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1. Introduction
Phthalates are synthetic compounds and esters of phthalic 
acids. They are widely used in industry as they advance the 
plasticity of industrial polymers [1]. Among them, di(2-
ethylhexyl) phthalate (DEHP) is prominently used for the 
plasticization of polyvinyl chloride (PVC). Thus, it is found 
in a wide range of daily materials, including clothing, toys, 
and packaging, in addition to medical equipment [2].

Owing to frequent preferences for plastic materials, 
humans may be extensively exposed to DEHP. This 

exposure could be by dermal, oral, or intravenous routes 
or by inhalation. In humans, DEHP has been shown 
to be extremely toxic, damaging developmental stages, 
disrupting multiple organs and systems, and causing 
genotoxicity and/or carcinogenesis due to its metabolism 
into oxidative compounds [3]. Phthalates can pass through 
the placenta and blood-brain barrier [4] and could be 
transferred to newborns by breast milk [5]. During the 
neonatal period, infants who are admitted to the neonatal 
intensive care unit (NICU) are exposed to various medical 

Background/aim: Phthalates are the materials used for plasticizing polyvinyl chloride. Di-(2-Ethylhexyl) phthalate (DEHP) is one of the 
phthalates most frequently used in a wide range of applications, including medical equipment such as endotracheal and feeding tubes, 
intravenous catheters, central lines, extracorporeal membrane oxygenation sets, total parenteral nutrition bags, blood product sets, and 
intravenous pump lines, respiratory sets in neonatal intensive care units (NICUs). Studies have shown that phthalates, including DEHP, 
can cross the placenta and blood-brain barrier, possibly leading to neurodevelopmental impairment in vitro and in vivo. However, the 
molecular mechanisms affected by phthalate exposure have not been explored in depth. This study aimed to illuminate the effects of 
DEHP on neuroinflammation at the molecular level using neonatal microglial cells as the model.
Materials and methods: Mouse BV-2 neonatal microglia cells were exposed to DEHP under controlled conditions. Cellular toxicity 
was assessed via a cell viability assay and specific markers were used to evaluate the apoptosis/necrosis, cellular iron content, reactive 
oxygen species (ROS), and organelle integrity. Proinflammatory proteins were quantified using enzyme-linked immunosorbent assay, 
while ferroptosis was assessed using a ferroptosis blocker, and affected gene expressions were determined using quantitative reverse-
transcriptase real-time polymerase chain reaction (RT-PCR).
Results: The results revealed that high concentrations of DEHP exposure increased toxicity via increased levels of ROS and inflammation. 
Elevated ROS levels were observed to increase the tendency for mitochondrial-lysosomal disruption, bringing about apoptosis or 
necrosis. Moreover, iron homeostasis was dysregulated by DEHP, which putatively triggered ferroptosis in a dose-dependent manner.
Conclusion: This study indicates that neonatal exposure to DEHP may be linked to neurodevelopmental impairment via inflammation-
related cell death and ferroptosis. The prevalence of DEHP in NICU medical devices raises concerns about potential neurodevelopmental 
deficits, including disorders like autism and mental retardation. These findings highlight the urgency of addressing DEHP exposure in 
neonatal care.
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devices, including intravenous catheters, respiratory sets, 
masks, total parenteral nutrition bags, transfusion sets, 
feeding tubes that contain plasticizers, which could have 
an impact on their developmentally vulnerable state [6]. 
Additionally, DEHP exposure via medical equipment 
could be high in infants in the NICU [3,6]. 

Microglia are immune cells that play a crucial role in 
the inflammatory response of the central nervous system 
(CNS). They comprise approximately 10%–15% of the 
total population of brain cells. Despite the highly regulated 
nature of these cells, any deviations in their functions can 
trigger neurodegeneration and brain injuries during the 
perinatal and neonatal stages [7]. Importantly, microglia 
regulate cell death mechanisms via metabolic signals [8], 
which make reactive oxygen species (ROS) critical. ROS 
have been determined as the reason for the microglial 
function impairment caused by DEHP exposure [9]. ROS-
mediated microglial activation and neuroinflammation, 
as a result, have generally been linked to specific cell 
death mechanisms, including apoptosis, pyroptosis, 
and ferroptosis, through diverse molecular mechanisms 
[10,11]. Despite extensive research on the impact of 
phthalates on microglial activation, there remains a lack 
of understanding regarding the cumulative molecular 
mechanisms that are changed during exposure.

The present study aimed to identify in detail the 
molecular mechanisms altered in the neonatal microglia 
following phthalate exposure, particularly DEHP exposure. 
BV-2 neonatal microglial cells were used to investigate the 
potential mechanisms involved in inflammatory processes 
on the axis of ferroptosis-apoptosis/necrosis-oxidative 
stress after DEHP exposure. 

2. Materials and methods 
2.1. Cell culture
Mouse BV-2 neonatal microglia were cultured in 
DMEM/F-12 medium (Sigma-Aldrich  Chemical Co., 
St. Louis, MO, USA) in the presence of 10% fetal bovine 
serum (FBS), 1% glutamine, penicillin/streptomycin, and 
amphotericin B (Capricorn Scientific GmbH, Germany) at 
37 °C and 5% CO2. Cells were passaged or seeded when the 
confluency was 80%.
2.2. DEHP treatment and cell viability assessment
3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 
bromide (MTT; Biological Industries,  Beit HaEmek, 
Israel) was used for the viability assay. Briefly, 2 × 104/
well cells were seeded into the wells of a 96-well plate and 
incubated overnight. After washing with PBS, the cells 
were treated with 1 nM to 10 mM of DEHP, which was 
partially dissolved in dimethyl sulfoxide (DMSO) and 
diluted with cell culture medium. The concentrations 
were clarified according to the literature for determined 
durations in the presence of solvent-only control groups 

[3,12–15]. Next, 0.5 mg/mL of MTT solution dissolved in 
PBS was added into the medium and incubated at 37 °C 
for 4 h. Finally, the cells were disrupted with 100 µL of 10% 
sodium dodecyl sulfate containing 0.01 N of hydrochloric 
acid (HCl) and incubated overnight. Optical densities (ODs) 
were determined by Sunrise Plate Reader (Tecan, Austria) at 
490 and 570 nm. The OD value of the control group was 
fixed at 100%, and the treated ones were correlated [16].
2.3. Apoptosis/necrosis ratio 
Apoptosis and necrosis were assessed through acridine 
orange (AO) and ethidium bromide (EtBr) staining [17]. 
As described above, the cells were seeded and incubated 
with DEHP or the solvent. After washing, the cells were 
incubated with a mixture of AO (1 µg/mL; Thermo Fisher 
Scientific Inc., Waltham, MA, USA) and EtBr (1 µg/mL; 
Thermo Fisher Scientific Inc.) for 30 min at 37 °C. Images 
were captured using an LSM 900 confocal microscope (Carl 
Zeiss AG, Oberkochen, Baden-Württemberg, Germany) 
under the wavelengths of 500/525 (excitation (ex)/emission 
(em); AO) and 530/617 nm (ex/em; EtBr) from at least four 
different regions of the wells. Fluorescence quantification 
was performed using ImageJ (US National Institutes of 
Health, Bethesda, MD, USA), where the fluorescence in 
the selected area was evaluated as integrated fluorescence 
integrity, normalized to the nuclei staining dye, and 
presented as integrated relative fluorescence units (RFUs) 
[18].
2.4. Cellular iron contents
Intracellular total and ferrous (Fe2+) iron levels 
were determined via Prussian blue staining (Sigma-
Aldrich  Chemical Co.) [19]. Cells were seeded into the 
wells of a 96-well plate and treated with DEHP solution for 
specific durations, as described above. After incubation, the 
cells were treated with 1) 10 mM ascorbic acid in 1X PBS and 
4% potassium ferrocyanide: 12% HCl (1:1) for the total iron 
levels, or 2) only 4% potassium ferrocyanide: 12% HCl (1:1) 
for the free iron for 1 h at room temperature. Finally, ODs 
were obtained at 593 and 700 nm separately for the total and 
free iron measurements, and the results were compared by 
comparing them to that of the control group 100%.

In addition to the Prussian blue staining and detection 
of the total and free iron levels, Calcein-AM (Thermo Fisher 
Scientific Inc.) was used to stain the intracellular labile iron 
pool (LIP). As described above, the cells were seeded and 
incubated with DEHP in the solvent-only control group. 
Next, the cells were fixed using 4% paraformaldehyde 
and incubated with 5 µM of Calcein-AM for 30 min at 37 

°C [20]. Then, after washing with 1X PBS, the cells were 
further treated with Hoechst 33342 (1 µg/mL) for 5 min at 
room temperature. After washing, images were obtained 
at 361⁄497 nm (ex/em; Hoechst) and 488/530 nm (ex/em; 
Calcein-AM), as explained above.
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2.5. Intracellular ROS levels
Intracellular ROS levels were determined using 
2’,7’-diclorofluoresin diacetate (DCFH-DA) [21]. Briefly, 
the cells were seeded and incubated with DEHP in the 
presence of a solvent-only control group, as described 
above. Next, the cells were washed and incubated with 
DCFH-DA (20 µM; Sigma-Aldrich  Chemical Co.) and 
Hoechst 33342 (1 µg/mL; Thermo Fisher Scientific Inc.) 
probes for 30 min. After washing, images were obtained at 
361/497 nm (ex/em) and 488/535 nm (ex/em) for Hoechst 
33342 and DCFH-DA, respectively, as explained above.
2.6. Integrity of lysosome and mitochondria
Lysosomal and mitochondrial integrities were determined 
via Neutral Red (NR) and Janus Green B (JGB) staining 
in the presence of Hoechst 33342 dye [22–24]. The cells 
were seeded and incubated with DEHP, or solvent, as 
described above, and fixed with 4% paraformaldehyde. 
After washing, the fixed cells were further incubated 
with NR (1 µM; Sigma-Aldrich  Chemical Co.) and JGB 
(5 µM; Sigma-Aldrich Chemical Co.) for 30 min at 37 °C. 
After a single washing with PBS, the cells were further 
treated with Hoechst 33342 (1 µg/mL) for 5 min at room 
temperature. Finally, images were obtained at 361/497 nm 
(ex/em; Hoechst), 550/655 nm (ex/em; NR), and 490/516 
nm (ex/em; JGB), as explained above. 
2.7. Ferritin and CD11b immunoreactivity
Immunocytochemistry was performed to assess the levels 
of ferritin heavy chain 1 (FTH1) and CD11b [25,26]. After 
seeding, treatment with DEHP or solvent, and fixing, the 
cells were treated with 0.25% Triton X-100 in PBS (PBST) 
for 5 min. After washing, the cells were blocked with 
PBST containing 3% bovine serum albumin (BSA) for 45 
min and incubated with rabbit antimouse ferritin (1:200; 
Thermo Fisher Scientific Inc.) or anti-CD11b antibody 
(1:100; Thermo Fisher Scientific Inc.) at 4 °C overnight. 
After washing, the cells were treated with goat antirabbit 
IgG-CFL 488 secondary antibody (1:1000; Santa Cruz 
Biotechnology Inc., Dallas, TX USA) for 45 min at room 
temperature. After washing and treatment with Hoechst 
33342 (1 µg/mL) for 5 min at room temperature, images 
were obtained at 361/497 nm (ex/em; Hoechst) and 
361/488 nm (ex/em; CFL-488), as explained above. 
2.8. IL-1β and IL-18 levels
Enzyme-linked immunosorbent assay (ELISA) was used 
to determine the interleukin 1β (IL-1β) and IL-18 levels 
using commercial mouse ELISA kits (Thermo Fisher 
Scientific Inc.). After seeding the cells into 6-well plates, 
treated with DEHP or solvent, for the specified incubation 
periods, the mediums on the cells were collected in 1.5-
mL tubes. Next, the samples were centrifuged at 12,000 g 
for 15 min at 4 °C, and supernatants were obtained. ELISA 
analyses were performed according to the manufacturer’s 

instructions. In brief, 100 µL of the supernatants were 
dispended in antibody-embedded 96-well plates, and after 
all the steps were performed, absorbance was read at 450 
nm using a microplate reader. All the measurements were 
made according to the kits’ standard curve graphs (per se) 
and normalized with their protein concentrations. 
2.9. Expression levels of both iron metabolism and 
ferroptosis-related proteins
Quantitative reverse-transcriptase polymerase chain 
reaction (qRT-PCR) was performed to determine the 
relative expression levels of iron metabolism genes, 
including Dmt1 (divalent metal transporter 1), ferroportin 
(Fpn),  ferritin heavy chain 1(Fth1) and ferritin light chain 
1 (Ftl1) and as well as ferroptosis-related proteins such as 
glutathione peroxidase 4 (Gpx4) and Acyl-CoA synthetase 
long-chain family member 4 (Ascl4). 

After seeding the cells and the treatments, the total 
RNAs were isolated using a Trizol reagent (Thermo Fisher 
Scientific Inc.). Briefly, the cells were treated with 1 mL of 
Trizol, mixed well, and incubated at room temperature 
for 5 min. Next, 200 µL of chloroform was added to the 
samples, and the mixture was incubated on ice for 10 min. 
The samples were centrifuged at 12,000 g at 4 °C for 15 
min to obtain pellets. The pellets were washed with 75% 
cold ethanol and 0.5 mL of isopropanol. The final pellets 
were resuspended with 100 µL of RNase-free water. 
The concentration and purity of the total RNAs were 
determined using a Nanodrop (ND-1000; Thermo Fisher 
Scientific Inc.) and 1% agarose gel. 

Complementary DNAs (cDNAs) were synthesized 
using a Hyperscript First strand synthesis kit (GeneAll 
Biotechnology Co., Ltd., Songpa-gu, Seoul, South Korea). 
The reactions were prepared using 1 µg of total RNA, 
oligo dT, dNTP set, buffer, RNase inhibitor, dithiothreitol 
(DTT), and reverse transcriptase according to the kit’s 
instructions. The mixture was incubated at 55 °C for 1 h. 
Finally, the reverse transcriptase was inhibited by EDTA 
and incubated at 85 °C for 5 min. 

After cDNA synthesis, qRT-PCR was performed 
using SYBR Green solution (GeneAll Biotechnology 
Co., Ltd.). The primer sets are listed in the Table, where 
peptidylprolyl isomerase A (Ppia) was used as a reference 
gene. qRT-PCR was performed using 5 µL of SYBR Green 
mix, 0.5 µL of forward and reverse primers (10 µM), and 4 
µL of diluted (1:20) cDNAs. The thermal profile was set to 
95 °C for 5 min as the initial denaturation; cyclic (n = 40) 
denaturation, annealing, and extension, at 95 °C for 30 s, 
60 °C for 30 s, and 72 °C for 30 s, respectively; and 72 °C for 
10 min as the final extension. The qRT-PCR was stopped 
by the addition of a melting curve step at a cycle of 55–99 

°C. Each sample was in the presence of a technical replica 
(n = 3). All the cycle threshold (Ct) values were evaluated 
using the 2^(–delta delta Ct) method [27].
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2.10. Inhibition of ferroptosis
To further understand the mechanistic involvement of 
ferroptosis, this death pathway was blocked by ferroptosis 
inhibitor ferrostatin-1 (Sigma-Aldrich  Chemical Co.). 
Cells were seeded into the wells of a 96-well plate and 
incubated with a half-maximal inhibitory concentration 
(IC50) of DEHP in the presence or absence of different 
concentrations (0.5–50 µM) of ferrostatin-1. Subsequently, 
an MTT assay was performed, as explained above.
2.11. Statistical analyses
All the experiments were repeated as proper technical 
and biological replicas (n = 9). Statistical analyses were 
performed using GraphPad Prism for Windows 8.0 
(Boston, MA, USA) program. All the data were expressed 
as the mean ± standard deviation (SD). Data were analyzed 
using one-way analysis of variance (ANOVA) or the 
Kruskal–Wallis method with appropriate post hoc tests. 
The results were considered significant at p < 0.05.

3. Results
3.1. Effect of DEHP toxicity on apoptotic/necrotic death 
in BV-2 cells 
The results of the MTT assay were as follows: DEHP 
at concentrations exceeding 1 mM was highly toxic, as 
illustrated in Figure 1A, regardless of the incubation 
period. The MTT experiment yielded the following 
results: DEHP at concentrations greater than 1 mM 
exhibited significant toxicity. This observation, excluding 
the incubation duration, is depicted in Figure 1A. The IC50 
was 3 mM (Figure 1B). 

As an underlying molecular mechanism, the 
apoptotic/necrotic cell death of BV-2 cells was illustrated 
by fluorescence imaging using AO and EtBr staining, 
which revealed [17] an elevated EtBr signal with 3 and 5 
mM of DEHP (Figures 1C and 1D). EtBr fluorescence at a 
concentration of 1 mM increased significantly compared 
to the control (Figure 1D).
3.2. Effect of DEHP on inflammation in BV-2 cells
The ELISA test results showed that 3 and 5 mM of DEHP 
increased the IL-1β levels significantly. However, only 
5 mM of DEHP increased the IL-18 levels significantly 

(Figures 2A and 2B). The CD11b expression increased 
with 5 mM of DEHP, even though it was not statistically 
significant (Figures 2C and 2D), indicating CD11b’s 
regulatory effect and proinflammatory nature [28]. These 
results showed the dose-dependent proinflammatory 
effect of DEHP.
3.3. Effect of DEHP on intracellular iron levels and 
metabolism 
The cellular iron levels were checked following treatment 
with DEHP for molecular characterization. Both the total 
and Fe2+ iron levels significantly increased due to the toxic 
concentrations of DEHP (Figure 3A). Moreover, the LIP 
was also elevated according to the Calcein-AM staining 
(Figures 3B and 3C). The expression of iron storage (Fth1 
and Ftl1), exporter (Fpn), and importer (Dmt1) genes 
determined by the qRT-PCR and ferritin levels determined 
by immunohistochemistry increased (Figures 4A–4C), 
while the importer protein was stable with 3 and 5 mM of 
DEHP (Figure 4A).
3.4. Effect of DEHP-induced elevated intracellular ROS 
levels on organelles
The results showed increased ROS levels with 1 and 3 
mM of DEHP (Figures 5A and 5B). Underlying DEHP 
caused putative ROS generation via intracellular iron 
accumulation. Although the ROS levels relatively 
increased with 5 mM of DEHP, it was not statistically 
significant (Figures 5A and 5B). However, elevated iron, as 
proven by detecting the cellular iron levels and changing 
iron metabolism-related protein levels, can produce ROS 
to initiate oxidative stress [29].

Following cellular characterization, mitochondrial 
and lysosomal integrity was examined via fluorescence 
staining. NR is a dye that can assess lysosomal integrity, 
while JGB can be used to determine mitochondrial 
integrity. Decreases in the fluorescence signals for these 
dyes point to defects in the lysosomal or mitochondrial 
integrity [30]. The results herein showed that there were 
no significant alterations in the fluorescence signals 
(Figure 6A). Nevertheless, the DEHP treatment decreased 
the fluorescence signals coming from both NR (Figure 6B) 
and JGB (Figure 6C) at high concentrations, manifesting 

Table. List of primers used in the qRT-PCR.

Gene Forward primer Reverse primer
Dmt1 5’TGAATCGGCCAATAAGCAGGCA3’ 5’ATCAGCAAAGACGGACACGACAA3’
Fpn 5’AGAGCTGACCTGGCACCTTA3’ 5’GGCCCAAGTCAGTGAAGGTA3’
Fth1 5’TAAAGAACTGGGTGACCACGTGAC3’ 5’AAGTCAGCTTAGCTCTCATCAGCG3’
Ftl1 5’TGGCCATGGAGAAGAACCTGAATC3’ 5’GCTTTCCAGGAAGTCACAGAGAT3’
Gpx4 5’TAAGAACGGCTGCGTGGTGAAG3’ 5’AGAGATAGCACGGCAGGTCCTT3’
Ascl4 5’CCTTTGGCTCATGTGCTGGAACT3’ 5’CAGCGGCCATAAGTGTGGGTTT3’
Ppia 5’CCCACCGTGTTCTTCGACAT3’ 5’CCAGTGCTCAGAGCACGAAA3’
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the possible defects in both lysosomal and mitochondrial 
integrity, which were crucial for any cell death mechanisms 
[31] and vice versa.
3.5. Effect of DEHP on ferroptosis-related gene 
expression and ferroptosis
The results illustrated that the expression of Gpx4 
increased, while that of Ascl4 was not altered by 
the DEHP (Figure 7A). Ferroptosis was further 
analyzed using a ferroptosis inhibitor, ferrostatin-1, 
in the presence of DEHP. The results revealed that 
ferrostatin-1 blocked DEHP-dependent cell death 
(Figure 7B), confirming DEHP-dependent ferroptosis 
in BV-2 cells.

4. Discussion
The present study aimed to interpret the possible 
effects of phthalates on neonatal microglial cells. After 
DEHP exposure, it was aimed to reveal the molecular 
mechanisms underlying the neurotoxicological 
pathways involved in neuroinflammation by focusing 
on oxidative damage, inflammatory markers, and 
diverse cell death types. The results showed that DEHP 
at high concentrations caused elevated levels of ROS 
and inflammation, resulting in cellular toxicity in the 
BV-2 cell line. Moreover, high concentrations of DEHP 
promoted the loss of mitochondrial and lysosomal 
integrity, underlying the induction of apoptotic or 
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Figure 1. Effect of DEHP on cellular viability. A. Cell viability by DHEP treatment on BV-2 cells 
with increasing concentrations (1 nM–10 mM) for 24, 48, or 72 h. B. Expanded cell viability 
observed by applying DEHP for 24 h. The arrow shows that the remaining concentrations are 
of the same statistical significance level. C. Evaluation of the apoptotic/necrotic cells by the 
application of DEHP. D. Quantification of the relative fluorescence with reference to C. RFU: 
Relative integrated fluorescence unit; Green, AO: Healthy; Red, EtBr: apoptotic/necrotic. 
Scale: 50 µm. *p < 0.05, **p < 0.01, ***p < 0.001 (ANOVA, post hoc Dunnet’s test).
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necrotic cell death mechanisms. Finally, the ferroptotic 
cell death mechanism was also initiated by DEHP exposure 
through dysregulated iron metabolism. 

Phthalates have been identified as potential endocrine 
disruptors that could result in various pathologies, 
including hypospadias, cryptorchidism, decreased 
anogenital distance, growth and pubertal problems during 
childhood, obesity, insulin resistance, type 2 diabetes, 
endometriosis, breast cancer, respiratory and allergic 
diseases, and neurodevelopmental and neurobehavioral 
developmental disorders [32–34]. The European Union 
enforced a prohibition on the utilization of proscribed 
DEHP, di-iso-butyl phthalate (DiBP), and butyl-benzyl 
phthalate (BBzP) in toys, childcare articles, and cosmetics 
in a 2009 (MDR 2017/745) regulation, stating that medical 
devices containing carcinogenic, mutagenic, or toxic for 

reproduction 1A/1B and endocrine disruptive compounds 
substances above a concentration of 0.1 weight percent 
must be justified and labelled accordingly [35]. Nonetheless, 
multiple studies carried out in NICUs have reported that 
exposure of infants to DEHP could exceed this ratio [36].

The perinatal period could be riskier for exposure to 
DEHP, resulting in drawbacks in development, including 
neurodevelopmental stages [6,37–39]. In large population 
studies of DEHP-induced neurotoxicity, the environmental 
phthalate exposures of pregnant women were evaluated 
based on their urine levels. The neurodevelopmental scores 
of children showed that higher exposure to phthalate 
metabolites caused lower neurodevelopmental scores and 
behavioral problems, including autism spectrum disorders 
[37,40,41]. However, the precise cellular and molecular 
pathways underlying the in vivo effects of phthalates remain 
incompletely elucidated.
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In the present study, DEHP was chosen to evaluate the 
possible effects of phthalates on the BV-2 cell line. Among 
phthalates, DEHP is critically dangerous for neonates, 
as it is widely used in the medical equipment in NICUs 
[3,6,35]. Previous studies have underlined that DEHP 
causes elevated ROS levels, the induction of apoptosis, 
and altered epigenetic mechanisms in diverse neuronal 
cell lines [15,42]. In the present study, the viability assay 
showed that DEHP was remarkably toxic, regardless 
of the incubation period when the concentrations 
were above 1 mM (Figures 1A and 1B). Studies with 
human cell lines have underlined that although lower 
concentrations of DEHP were not toxic in a time-

dependent manner, higher concentrations (0.2–0.5 mM) 
were [43], confirming these results.

To determine the possible cell death mechanisms, 
apoptosis and necrosis were examined herein. The findings 
highlighted the induction of apoptosis and necrosis in 
high-dose DEHP-treated cell groups when compared to the 
control (Figures 1C and 1D). The induction of apoptosis by 
DEHP in neuronal cell lines has been well documented using 
apoptotic markers such as cleaved caspases and Bax/Bcl2 
ratios [15]. EtBr staining aids in identifying damaged cell 
membranes as a sign of apoptosis [17]. However, we propose 
that both apoptosis and necrosis are involved because 
membrane disruption is common in both types of cell 
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Figure 4. Effect of DEHP on iron-metabolism-related proteins. A. Expression levels of 
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death when DEHP levels are high. Increased immunologic 
activity at higher DEHP concentrations (Figures 2A–2D), as 
previously reported, may also be linked to apoptosis [44].

Iron levels are critical for brain development in 
the prenatal and early neonatal periods. Maintaining 
iron homeostasis is crucial for ensuring proper cellular 
function. This regulation involves a complex interplay of 
various transport proteins responsible for different aspects 
of iron metabolism. DEHP-mediated ROS generation 
has been reported to be neurotoxic [11], and ferroptosis, 
which alters iron metabolism and triggers the production 
of ROS and reactive lipid species [45,46], could also be 
dominant for microglia. According to the results of the 
current study, the DEHP treatment elevated both the iron 
uptake and storage, which were shown by the cellular 

free and total iron (Figure 3A) and LIP levels (Figures 3B 
and 3C). Iron is internalized by the cells in ferric (Fe3+) 
form and induced and stored in Fe2+ form [10]. Cellular 
iron regulation is supported by iron import (transferrin-
transferrin receptor 1 (Tf-TfR1)), intracellular transport 
(Dmt1), storage (ferritin light and heavy chain; Ftl and 
Fth), and export (ferroportin; Fpn) proteins [46]. The 
administration of 1 and 3 mM of DEHP significantly 
increased the Ftl and Fpn levels, while no significant 
alteration was observed in Fth and Dmt1 levels (Figure 
4A). The increase in the expression of the exporter protein 
in the present study would be a compensation strategy, as 
shown in our previous studies [10,26,47].

Moreover, ferritin immunoreactivity increased after 
DEHP administration, accumulating in the cell when 
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Figure 5. A. Changes in the intracellular reactive oxygen levels by applying 
DEHP to BV-2 cells. B. Quantification of the relative fluorescence with reference 
to A. Green, DCF: Dichlorofluorescein; Blue, Hoechst (Nucleus). Scale: 50 µm.
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Figure 6. Confocal images of lysosomal and mitochondrial integrity as a result 
DEHP treatment. B. Quantification of the relative NR fluorescence with reference to 
A. C. Quantification of the relative JGB fluorescence with reference to A. Red, NR: 
Lysosome; Green, JGB: Mitochondria; Blue, Hoechst 3342: Nucleus. Scale: 50 µm.
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cell integrity was compromised (Figures 4B and 4C). 
As previously shown, iron uptake was increased by the 
DEHP treatment via modulation of the expression of the 
iron transport proteins. Although one study showed the 
expression of iron storage proteins was reduced and those 
of uptake proteins were upregulated in the liver cells [48], 
another study illustrated that the expression of storage 
proteins increased in the spleen cells [49] by the DEHP 
exposure. Hence, the differences could be tissue-specific. 

When there is an excessive build-up of iron within 
the cellular environment, it can lead to the generation 
of detrimental free radicals, primarily mediated by iron. 
These free radicals can cause oxidative damage and disrupt 
normal cellular processes. Thus, the intracellular ROS 
levels were quantified herein and it was proven that the 
ROS levels were high with all the treatments, although it 
was not significant with 5 mM of DEHP (Figures 5A and 
5B). 

Elevated ROS levels following DEHP treatment has 
frequently been reported [14], validating our results. 
DEHP-dependent ROS-mediated mitochondrial 
alterations and, thus, apoptosis has also been underlined 

[50]. Therefore, the integrities of cell death-related 
organelles, mitochondria, and lysosomes were evaluated. 
The results illustrated that the integrities of those 
organelles were slightly decreased, even though it was 
not statistically significant (Figures 6A–6C), confirming 
the partial involvement of apoptosis. ROS generation 
by DEHP treatment and its possible effects gained great 
attention in different cell models [3,13]. 

The effect of excessive ROS generation has frequently 
been studied in cell death mechanisms, including 
ferroptosis [46]. Ferroptosis by DEHP-mediated ROS 
generation has also been studied in neonates; however, 
these studies mainly centered on sexual development 
[48,51]. Hence, the current study focused on the effects of 
DEHP treatment on the neonatal microglia, particularly 
concentrating on the ferroptotic cell death mechanism. 
This study evaluated the effects of varying concentrations 
of DEHP on the expression of two key regulators of 
ferroptosis, Acls4 and Gpx4. The increased levels of 
DEHP did not result in a corresponding increase in the 
expression of Acls4; however, there was a notable increase 
in the expression of Gpx4 (Figure 6A).
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Figure 7. Effect of DEHP on ferroptosis. A. Expression levels 
of ferroptosis-related proteins by DEHP administration at 
different concentrations in BV-2 microglia cells. B. Effects of 
ferrostatin-1 treatment at increasing concentrations (0.5–50 
µM) on cell viability. *p < 0.05, **p < 0.01, and ***p < 0.001 
(ANOVA and Kruskal–Wallis posthoc Dunn’s test).
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Similarly, in one study, even with increasing dosages 
of DEHP, the expression of Acsl4 in BV-2 microglia 
remained unchanged [52]. These results indicate that 
distinct enzyme pathways are likely to be involved in 
regulating ferroptosis in microglia. To further evaluate 
the ferroptotic pathways, ferroptosis was blocked in 
the present study using ferrostatin-1, which mainly 
inhibits autooxidation and nonenzymatic destruction of 
the membrane via polyunsaturated-fatty-acid (PUFA) 
containing phospholipids driven by Fenton chemistry 
during ferroptosis [53]. In response to metabolic activities 
that trigger ferroptosis, cells have evolved diverse defense 
mechanisms to inhibit the generation of cytotoxic lipid 
peroxides and promote cell survival. The Gpx4 signaling 
axis is the principal cellular defense mechanism against 
ferroptosis [54]. The current research results indicated that 
adding a ferroptosis inhibitor led to a 25% increase in cell 
viability (Figure 7B).

Furthermore, as the inhibitor dosage was increased, 
the cell viability showed a further increase of 30%–35%. 
Despite administering a ferroptosis inhibitor, the lack 
of a significant increase in cellular survival rates implies 
that alternative forms of programmed cell death, such as 
pyroptosis, may occur when assessed concurrently with 
increased inflammatory markers. The observed correlation 
between pyroptosis and the elevated levels of IL-1β and IL-
18, along with increased free iron within the cell, suggests 
that phthalates may induce a multistep mechanism of cell 
death in the developing brain.

The results herein showed that exposure to DEHP 
increased ROS and iron accumulation, disrupted the 
organelle structures, and caused neuroinflammation, 
apoptosis, and ferroptosis (Figure 8). Given that distinct 
subtypes of cell death retain their specific characteristics, 

and the underlying processes vary, crosstalk or links may 
occur between the various cell death pathways. Even while 
the lysosomal alterations in the present study mostly 
resulted in ferroptosis, the increase in IL-1β and IL-18 
implied that another inflammation-related route may 
also be active or there may be a connection between cell 
death pathways. As a component used in medical devices, 
particularly in NICUs, DEHP exposure to neonates should 
be strictly limited. Moreover, further molecular and in 
vivo studies are needed, especially to fully explore the 
involvement of the ferroptotic cell death mechanisms by 
exposure to DEHP.
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