) is a hereditary polycystic kidney disease 
that occurs in childhood with a prevalence of 1:20,000 
in live births [1,2]. ARPKD occurs earlier than another 
hereditary nephropathy, autosomal dominant polycystic 
kidney disease (ADPKD), and presents with a more 
severe clinical course. Most cases can be diagnosed late 
in the pregnancy or at birth. Approximately 30%–50% of 
newborns affected by this disease die shortly after birth 
from respiratory failure due to pulmonary hypoplasia and 
thoracic compression of their overgrown kidneys [3,4]. 

The PKHD1 (fibrocystin/polyductin) gene on 
chromosome 6, which is responsible for ARPKD, was first 
identified in 2002 [5,6]. This gene region encodes a protein 
of 4074 amino acids called fibrocystin [5] which is found 

in fetal and adult kidney cells. It is also expressed, albeit at 
lower levels, in cells in the liver and pancreas. Like other 
cystoproteins (PKD1 and PKD2), fibrocystin is localized 
in the basal body and the primary cilia of kidney cells 
[3,4]. Fibrocystin is thought to function as a key regulator 
of cell proliferation, apoptosis, and polarization, as well 
as playing a role in cell-matrix and cell-cell interactions 
[7]. Although it is known that the DNA variants occurring 
in PKHD1 prevent the function of the fibrocystic protein 
found in the primary cilia of the kidney [8], the molecular 
mechanism of cyst formation remains to be elucidated 
[3,4,9].

According to HGMD data [10], 800 variants of PKHD1 
have been reported. Establishing a genotype-phenotype 
correlation is extremely difficult since the PKHD1 gene 
is large, and a wide variety of genetic variants can occur. 

Background/aim: Autosomal recessive polycystic kidney disease is an inherited kidney disease. This study aims to detect rare and 
common DNA variants of the PKHD1 gene using next-generation sequencing (NGS) and to classify them in terms of being pathogenic 
according to The American College of Medical Genetics and Genomics.
Materials and methods: NGS analysis was performed on the DNA of 304 patients who were referred to Ege University Molecular 
Medicine Laboratory with suspected polycystic kidney disease. 
Results: As a result, a total of 82 different DNA variants, 16 of which were novel, were detected. The breakdown of the variants found 
is as follows: 73 (89.02%) were missense variants, six (7.32%) nonsense variants, two (2.44%) frameshift deletions, and one (1.22%) 
nonframeshift deletion. According to The American College of Medical Genetics and Genomics classification of these variants, 26 were 
benign (Class 5), two were likely benign (Class 4), 36 were of uncertain significance (Class 3), and nine were likely pathogenic (Class 2), 
nine of which are pathogenic variants (Class 1). Heterozygosity was found in 39 (63.9%) patients, homozygosity in six (9.8%) patients, 
compound heterozygosity in 12 (19.7%) patients, and complex genotype in four (6.6%) patients in which variants in Class 1, Class 2 and 
Class 3 were determined according to ACMG classification. When the exon distributions of the DNA variants detected in the PKHD1 
gene were analyzed, the most common exons of the DNA variant are exon 32 (n = 9), exon 58 (n = 8), exon 67 (n = 6), exon 61 (n = 5), 
30 exons (n = 4). 
Conclusion: This fast and economical molecular diagnostic approach will provide a reliable prenatal diagnostic option, enabling 
definitive disease diagnosis and the identification of carriers.
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However, extremely varied PKHD1 DNA variants were 
detected by screening the DNA variants occurring in the 
PKHD1 gene using the Next Generation Sequencing method. 
Such studies contribute to better understanding the genotype-
phenotype correlations that exist with the disease [11].

In this study, DNA rare and common variants of the 
PKHD1 gene in the Turkish population were identified 
using next generation sequencing. Pathogenic classification 
of these detected DNA variants was made using the ACGM 
guide and in silico approaches.

2. Materials and methods
2.1. Study population 
Our study included 304 patients suspected by clinicians 
of having polycystic kidney disease who were referred to 
Ege University Children’s Hospital Molecular Medicine 
Laboratory. Ethical approval was provided by the Ethics 
committee of Ege University, İzmir, Türkiye (22-IT/19). This 
study was conducted in accordance with the Helsinki Ethical 
Standards. 
2.2. Sample preparation and targeted next generation 
sequencing analyses
Genomic DNA was obtained from peripheral blood samples 
of patients using the PureLink Genomic DNA Mini Kit 
(Thermo Fisher, Waltham, MA, USA). DNA concentrations 
were first equalized for library preparation, and then DNA 
samples were amplified with predesigned primer pools 
using the Ion AmpliSeq Library Kit 2.0 (Thermo Fisher). 
Amplicons were barcoded with the Ion Express Barcode 
X kit and purified using AMPure XP reagent, and ethanol. 
The amplicons were quantified with QUBIT 2.0 (Invitrogen, 
Carlsbad, CA, USA) to equalize the concentrations. Template 
preparation was performed using the Ion OneTouch 2 
device (Ion Torrent, Guilford, CT, USA) according to the 
Ion PGM Template OT2 400 Kit (Ion Torrent) protocol. 
The amplicons were loaded on the chip (Ion 318 Chip v2 
BC) and sequencing based on semiconductor sequencing 
technology with the PGM Hi-Q (Ion Torrent) kit on the 
Ion PGM System (Ion Torrent). The data were taken from 
the Ion Reporter program and evaluated. GRCh37/hg19 
was used as the reference genome. The American College of 
Medical Genetics and Genomics (ACGM) classification [12] 
was applied according to Franklin Genoox (https://franklin.
genoox.com/clinical-db/home).
2.3. Predicting the impact of DNA variants
The pathogenic effects of missense variants were determined 
using bioinformatic tools such as Polyphen2 and SIFT 
[13,14].

3. Results
This study detected a total of 82 different DNA variants in 
304 patients, 16 of which were novel (Table 1). The domain 

distributions of these DNA variants in the PKHD1 protein 
are provided in Figure. Of these variants, 73 (89.02%) 
are missense variants, six (7.32%) are nonsense variants 
(p. Asn711Ter, p.Arg3961Ter, p.Arg494Ter, p.Arg592Ter, 
p.Ser2639Ter, p.Arg3107Ter), two (2.44%) are frameshift 
deletions (p.Gln256ArgfsX63 and p.Leu2764fsX67), 
and one (1.22%) is nonframeshift deletion (p.Ser1929_
Arg1930del) (Table 1).

According to ACMG classification of these variants: 26 
are benign (Class 5), two are likely benign (Class 4), 36 are of 
uncertain significance (Class 3), nine are likely pathogenic 
(Class 2), and nine are pathogenic variants (Class 1) (Table 
1). Accordingly, as a result of the ACMG classification, a 
total of 61 different variants in Class 1, Class 2, and Class 
3 were identified. All these variants and their genotypic 
distributions are presented in Table 2.

The genotype distribution of PKHD1 DNA variants 
was then determined, including Classes 1, 2, and 3 in the 
analysis. The distribution was as follows: 39 patients (63.9%) 
were heterozygous, six patients (9.8%) were homozygous, 
12 patients (19.7%) were compound heterozygous, and four 
patients (6.6%) had a complex genotype, categorized into 
Class 1, Class 2, and Class 3 (Table 2).

When the exon distributions of the DNA variants 
detected in the PKHD1 gene are examined in the study, 
the distributions of the exons with the most common DNA 
variant are as follows: exon 32 (n = 9), exon 58 (n = 8), exon 
67 (n = 6), exon 61 (n = 5), exon 30 (n = 4) (Tables 1 and 3).

4. Discussion
Gene-based studies related to autosomal recessive 
polycystic kidney disease (ARPKD) help identify cases 
with mild clinical course and atypical symptoms by 
detecting common DNA variants that cause this disease 
and rare mutations [15–17]. 

Screening studies of this type also provide helpful 
information for the genotype-phenotype correlation of 
the disease [9,15,16,18–20]. While many DNA variants of 
the PKHD1 gene have been described (Table 4), PKHD1 
mutations that are common in specific populations may 
differ [15–17,21–34].  

PKHD1 mutations may vary depending on the 
geographic origin of the patient.  They are collected in 
specific exons [28], possibly related to environmental and 
genetic modifiers [16,35,36]. Detecting these mutations, 
creating a mutation profile of the population specific 
and/or common PKHD1 gene, and identifying the exons 
with relevant mutations [23], significantly increases the 
efficiency of genetic testing for ARPKD [23,28]. This study 
defined exons in which variants of the PKHD1 gene were 
seen in the Turkish population cluster/aggregate (Table 3). 
In a study by Sharp et al., it was stated that most mutations 
were detected in exons 32, 59, and 65 [23]. In another study, 

https://franklin.genoox.com/clinical-db/home
https://franklin.genoox.com/clinical-db/home
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Figure.  Representation of mutations detected on the structure of the 
PKHD1 protein. Yellow: IPT/TIG domain; sky blue: PA14 domain; red: 
G8 1 domain; pink: PbH1 domain; blue: intracellular).

Table 2. Genotype distributions of DNA variants of the PKHD1 gene.

Heterozygous N %
p.Arg3107Ter 7 11.5
p.Gly1712Arg 4 6.6
p.Asn3235Lys 3 4.9
p.Ala394Thr 3 4.9
p.Ser1156Leu 2 3.3
p.Asn711Ter 1 1.6
p.Leu4037Pro 1 1.6
p.Val2950Ile 1 1.6
p.Arg3961Ter 1 1.6
p.Thr2472Ala 1 1.6
p.Asp2962Tyr 1 1.6
p.Cys3346Arg 1 1.6
p.Thr4057Ala 1 1.6
p.Ser3490Thr 1 1.6
p.Gln2198Pro 1 1.6
p.Gln3197Lys 1 1.6
p.Glu345Asp 1 1.6
p.Ser1435Thr 1 1.6
p.Val1269Met 1 1.6
p.Val907Ala 1 1.6
p.Ser1929Phe 1 1.6
p.Pro1166Ser 1 1.6
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Table 2. (Continued.)

p.Ser1416Pro 1 1.6
p.Arg1804His 1 1.6
p.Pro3372Leu 1 1.6
Total heterozygous 39 63.9
Homozygous N %
p.Cys1431Tyr 1 1.6
p.Gln3770Arg 1 1.6
p.Ser1929_Arg1930del 1 1.6
p.Val1789Leu 1 1.6
p.Glu1124Lys 1 1.6
p.Ser2639Ter 1 1.6
Total homozygous 6 9.8
Compound heterozygous N %
p.Leu3758Pro/p.Arg1624Trp 1 1.6
p.Arg3961Ter/p.Arg592Ter 1 1.6
p.Ser1156Leu/p.Thr36Met 1 1.6
p.Arg3107Ter/p.Asp2962Tyr 1 1.6
p.Val2785Met/p.Leu2764fsX67 1 1.6
p.Arg3620His/p.Gly2321Cys 1 1.6
p.Val3036Gly/p.Arg494Ter 1 1.6
p.Ile3553Thr/p.Ile3051Thr 1 1.6
p.Arg1804Cys/p.Gly448Arg 1 1.6
p.Trp3784Arg/p.Ser1156Leu 1 1.6
p.Ala3497Asp/p.Gly1863Val 1 1.6
p.Asn3235Lys/p.Gln256ArgfsX63 1 1.6
Total compound heterozygous 12 19.7
Complex genotype N %
p.Arg488Pro/p.Phe372Leu(Homozygous /homozygous) 2 3.3
p.Asp3290Asn/p.Gly2967Trp/p.Val2559Leu/p.Ser1156Leu(heterozygous / heterozygous / heterozygous / 
heterozygous) 1 1.6

p.Ser1156Leu/p.Arg488Pro/p.Phe372Leu(heterozygous / heterozygous / heterozygous) 1 1.6
Total complex genotype 4 6.6
Total 61 100

Table 3. Exon distributions of PKDH1 DNA variants in this study.

Exon numbers Number of DNA variants
32 9
58 8
67 6
61 5
30 4
16, 34, and 57 3
14, 21, 22, 19, 35, 36, 55, 60, 62, and 66 2
3, 4, 5, 11, 15, 20, 24, 26, 29, 33, 38, 40, 43, 47, 48, 50, 52, 53, 59, 63, and 65 1
Total: 39 exons Total: 82
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4 missense mutations were detected as a result of analysis 
performed on individuals with suspected disease (c.107C 
> T, p.(Thr36Met); c.406A > G, p.(Thr136Ala); c.4870C > 
T, p.(Arg1624Trp) and c.9370C > T, p.(His3124Tyr)), with 
these mutations being identified in exons 3, 6, 32, and 
58, respectively [37]. In this study, the largest number of 
mutations were observed in exon 32 (n = 9), exon 58 (n 
= 8), exon 67 (n = 6), exon 61 (n = 5), and exon 30 (n=4).

Studies show that different PKHD1 DNA variants are 
dominant in different ethnic groups. For example, in a 
study on the Finnish population, the incidence of R496X 
and V3471G mutations of the PKDH1 gene was reported 
to be 60% [36]. In another study, the c.9689delA mutation 
was observed in 34% of Hispanics [21,28]. Neither of these 
mutations was found in this study.

The T36M mutation in the PKHD1 gene is the most 
commonly known mutation typically associated with a 
severe phenotype [15,18,37,38]. This rate varies across 
studies. According to Goggolidou and Richards, this 
mutation accounts for approximately 20% of ARPKD 
cases [38]. T36M mutation was detected at a rate of 
28% [17]. Obeidova et al. reported that it was the most 
common T36M mutation and was determined at a rate of 
21% [18]. Another study conducted in Oman found the 
T36M mutation to be the most common [37]. In a study 
by Furu et al., this rate was determined to be 14.5% [15]. 
In this study, the rate of the T36M mutation was 1.2% (n 
= 1), and it was determined as compound heterozygous 
(p.Ser1156Leu/p.Thr36Met), as seen in Table 2.

The PKHD1 DNA variants obtained as a result of 
genetic analyses in patients with a suspected or definitive 
diagnosis of ARPKD, as well as the literature on these 
variants, are outlined in Table 4. Relevant mutations 
responsible for this disease need to be identified, and their 
association with the disease confirmed [9]. Burgmaier 
et al. found that biallelic missense variants affecting 
amino acids 709-1837 were associated with a mild renal 
phenotype, while missense variants affecting amino acids 
2625-4074 of fibrocystin were associated with a higher risk 
of significant hepatic complications [9]. The site of amino 
acid substitutions affects the severity of the phenotype 
occurring throughout the polyductin/fibrocystic protein. 
Some amino acid substitutions act as hypomorphic alleles 
with reduced function, while others cause complete loss 
of function, similar to chain termination [15]. Chain-
terminating mutations may lead to a complete loss of 
function and inevitably result in prenatal death [15].

In their study, Jordan et al. screened a large gene panel 
of 100 fetuses (98 families) suffering from severe kidney 
defects and detected p.[Pro149Argfs*19] of the PKHD1 
gene; p.[Arg760His]; and mutations in p.[Ile833Thr], 
[ A s p 3 8 0 8 Me t f s * 1 2 ] [ G l y 2 9 5 1 Va l ] , p . [ G l u 2 1 8 _ 
Tyr221delinsAsp]. Some of the rare variants of the PKHD1 
gene, which were detected in the genetic study conducted 
by Giacobbe et al., were also detected in this study, namely: 
c.4870C>T p.Arg1624Trp (R1624W) (likely pathogenic), 
c.3407A>G p.Tyr1136Cys (Y1136C) (benign) c.8606C>A 
p.Thr2869Lys (T2869K) (benign). In the study, two 
pathogenic variants (c.2702A>C and c.4870C>T) were 

Table 4. PKDH1 DNA variants detected in this study and studies involving these variants.

Exon Amino acid change References
3 p.Thr36Met [17,25,26,28,30], this study
4 p.Arg92Gln [25], this study 
14 p.Phe372Leu [16], this study
15 p.Ala394Thr [23], this study
16 p.Arg488Pro [16,22], this study
16 p.Gly448Arg [23], this study
16 p.Arg494Ter [32], this study
19 p.Thr579Met [16,22,23], this study
22 p.Arg760Cys [16,23,27], this study
22 p.Arg723Leu [29], this study
24 p.Asn830Ser [16,22,23], this study
30 p.Tyr1136Cys [16,20,22,23,25,26], this study
30 p.Ser1156Leu [25,30,34], this study
32 p.Ala1262Val [16,22,23,27], this study
32 p.Glu1448Gly [30], this study
32 p.Gly1712Arg [26], this study
32 p.Arg1624Trp [17,20,26,30,33], this study
32 p.Cys1431Tyr [28,34], this study
33 p.Val1789Leu [15], this study
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34 p.Arg1804Cys [23], this study
35 p.Leu1870Val [23,27], this study
35 p.Arg1909Trp [23], this study
48 p.Val2559Leu [23], this study
50 p.Ser2639Ter [17,30], this study
55 p.Ser2861Gly [15,23,25,26,30], this study
55 p.Thr2869Lys [16,20,21,22], this study
58 p.Asp3139Tyr [16,22,23,26], this study
58 p.Ala3072Val [16,22,23], this study
58 p.Val3036Gly [15,23,30,34], this study
58 p.Val3263Ala [23], this study
58 p.Ile3051Thr [30], this study
58 p.Arg3107Ter [30,34,36], this study
60 p.Cys3346Arg [23], this study
61 p.Ser3505Arg [16,22,23], this study
61 p.Ile3553Thr [17], this study
65 p.Arg3842Leu [16,22,23,26], this study
66 p.Gln3899Arg [22,23,27], this study
66 p.Ile3905Asn [16,23], this study
67 p.Gln4048Arg [16,22,23,27], this study
67 p.Val3960Ile [16,22], this study
67 p.Arg3961Ter [34], this study
58 p.Asn3235Lys [31], this study

associated with liver disease, kidney disease-associated 
pathogenic variant (c.5879C>G), and the complex allele 
of unknown clinical significance [c.3407A>G; c.8345G>C; 
c.8606C>A], which were found to be associated with the 
severe hepatic phenotype [20]. 

The c.3407A>G (p.Tyr1136Cys) heterozygous 
inheritance pattern that Eisenberger et al. determined 
in their study in 2015, and the compound heterozygous 
inheritance pattern (c.3407A>G and c.8606C>A) 
identified in another study, suggested the presence of Caroli 
syndrome [20]. As seen in the studies, representation of 
the different genotypes of this gene on the phenotype can 
be determined in different ways, and so the genotype-
phenotype relationship related to this gene should not be 
ignored.

The genotype distributions (homozygous, heterozygous, 
compound heterozygous, complex genotype) of the 
mutations detected in Table 2 were evaluated. In this study, 
39 (63.9%) individuals were heterozygous, six (9.8%) were 
homozygous, 12 (19.7%) were compound heterozygous, 
and four (6.6%) were complex genotypes (Table 2).

 According to the 2020 study conducted by Alawi et al., 
66% of patients were found to be homozygous and 28% to 
be compound heterozygous [37]. These ratios demonstrate 
the allelic heterogeneity of ARPKD disease.

Sanger, multiplex ligation-dependent probe 
amplification (MPLA) and denaturing high-performance 

liquid chromatography (DHPLC) are used in the literature 
to identify mutations of the PKHD1 gene [2,16,30]. 
Although it is possible to detect mutations, doing so is 
labor-intensive and time-consuming. As an alternative, 
the next generation sequencing (NGS) method is effective 
in the rapid screening for patients with suspected ARPKD, 
and both new and rare missense variants can be identified 
in this way [34,39]. The distributions of mutations detected 
using NGS in this study are as follows: 16 (19.5%) novel, 73 
(89.02%) missense variants, six (7.32%) nonsense variants, 
two (%) 2.44) Frameshift deletion and one (1.22%) 
Nonframeshift deletion (Table 5).

The homozygous variant Arg723Cys (benign) in exon 
22 of the PKDH1 gene has been associated with the typical 
features of ARPKD disease. This variant was reported 
in a case study related to this disease [40]. This study is 
essential in terms of demonstrating that the detected DNA 
variant, although benign, is a cause of disease. In our 
study, two different DNA variants, p.Arg723Leu (R723L) 
and p.Arg760Cys (R760C) (the most common appearing 
in this study), were detected in exon 22 of the PKDH1 
gene and are benign according to ACMG classification.

Some mutations found in the Turkish population in 
previous studies are P1255Xfs, D3293V, T899P, L2772P, 
N3175S [15], Y1838C, I2427T, P356fs, G3359fs, S1156L, 
G2967W, F372L, I473S, H3124Y, I2851T (I199851T) [22].

Table 4. (Continued.)
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5. Conclusions 
In this study, the DNA variants of the PKHD1 gene 
were determined in detail using the NGS method. 
The pathogenic distributions of these variants were 
determined by bioinformatics-based approaches and 
classified according to ACGM. It is therefore considered 
that this study contributes to the definitive diagnosis of 
ARPKD, determination of disease carriers, the planning of 
molecular prenatal diagnosis, and a better understanding 
of the molecular pathogenesis of the disease. It is also 
thought that the creation of disease-related exon mutation 
profiles for the study, and the use of bioinformatics 
approaches, will be of benefit in terms of reducing labor 
time and costs in the future molecular diagnosis of the 
disease. In addition, it is thought that creating appropriate 
platforms for gene-based diagnosis of ARPKD disease, 

and evaluating such platforms alongside prenatal tests, 
will help to establish definitive and differential clinical 
diagnosis. Furthermore, identifying relevant mutations 
associated with the disease will guide possible future 
pregnancies for parents who have a child diagnosed with 
ARPKD.
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Table 5. Novel PKDH1 DNA variants in this study.

Locus Exon Nucleotide change Amino acid change Mutation type dbSNP
chr6:51934266 11 c.766delC p.Gln256ArgfsX63 Frameshift Novel
chr6:51927400 14 c.1035A>T p.Glu345Asp (E345D) Missense Novel
chr6:51917883 21 c.2130_2131insTA p.Asn711Ter (N711X) Nonsense Novel
chr6:51893144 30 c.3370G>A p.Glu1124Lys (E1124K) Missense Novel
chr6:51890362 32 c.4246T>C p.Ser1416Pro (S1416P) Missense Novel
chr6:51824790 36 c.5786C>T p.Ser1929Phe (S1929F) Missense Novel
chr6:51824785 36 c.5785_5790delTCCAGG p.Ser1929_Arg1930del Nonframeshift Novel
chr6:51768430 43 c.6961G>T p.Gly2321Cys (G2321C) Missense Novel
chr6:51695668 52 c.8291_8292delTC p.Leu2764fsX67 Frameshift Novel
chr6:51656121 53 c.8353G>A p.Val2785Met (V2785M) Missense Novel
chr6:51618065 57 c.8884G>T p.Asp2962Tyr (D2962Y) Missense Novel
chr6:51618050 57 c.8899G>T p.Gly2967Trp (G2967W) Missense Novel
chr6:51612825 58 c.9589C>A p.Gln3197Lys (Q3197K) Missense Novel
chr6:51524434 61 c.10490C>A p.Ala3497Asp (A3497D) Missense Novel
chr6:51513920 62 c.11273T>C p.Leu3758Pro (L3758P) Missense Novel
chr6:51483935 67 c.12169A>G p.Thr4057Ala (T4057A) Missense Novel
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