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1. Introduction
Inborn errors of metabolism are heterogeneous disorders 
resulting from defects in biochemical pathways. These 
disorders are individually rare but account for a significant 
portion of childhood disability and deaths. Hundreds of 
disorders have been described to date. They can manifest 
over a wide period of time, starting from the intrauterine 
period and continuing to adulthood [1].

Tandem mass spectrometry (MS) has changed our 
ability to detect intermediates of metabolism in small 
samples and makes it possible to detect large numbers 
of metabolic disorders in a single analysis. It is used for 
screening, diagnosis, and disease monitoring. Over 60 
different metabolic disorders can be screened by tandem 
MS. It is helpful in diagnosing amino acid metabolism 
disorders, organic acidemias, and fatty acid oxidation 
disorders, and it can provide rapid and accurate diagnoses 
for inborn errors of metabolism [2–8]. 

Artificial intelligence (AI) techniques have been 
used to support clinical decision-making processes since 
the introduction of computer technology [9,10]. Many 
different classical, AI, and machine learning techniques 

such as artificial neural networks (ANNs), naive Bayes 
classifiers, support vector machines (SVMs), and decision 
trees have been used for the prediction and classification of 
medical diagnoses. ANNs have been used in many different 
areas such as engineering, finance, and medicine in recent 
decades [11,12]. They are very good solutions for predicting 
diagnoses. They can be used with complex clinical datasets 
to predict complex and nonlinear relationships [13,14]. 
ANNs are structured based on biological neurons and 
they have learning and generalization abilities. They can 
provide better performance compared to classical statistical 
methods. ANNs use multiple layers of calculations to 
imitate the ways in which the human brain interprets and 
draws conclusions from information. 

The aim of this study was to predict inborn errors 
of metabolism in children with the help of ANNs using 
tandem MS data.

2. Materials and methods
2.1. Data selection
Tandem MS data obtained from 2938 different individuals 
at one time in the Health Sciences University Kayseri City 
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Hospital between July 2018 and December 2022 were 
evaluated retrospectively. The data were divided into 
two groups as suspected inherited metabolic disorders 
(SIMDs) and definitive inherited metabolic disorders 
(DIMDs). There were 2893 tandem MS datasets for the 
SIMD group and 45 tandem MS datasets for the DIMD 
group. The datasets used for the ANNs are shown in Table 1.
2.2. Parameter selection
All 47 parameters in the tandem MS datasets were used 
for the training and testing of models A. The number of 
parameters was then reduced to 13 by using statistical 
methods and expert knowledge. We achieved simpler 
ANN structures and the need for computational effort 
was decreased by reducing the parameters. The 13 selected 
parameters were used for the training and testing of models 
B. The parameters used in the diagnosis of inherited 
metabolic disorders are shown in Tables 2 and 3.
2.3. Statistical analysis
Statistical evaluation was performed with SPSS (SPSS 
Inc., Chicago, IL, USA). Histograms, q-q graphs, and 

Shapiro–Wilk normality tests were used to examine 
whether the data showed normal distribution. Abnormally 
distributed parameters were expressed as medians and 
25th–75th percentiles. The 47 parameters of tandem MS 
were compared statistically between the two groups. The 
Mann–Whitney U test was performed for parameters that 
were not normally distributed variables. Values of p < 0.05 
were considered statistically significant in all statistical 
analyses. Statistical evaluation of the datasets is shown 
in Table 3. Univariate logistic regression analysis of the 
datasets is shown in Table 4.
2.4. Artificial intelligence model
MATLAB software was used for the ANN studies. All 
ANN models used in this study for classification were 
feedforward and fully connected (FC) neural networks. 
The general structure of a neural classifier is shown in 
Figure 1. The neural classifiers used in this study had 
fully connected/hidden layers. The first hidden layer of 
the ANN had a connection to the input. An activation 
function such as rectified linear unit (ReLU), hyperbolic 

Table 1. Datasets used for ANNs.
Process Datasets SIMD DIMD
Training 2203 2173 30
Test 735 720 15
Total 2938 2893 45

SIMD: Suspected inherited metabolic disorder; DIMD: definitive inherited metabolic disorder.

Table 2. Parameters used in the diagnosis of inherited metabolic disorders. 

Parameter Inborn errors of metabolism

C3 MMA, PA, disorders of cobalamin synthesis 

C4 MADD

C5 IVA, MADD

C5OH MCC deficiency, HMG-CoA lyase deficiency, HCLS deficiency 

C5DC GA-1, MADD

C6 MADD

C10:1 MADD

C12 MADD 

Arginine Argininemia

Leucine MSUD

Citrulline CTLN1

Phenylalanine PKU, HFA

Glycine NKH, MMA, PA

MMA: Methylmalonic acidemia; PA: propionic acidemia; IVA: isovaleric acidemia; MADD: multiple acyl-CoA dehydrogenase 
deficiency; MCC: 3-methylcrotonyl CoA carboxylase deficiency; HMG-CoA lyase deficiency: 3-hydroxy-3-methylglutaryl-coenzyme 
A lyase deficiency; HCLS deficiency: holocarboxylase synthetase deficiency; GA-1: glutaric aciduria type-1; MSUD: maple syrup urine 
disease; CTLN1: citrullinemia type-1; PKU: phenylketonuria; HFA: hyperphenylalaninemia; NKH: nonketotic hyperglycinemia.
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Table 3. Statistical evaluation of the data and parameter selection (Mann–Whitney U tests).

Number Parameters Selected 
parameters

SIMD
median
(25th–75th percentiles, %)

DIMD
median
(25th–75th percentiles, %) p

1 C6DC 0.01 (0.01–0.04) 0.02 (0.01–0.07) 0.020
2 C18:1 OH 0.01 (0–0.1) 0.01 (0–0.01) 0.576
3 C2 13.95 (9.5–20.2) 16.4 (10–26.2) 0.129
4 C4 X 0.18 (0.12–0.26) 0.23 (0.14–0.38) 0.042
5 C16OH 0.01 (0–0.03) 0.01 (0–0.031) 0.961
6 C18:2 0.03 (0.02–0.08) 0.04 (0.02–0.11) 0.256
7 C3/C0 0.05 (0.03–0.06) 0.05 (0.03–0.12) 0.260
8 C3/C2 0.09 (0.06–0.13) 0.1 (0.05–0.18) 0.509
9 C3DC 0.02 (0.01–0.03) 0.01 (0.01–0.03) 0.581
10 C4OH 0.02 (0.01–0.06) 0.04 (0.02–0.18) 0.000
11 C5OH X 0.09 (0.05–0.14) 0.13 (0.06–0.33) 0.001
12 C6 X 0.06 (0.04–0.09) 0.07 (0.05–0.1) 0.030
13 C8/C10 0.8 (0.5–1) 1 (0.71–1.5) 0.003
14 C10 0.05 (0.03–0.08) 0.05 (0.02–0.08) 0.730
15 C10:1 X 0.03 (0.01–0.05 0.04 (0.02–0.07) 0.011
16 C12 X 0.05 (0.03–0.07) 0.05 (0.03–0.1) 0.205
17 C5DC X 0.06 (0.03–0.09) 0.07 (0.03–0.1) 0.156
18 C5 X 0.11 (0.08–0.17) 0.17 (0.11–0.34) 0.000
19 Methyl-glutaryl 0.02 (0–0.03) 0.02 (0.01–0.04) 0.121
20 C4DC 0.12 (0.08–0.18) 0.12 (0.09–0.17) 0.814
21 C14 0.06 (0.03–0.09) 0.08 (0.03–0.11) 0.085
22 C8 0.04 (0.02–0.06) 0.05 (0.02–0.08) 0.057
23 C8:1 0.03 (0.01–0.06) 0.03 (0.01–0.05) 0.601
24 C18:1 0.11 (0.07–0.2) 0.12 (0.07–0.29) 0.179
25 C16 0.53 (0.31–0.78) 0.63 (0.35–1.2) 0.058
26 C16:1 0.01 (0–0.02) 0.02 (0–0.04) 0.013
27 Phe/Tyr 0.62 (0.45–0.84) 0.77 (0.5–0.75) 0.017
28 C3 X 1.3 (0.88–1.89) 1.5 (0.75–3.79) 0.240
29 C10DC 0.01 (0–0.03) 0.01 (0.005–0.03) 0.570
30 C0 28.6 (22.35–36.58) 30.8 (21.9–39.6) 0.476
31 C18 0.26 (0.16–0.38) 0.34 (0.16–0.49) 0.057
32 C8DC 0.01 (0–0.03) 0.01 (0.01–0.05) 0.693
33 C14:2 0.02 (0–0.04) 0.02 (0.01–0.04) 0.051
34 C14:1 0.02 (0.01–0.04) 0.02 (0.01–0.08) 0.030
35 C5:1 0.02 (0.01–0.05) 0.02 (0.01–0.055) 0.508
36 Alanine 293.5 (226.99–375.67) 340.7 (235.1–391.1) 0.104
37 Arginine X 33.1 (20.69–50.6) 33.5 (20.3–56.2) 0.756
38 Aspartate 51.8 (38.16–70.06) 56.5 (40.8–82.5) 0.153
39 Phenylalanine X 46.67 (36.25–59.58) 49.3 (41.1–62.0) 0.041
40 Glycine X 246.87 (194.03–330.29) 269 (210.2–447) 0.013
41 Glutamate 135.2 (100.54–180.44) 135.6 (71.7–190.7) 0.831
42 Glutamine 122.5 (69.64–190.52) 127.4 (86.5–248.2) 0.067
43 Leucine X 108.1 (83.93–137.14) 110 (84.4–160.0) 0.264
44 Methionine 18.8 (13.9–25.66) 18.7 (15.2–25.3) 0.822
45 Citrulline X 21.4 (15.66–28.04) 26.4 (14.2–35.6) 0.099
46 Tyrosine 74.9 (56.42–101.98) 65.6 (48.9–103.7) 0.337
47 Valine 123.4 (95.81–156.53) 129.1 (101.6–159.5) 0.293

SIMD: Suspected inherited metabolic disorder; DIMD: definitive inherited metabolic disorder. Significant p-values are shown in bold.
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tangent, or sigmoid function was applied to each FC 
layer except the last layer. The softmax transfer function 
was applied to the last FC layer to produce the network’s 
output and the output layer corresponded to the predicted 
classes. The data were divided into two groups randomly 
to be used in training and testing the ANNs. While 75% of 
the dataset was used for training, 25% was used for testing. 
The datasets used for the ANNs are shown in Table 1, as 
mentioned above. After the ANN structures were trained 
with the training dataset containing all parameters, testing 
was carried out using the testing data. The number of 
parameters was then decreased to 13 and all processes 
were repeated. ANN structures with different numbers 
of hidden layers and neurons were established to obtain 
better results with less computational effort and with 
fewer neuron numbers in the layers. One, two, and three 
hidden layers were taken into account for the ANN models 
obtained with both 47 and 13 parameters. The neuron 
numbers of each layer were limited to 50 neurons, and the 
ANN models with fewer neurons and the same results are 
the ones presented in this paper.

2.5. Ethical approval 
The study was conducted in accordance with the 
Declaration of Helsinki and good clinical practice ethics. 
It was approved by the local ethics committee of Kayseri 
City Hospital (Number: 911/2023).

3. Results
Forty-seven and 13 selected parameters of tandem MS 
datasets from 2938 different patients at one time were 
taken into account to train and test the ANNs. There were 
2893 datasets for the SIMD group and 45 datasets for the 
DIMD group (Table 1). 

C3, C4, C5, C50H, C5DC, C6, C10:1, C12, arginine, 
leucine, citrulline, phenylalanine, and glycine were used in 
the diagnosis of inherited metabolic disorders, as shown 
in Table 2.

The 47 parameters of tandem MS were compared 
statistically between the two groups. Mann–Whitney 
U tests were performed for parameters that were not 
normally distributed variables, as shown in Table 3. 
Univariate logistic regression analysis was performed for 
parameters that were statistically significant in the Mann–

Table 4. Univariate logistic regression analysis of data.
Univariate analysis

OR 95% CI p
C4 4.575 1.446–14.47 0.010
C5 373.2 27.01–5116 0.000
C5OH 47.82 6.966–328.3 0.000
Phenylalanine 1.014 1.008–1.020 0.000
Glycine 1.002 1.001–1.004 0.000

CI: Confidence interval; OR: odds ratio.

Figure 1. General structure of the ANN classifier.
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Table 5. The best three ANN models with 47 parameters and their prediction results.
Hidden layer numbers 
and model name

Neuron 
numbers

Training 
prediction results

Testing 
prediction results

SIMD DIMD SIMD DIMD

True False True False True False True False

1 & Model A1 18 2173 - 30 - 717 3 11 4

2 & Model A2 32–11 2173 - 30 - 718 2 10 5

3 & Model A3 14–9–4 2173 - 30 - 719 1 11 4

SIMD: Suspected inherited metabolic disorder; DIMD: definitive inherited metabolic disorder.

Whitney U tests and selected for the ANNs. C4, C5, C50H, 
phenylalanine, and glycine were found to be statistically 
significant and positively correlated with DIMDs in logistic 
regression analysis. The results of the univariate logistic 
regression analysis of the datasets are shown in Table 4. 

Only the results of the ANN models with the ReLU 
activation function are given in this study because the best 
results were obtained using this activation function. All 47 
parameters of tandem MS were used for the training and 
testing of models A. Thirteen selected parameters were 
used for the training and testing of models B. Model A3 
and Model B2 were found to be the most effective models 
in predicting DIMDs. Model B2 could not correctly 
predict the data of patients with multiple acyl-CoA 
dehydrogenase deficiency, glutaric aciduria type-1, and 
nonketotic hyperglycinemia. The best three ANN models 
with 47 parameters and their prediction results and the 
best three ANN models with 13 parameters and their 
prediction results are shown in Tables 5 and 6, respectively. 

The highest accuracy rates were detected for models 
A3 and B2. The accuracy rate of model A3 was 99.3% and 

the accuracy rate of model B2 was 99.2%. The area under 
the curve (AUC) value of model A3 for DIMDs was 0.87, 
and the AUC value of model B2 for DIMDs was 0.90. 
Test accuracy and AUC values of the ANNs are shown 
in Table 7.

The sensitivity of test model B2-ANN was found to be 
80%. True positive rates (TPRs) and false negative rates 
(FNRs) of the testing for model B2-ANN are shown in 
Figure 2. 

4. Discussion
There are few studies evaluating inherited metabolic 
disorders with the use of AI. Studies on this subject have 
mostly focused on newborn screening programs. Different 
machine learning methods have been applied to support 
newborn screening programs. Most studies only focus on 
a single disease or specific machine learning techniques, 
making it difficult to conclude which methods are best to 
implement [15–19].

Baumgartner et al. [20] reported that they used six 
machine learning techniques for newborn screening by 

Table 6. The best three ANN structures with 13 parameters and their prediction results.

Hidden layer 
numbers and model 
name

Neuron 
numbers

Training 
prediction results

Testing 
prediction results

SIMD DIMD SIMD DIMD

True False True False True False True False
1 & Model B1 3 2172 1 27 3 714 6 12 3
2 & Model B2 27–3 2171 2 30 - 717 3 12 3
3 & Model B3 8–4–8 2171 2 30 - 712 8 13 2

SIMD: Suspected inherited metabolic disorder; DIMD: definitive inherited metabolic disorder.

Table 7. Testing accuracy and AUC values of ANNs.

Model A1 Model A2 Model A3 Model B1 Model B2 Model B3

Accuracy 0.9905 0.9905 0.9932 0.9878 0.9918 0.9864

AUC (DIMD) 0.8646 0.8319 0.8660 0.8958 0.8979 0.9278
AUC: Area under the curve; DIMD: definitive inherited metabolic disorder.
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tandem MS. An ANN was among the machine learning 
techniques in this study, entailing a multilayered ANN 
trained using backpropagation. They reported the 
accuracy rates for two inherited metabolic disorders, 
phenylketonuria and medium-chain acyl-CoA 
dehydrogenase deficiency. The accuracy rate of the ANN 
was 99.2% for phenylketonuria and 99.3% for medium-
chain acyl-CoA dehydrogenase deficiency [20]. The ANN 
was one of the most powerful machine learning techniques 
for predicting two specific inherited metabolic disorders 
in that study. Although our ANNs evaluated more than 
one parameter and more than one inherited metabolic 
disorder, similar prediction rates were detected in our 
study.

Hsu et al. [21] reported that the prediction accuracy 
for methylmalonic acidemia could be improved from 
56%–73% to over 96% and the sensitivity could be 
improved from 70%–81% to over 95% after applying a 
modified SVM classifier in a newborn screening program 
[21]. The TPR of test model B2-ANN was found to be 
80% and the FNR was 20% for DIMD in our study. This 
ANN failed to predict three inherited metabolic disorders 
correctly in our study. Increasing the amount of DIMDs in 
the datasets could improve the predictive performance of 
ANN models.

Peng et al. reported that random forest-based analysis 
reduced the FPRs for glutaric acidemia type-1 by 89% and 

for ornithine transcarbamylase deficiency by 98% [22]. 
Zaunseder et al. [23] reported that logistic regression 
analysis (LRA) was interpretable on a modular level and 
more applicable for newborn screening. They concluded 
that noninterpretable methods such as Ridge-LRA and 
Bagging-SVM showed promising results. Although several 
machine learning techniques have been used in different 
studies, these methods do not have a clear advantage over 
each other.

Apart from newborn screening, AI has also been 
used in specific metabolic diseases such as Fabry disease, 
Pompe disease, and alkaptonuria. Jefferies et al. [24] 
analyzed the performance of AI in identifying patients 
with Fabry disease. AI was calibrated by using health 
record data from a large cohort of 5000 patients with 
Fabry disease, and phenotypic patterns were extracted 
from those records. The study dataset was divided into 
a training set comprising 75% of all patients selected at 
random and a testing cohort comprising the remaining 
25%. AI demonstrated strong analytical performance in 
identifying patients with Fabry disease. The AUC value 
of the test was 0.82 in that study. That study is similar to 
our study in some regards. The results of our study show 
that the established ANNs are capable of predicting inborn 
errors of metabolism very accurately. The AUC of the test 
for model B2 in our study was 0.90. 

Wilkes et al. [25] developed decision support classifiers 
with several machine learning algorithms using 2084 

Figure 2. TPR and FNR tables for the testing of model B2-ANN.
SIMD: Suspected inherited metabolic disorder; DIMD: definitive inherited 
metabolic disorder; TPR: true positive rate, FNR: false negative rate.
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plasma amino acid data. They tested the generalization 
performance of each classifier using a nested cross-
validation procedure. The classifiers demonstrated 
excellent predictive performance, with the three machine 
learning algorithms tested producing comparable results. 
The best-performing classifier achieved mean precision-
recall with an AUC of 0.957. Twelve amino acids and a 
total of 35,256 data (12 × 2938) belonging to those amino 
acids were evaluated with a different AI technique in our 
study. The AUC value of the most successful ANN model 
was determined as 0.90.

Models A3 and B2 were considered superior to other 
models in our study because they predicted DIMDs with 
less error than the other models. Although the sensitivity 
of model B2 was found to be 80%, this model could not 
correctly predict the data of the patients with multiple acyl-
CoA dehydrogenase deficiency, glutaric aciduria type-1, 
or nonketotic hyperglycinemia in our study. This can be 
explained by the fact that the glycine levels in nonketotic 
hyperglycinemia and the C5DC levels in glutaric aciduria 
type-1 are very close to the reference values. 

The main limitation of our study is that the amount 
of data belonging to children with inherited metabolic 
disorders is very limited because DIMDs have low 
incidence rates. Increasing the amount of DIMDs included 
in the datasets could improve the predictive performance 
of ANN models. We anticipate that AI studies will help 
doctors working in the field of pediatric metabolism. 

In conclusion, the diagnosis of inborn errors of 
metabolism currently requires expert knowledge. 
Developing new technologies to identify and predict 
inborn errors of metabolism will be very useful. Inborn 

errors of metabolism were predicted with the use of ANNs 
in this study. Tandem MS results of 2938 children were 
used for ANNs to predict inborn errors of metabolism. 
The ANN approaches were compared with each other to 
show the differences between them. The highest accuracy 
rates were detected for models A3 and B2. The sensitivity 
of model B2 was found to be 80%. The results showed that 
the established ANNs are capable of predicting inborn 
errors of metabolism very accurately. 
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