

Turkish Journal of Medical Sciences

Volume 54 | Number 4

Article 11

2024

Evaluation of volume measurements of neuroanatomical structures related to speech in multiple sclerosis patients

HIDIR PEKMEZ

ANIL ALTIPARMAK

FEYZA İNCEOĞLU

MEHMET AKÇİÇEK

ASLI BOLAYIR

See next page for additional authors

Follow this and additional works at: https://journals.tubitak.gov.tr/medical

Recommended Citation

PEKMEZ, HIDIR; ALTIPARMAK, ANIL; İNCEOĞLU, FEYZA; AKÇİÇEK, MEHMET; BOLAYIR, ASLI; ÖZBAY, ZEYNEP; AYDIN, MERVE; and ARPACI, MUHAMMED FURKAN (2024) "Evaluation of volume measurements of neuroanatomical structures related to speech in multiple sclerosis patients," *Turkish Journal of Medical Sciences*: Vol. 54: No. 4, Article 11. https://doi.org/10.55730/1300-0144.5839 Available at: https://journals.tubitak.gov.tr/medical/vol54/iss4/11

This work is licensed under a Creative Commons Attribution 4.0 International License. This Research Article is brought to you for free and open access by TÜBİTAK Academic Journals. It has been accepted for inclusion in Turkish Journal of Medical Sciences by an authorized editor of TÜBİTAK Academic Journals. For more information, please contact pinar.dundar@tubitak.gov.tr.

Evaluation of volume measurements of neuroanatomical structures related to speech in multiple sclerosis patients

Authors

HIDIR PEKMEZ, ANIL ALTIPARMAK, FEYZA İNCEOĞLU, MEHMET AKÇİÇEK, ASLI BOLAYIR, ZEYNEP ÖZBAY, MERVE AYDIN, and MUHAMMED FURKAN ARPACI

Turkish Journal of Medical Sciences

http://journals.tubitak.gov.tr/medical/

Research Article

Turk J Med Sci (2024) 54: 700-709 © TÜBİTAK doi:10.55730/1300-0144.5839

Evaluation of volume measurements of neuroanatomical structures related to speech in multiple sclerosis patients

Hıdır PEKMEZ^{1,*}^(D), Anıl ALTIPARMAK²^(D), Feyza İNCEOĞLU³^(D), Mehmet AKÇİÇEK⁴^(D), Aslı BOLAYIR⁵^(D), Zeynep ÖZBAY², Merve AYDIN¹, Muhammed Furkan ARPACI¹

¹Division of Anatomy, Department of Basic Medical Sciences, Faculty of Medicine, Malatya Turgut Özal University, Malatya, Turkiye ²Division of Anatomy, Department of Basic Medical Sciences, Institute of Graduate Science, Malatya Turgut Özal University, Malatya,

Turkiye

³Division of Biostatistics, Department of Basic Medical Sciences, Faculty of Medicine, Malatya Turgut Özal University, Malatya, Turkive

⁴Division of Radiology, Department of Internal Medicine, Faculty of Medicine, Malatya Turgut Özal University, Malatya, Turkiye ⁵Division of Neurology, Department of Internal Medicine, Faculty of Medicine, Malatya Turgut Özal University, Malatya, Turkiye

Received: 25.09.2023 •	Accept	ed/Published Online: 16.07.2024	•	Final Version: 23.08.2024
------------------------	--------	---------------------------------	---	---------------------------

Background/aim: Individuals with multiple sclerosis (MS) may experience various speech-related issues, including decreased speech rate, increased pauses, and changes in speech rhythms. The purpose of this study was to compare the volumes of speech-related neuroanatomical structures in MS patients with those in a control group.

Materials and methods: The research was conducted in the Neurology and Radiology Departments of Malatya Training and Research Hospital. The records of patients who presented to the Neurology Department between 2019 and 2022 were examined. The study included the magnetic resonance imaging (MRI) findings of 100 individuals, with 50 in the control group and 50 patients with MS, who had applied to the hospital in the specified years. VolBrain is a free system that works automatically over the internet (http://volbrain. upv.es/), enabling the measurement of brain volumes without human interaction. The acquired images were analyzed using the VolBrain program.

Results: As a result of our research, a significant decrease was found in the volume of 18 of 26 speech-related regions in MS patients. It was determined that whole brain volumes decreased in the MS group compared to the control group.

Conclusion: In our study, volume measurements of more speech-related areas were performed, unlike the few related studies previously conducted. We observed significant atrophy findings in the speech-related areas of the frontal, temporal, and parietal lobes of MS patients.

Key words: Multiple sclerosis, speech, brain, magnetic resonance imaging, volume, VolBrain

1. Introduction

Multiple sclerosis (MS) is a chronic illness characterized by inflammation in the central nervous system (CNS) [1,2]. This disease affects approximately 2.8 million people globally and is commonly diagnosed in individuals between the ages of 20 and 50 years. It is more frequently diagnosed in women than in men [3,4].

MS is characterized by clinical symptoms arising from lesions of the brain or spinal cord [1,2]. The signs and symptoms of MS vary depending on the location and size of the lesions in the CNS that lead to plaque formation. These differences are unique to each individual [5]. People who suffer from MS typically experience a variety of symptoms that can be quite debilitating. These symptoms

may include feelings of exhaustion, physical discomfort, problems with controlling the bladder and bowels, difficulties with thinking and emotions, issues with seeing clearly, and challenges with speaking and swallowing. Unfortunately, these symptoms can significantly interfere with the capacity to perform routine tasks and engage in normal daily activities [6,7].

Individuals with MS may encounter speech problems. Today, the dual-flow model proposed by Hickok and Poeppel is used to understand the functional neuroanatomy of speech [8]. Motor and sensory areas in the dual-flow model include the gyrus precentralis, gyrus frontalis superior, gyrus postcentralis, gyrus frontalis inferior, and gyrus temporalis superior areas as a highly complex

^{*} Correspondence: hidir.pekmez@ozal.edu.tr 700

brain network also consisting of the lobulus parietalis inferior and gyrus temporalis medius structures, which are responsible for language functions and the auditory processing of speech [9].

People with MS may experience communication difficulties, especially with speech. This can negatively impact their ability to participate in conversations [10]. Speech disorders negatively affect social life and quality of life [11]. Speech is a delicate motor skill that demands accurate muscle coordination. It has been observed that 40% of individuals with MS experience dysarthria. Spastic, ataxic, and mixed spastic-ataxic dysarthria are prevalent clinical symptoms. The most common symptoms of dysarthria in MS are impaired voice control, rigidity, defective articulation and impaired emphasis, excessive loudness changes, and slow-paced speech. As the disease progresses, speech symptoms may become more severe [10,12]. Reproducible brain volume analysis techniques can measure and track brain atrophy over time [13].

The purpose of this study was to compare the volumes of speech-related neuroanatomical structures in MS patients with those in a control group.

2. Materials and methods

The research was conducted in the Neurology and Radiology Departments of Malatya Training and Research Hospital. The records of patients who presented to the Neurology Department between 2019 and 2022 were examined. Ethical approval was obtained with the decision of the Malatya Turgut Özal University Non-Invasive Clinical Research Ethics Committee numbered 2022/18-173 and dated 01.11.2022.

This study included the magnetic resonance imaging (MRI) scans of 100 individuals, with 50 in the control group and 50 patients with the relapsing-remitting MS subtype. There is no definitive clinical or laboratory diagnostic test for MS disease, but the McDonald diagnostic criteria are generally used today [14]. Therefore, diagnostic criteria entailed parameters obtained via clinical, laboratory, and imaging methods. Individuals with mental retardation, hemiplegia, diseases that could affect brain volume, or a history of head trauma or cranial surgery were not included in the study. The control group comprised healthy individuals who were admitted to the hospital for headache or dizziness and underwent MRI scans that showed no cranial pathology. These individuals did not have any illnesses that would affect their speech and had not experienced any events that would impact speech.

MRI was performed by taking axial T1-weighted images with an Amira 1.5-T device (Siemens, Erlangen, Germany). The MRI protocol was as follows: 3D T1-MPRAGE TR (repetition time), 2200 ms; TE (echo time), 2.79 ms; flip angle (declination), 8°; field of view, 250 mm; number of sections, 192; section thickness, 1 mm; matrix, 205 \times 320. The acquired images were analyzed using the VolBrain program.

VolBrain is a free system that works automatically over the internet (http://volbrain.upv.es/), enabling the measurement of brain volumes without human interaction. It automatically performs volumetric brain analysis on T1weighted images [15].

In our study, using VolBrain, the superior frontal gyrus and its medial segment, opercular inferior frontal gyrus, orbital inferior frontal gyrus, triangular inferior frontal gyrus, precentral gyrus, gyrus postcentralis, postcentral gyrus medial segment, superior parietal lobule, precuneus, gyrus temporalis superior, temporalis medius, and gyrus temporalis inferior volumes were analyzed.

2.1. Statistical analysis

The study's sample size was determined via power analysis using the G^* Power 3.1 program, which calculated the minimum sample size required to be 80, with a minimum of 40 individuals in each group [16].

Data analysis was conducted using IBM SPSS Statistics 25. The analysis included the calculation of descriptive statistics using metrics such as number, percentage, mean, standard deviation, median, and range. To compare independent groups, the Mann–Whitney U test was utilized.

3. Results

This study included the MRI results of 100 individuals, with 50 healthy individuals in the control group and 50 patients with MS, who applied to the hospital in the specified years.

No statistically significant difference was detected between the patient and control groups according to age or sex (p > 0.05, Table 1). The groups showed homogeneous distribution for age and sex.

No statistically significant relationship was found between disease duration and Expanded Disability Status Scale scores in the patient group (p > 0.05, Table 2).

Significant differences were discovered between the patient and control groups in bilateral gyrus frontalis superior, superior frontal gyrus medial segment, opercular inferior frontal gyrus, and gyrus precentralis volumes when comparing the groups in terms of the lobus frontalis (p < 0.05) (Table 3).

There were significant difference in the volumes of certain brain regions between the patient and control groups. The medial segment of the bilateral postcentral gyrus, the superior parietal lobule, the precuneus, and the right postcentral gyrus in the lobus parietalis displayed significant differences (p < 0.05). However, no significant difference was detected in the volume of the left postcentral gyrus between the two groups (p > 0.05) (Table 4).

A statistically significant difference was found between the patient and control groups in bilateral gyrus temporalis superior and right gyrus temporalis medius volumes in the lobus temporalis (p < 0.05). However, no statistically significant difference was found between the patient and control groups for left gyrus temporalis medius and bilateral gyrus temporalis inferior volumes (p > 0.05) (Table 5).

When the volumes of neuroanatomical structures in the right and left hemispheres were compared in the patient group, the opercular inferior frontal gyrus, precentral gyrus, and postcentral gyrus volumes showed statistically significant differences between hemispheres (p < 0.05) (Table 6).

In the control group, a comparison of the volumes of neuroanatomical structures in the right and left hemispheres revealed statistically significant differences between certain areas. Volume differences were observed in the opercular inferior frontal gyrus, triangular inferior frontal gyrus, postcentral gyrus, superior temporal gyrus, and inferior temporal gyrus (p < 0.05) (Table 7).

4. Discussion

Since brain volumes and neurological functions are linked, speech disorders caused by MS and the volumes of speech-related brain regions may be related.

Many individuals with MS experience cognitive impairments. They may also display language difficulties, such as dysarthria or reduced fluency. Dysarthric speech, a motor speech disorder, is frequently seen in MS patients due to damage to the central and peripheral nervous systems [17]. According to the literature, symptoms of MS may include speaking slowly, making explosive sounds without joining syllables, and improperly stressing certain syllables due to a lack of coordination of speech muscles [18]. Our study was carried out retrospectively based on MRI data and no tests were conducted to evaluate speech and language disorders in the patients.

Brain atrophy is one of the essential findings in MS disease. Brain volume decreases progressively in MS patients. Research has found a notable connection between atrophy and neurological functions. For instance, certain cognitive abilities, such as visual-spatial memory and

Variable Group	Casara	m / 0/	Groups	Total	D	
	Group	11 / %0	MS patients	Control	Total	Ł
	Mala	n	19	19	38	
C	Male	%	38.0%	38.0%	38.0%	
Fema		n	31	31	62	
	Female	%	62.0%	62.0%	62.0%	0.582*
		n	50	50	100	
Total		%	100.0%	100.0%	100.0%	
Variable	n	Group	Mean ± SD	M (range)		р
Age	50	MS patients	39.46 ± 12.35	38.5 (18-70)	38.5 (18–70)	
	50	Control	38.70 ± 13.98	37 (18–67)		0.715

Table 1. Comparison of groups according to the distribution of demographic variables.

n: Number of samples; ^a: chi-square test value (χ^2); M: median; SD: standard deviation; ^b: Mann–Whitney U test; significance at p < 0.05.

Table 2. Relationship between Expanded Disability Status Scale (EDSS) scores and disease duration.

	EDSS	Disease duration (months)	
EDSS	r	1.000	-0.076
	р	•	0.598

r: Spearman's rank correlation coefficient.

Table 3. Comparison of volumes in the lobus frontalis between groups.

Variables	Groups	Mean ± SD	M (range)	Test	р
Dight group frontalis superior	MS patients	12.56 ± 2.23	12.66 (7.06–16.52)	760.000	0.001*
Right gyrus frontans superior	Control	14.39 ± 2.48	13.99 (9.91–21.36)	769.000	0.001
	MS patients	12.62 ± 2.64	12.35 (6.76–18.24)	876 000	0.010*
	Control	14.06 ± 2.45	13.62 (9.13–20.13)	870.000	0.010
Right superior frontal gyrus medial	MS patients	5.68 ± 1.29	5.69 (3.05-8.71)	935 000	0.030*
segment	Control	6.37 ± 1.28	6.11 (3.96–9.26)	955.000	0.050
Left superior frontal gyrus medial	MS patients	5.24 ± 1.12	5.32 (2.83-8.2)	919 500	0.003*
segment	Control	6.01 ± 1.23	5.86 (2.79-9.16)	818.300	0.003*
Right opercular inferior frontal	MS patients	2.94 ± 0.67	3.04 (1.47-4.54)	756 500	0.001*
gyrus	Control	3.4 ± 0.61	3.44 (2.3-5.05)	736.300	
	MS patients	2.52 ± 0.57	2.5 (1.51-3.95)	822.000	0.003*
Lett opercular interior frontal gyrus	Control	2.88 ± 0.59	2.78 (1.75-4.26)	822.000	
Right triangular inferior frontal	MS patients	2.7 ± 0.62	2.65 (1.25-4.22)	1071 500	0.218
gyrus	Control	2.9 ± 0.67	2.89 (1.61-4.6)	10/1.300	
Left triangular inferior frontal	MS patients	3.01 ± 0.76	2.58 (1.51-4.59)	1047 500	0.163
gyrus	Control	3.21 ± 0.72	3.16 (1.93-5.02)	1047.300	
Dight orbital informer frontal group	MS patients	0.99 ± 0.39	0.92 (0.21–2)	1100.000	
Right orbital interior frontal gyrus	Control	1.02 ± 0.37	1.03 (0.26-2.01)	1199.000	0.725
I aft antital infanion fuantal armus	MS patients	1.02 ± 0.37	1.01 (0.35-2.15)	1026 500	
Lett orbital interior frontal gyrus	Control	1.11 ± 0.34	1.08 (0.4–1.98)	1036.300	0.141
Dialet annua maccantualia	MS patients	10.54 ± 1.92	10.57 (6.16–14.64)	705 000	0.001*
Right gyrus precentralis	Control	12.15 ± 1.9	11.82 (7.55–17.14)	705.000	
Loft armus procentralia	MS patients	11.46 ± 1.95	11.38 (6.83–15.5)	974 500	0.010*
Len gyrus precentrans	Control	12.54 ± 2.55	12.44 (1.09–18.25)	0/4.300	0.010*

Variables	Groups	Mean ± SD	M (range)	Test	р
Diskt waste set to a large	MS patients	8.15 ± 1.29	8.29 (5.56–11.8)	051 500	0.007
Right postcentral gyrus	Control	8.93 ± 1.31	8.76 (6.55–12.27)	851.500	0.006
L oft a cotoon trail grows	MS patients	9.55 ± 1.67	9.75 (5.32–13.36)	1002 500	0.022
Leit postcentrai gyrus	Control	10.15 ± 1.35	10.02 (7.41–13.78)	1002.500	0.088
Right postcentral gyrus medial	MS patients	0.81 ± 0.19	0.8 (0.38–1.21)	(22.500	0.000*
segment	Control	1.01 ± 0.23	0.99 (0.56–1.59)	622.500	0.000*
Left postcentral gyrus medial	MS patients	0.86 ± 0.25	0.82 (0.45-1.65)	020 500	0.020*
segment	Control	0.96 ± 0.25	0.99 (0.46–1.5)	930.500	0.028*
Disht ann an is a an istalla bala	MS patients	9.5 ± 2.63	10.15 (1.01–14.53)	022.000	0.020*
Right superior parietal lobule	Control	10.68 ± 1.63	10.58 (7.33–14.19)	932.000	0.028*
Loft sum suiser manistal labula	MS patients	10.31 ± 1.73	10.42 (6.38–15.37)	055.000	0.042*
Left superior parietal lobule	Control	11.05 ± 1.62	11.02 (8.29–15.24)	955.000	0.042
Right precuneus	MS patients	10.89 ± 1.68	11 (6.85–14.53)	807.000	0.015*
	Control	12.14 ± 2.51	12.01 (8.08–19.42)	897.000	0.015
I oft measure and	MS patients	11 ± 1.86	10.87 (7.25–15.07)	061 500	0.047*
Left precuneus	Control	11.99 ± 2.26	11.42 (8.35–17.84)	901.500	0.047**

Table 4. Comparison of volumes in the lobus parietalis between groups.

SD: Standard deviation; M: median; p: Mann–Whitney U test; *: statistical significance at p < 0.05.

Variables	Groups	Mean ± SD	M (range)	Test	р
	MS patients	6.57 ± 1.16	6.51 (3.43-8.45)		
Right gyrus temporalis superior	Control	7.12 ± 1.18	7.31 (4.32–9.39)	930.000	0.027*
I off groups to me on a lis or movies	MS patients	6.97 ± 1.25	6.92 (3.64–9.9)	847.000	0.005*
Leit gyrus temporalis superior	Control	7.65 ± 1.96	7.82 (0.81–11.85)	847.000	0.005*
Right gyrus temporalis medius	MS patients	13.44 ± 6.87	12.7 (8.67–58.73)	876.000	0.010*
	Control	13.39 ± 2.06	13.81 (10.81–18.86)	876.000	
I oft average terms availing modium	MS patients	12.03 ± 2.44	11.48 (5.56–17.33)	1088 000	0.264
Leit gyrus temporalis medius	Control	12.56 ± 2.16	12.08 (9.31–18.1)	1088.000	0.264
	MS patients	9.61 ± 2.37	9.7 (1.18–13.97)	1107.000	
Right gyrus temporalis inferior	Control	9.93 ± 1.8	9.77 (7.14–15.53)	1187.000	0.664
I oft grows to me outlin informing	MS patients	10.33 ± 2.45	10.6 (1.31–15.06)	1022.000	0.122
Left gyrus temporalis inferior	Control	11.23 ± 2.15	10.75 (7.78–16.71)	1032.000	0.133

PEKMEZ et al. / Turk J Med Sci

Table 6. Comparison of the volumes of the lobus frontalis, lobus parietalis, and lobus temporalis in the right and left hemispheres in the patient group.

Variables	Groups	Mean ± SD	M (range)	Test	р
Comparing for set 1 more	Right	12.56 ± 2.23	12.66 (7.06–16.52)	1245.000	0.072
Superior frontal gyrus	Left	12.62 ± 2.64	12.35 (6.76–18.24)	1245.000	0.973
Superior frontal gyrus medial	Right	5.68 ± 1.29	5.69 (3.05-8.71)	070 500	
segment	Left	5.24 ± 1.12	5.32 (2.83-8.2)	979.500	0.062
	Right	2.94 ± 0.67	3.04 (1.47-4.54)	800.000	0.002*
Opercular interior frontal gyrus	Left	2.52 ± 0.57	2.5 (1.51-3.95)	800.000	0.002
Tuion gular information from tol groups	Right	2.7 ± 0.62	2.65 (1.25-4.22)	004 500	0.079
Triangular interior frontal gyrus	Left	3.01 ± 0.76	2.58 (1.51-4.59)	994.300	0.078
Orbital infanion fromtal groups	Right	0.99 ± 0.39	0.92 (0.21–2)	1208 500	0.775
Orbital interior frontal gyrus	Left	1.02 ± 0.37	1.01 (0.35–2.15)	1208.500	0.775
Due control groups	Right	10.54 ± 1.92	10.57 (6.16–14.64)	012 000	0.020*
Precentral gyrus	Left	11.46 ± 1.95	11.38 (6.83–15.5)	913.000	0.020
Desteortaslauras	Right	8.15 ± 1.29	8.29 (5.56–11.8)	500,000	0.001*
Postcentral gyrus	Left	9.55 ± 1.67	9.75 (5.32–13.36)	590.000	
Desterning medial some of	Right	0.81 ± 0.19	0.8 (0.38–1.21)	1174.000	0.600
Postcentral gyrus mediai segment	Left	0.86 ± 0.25	0.82 (0.45-1.65)	11/4.000	
Superior periotel Johnle	Right	9.5 ± 2.63	10.15 (1.01–14.53)	1012 000	0 101
Superior partetal lobule	Left	10.31 ± 1.73	10.42 (6.38–15.37)	1012.000	0.101
Decement	Right	10.89 ± 1.68	11 (6.85–14.53)	1217 500	0.022
Precuneus	Left	11 ± 1.86	10.87 (7.25–15.07)	1217.500	0.825
Cum ani on tomm and annua	Right	6.57 ± 1.16	6.52 (3.43-8.45)	1021 500	0.115
Superior temporal gyrus	Left	6.97 ± 1.25	6.93 (3.64–9.9)	1021.500	0.115
Middle terms and some	Right	13.44 ± 6.87	12.71(8.67–58.73)	1020 500	0.120
	Left	12.03 ± 2.44	11.49 (5.56–17.33)	1050.500	0.130
Information topportal survice	Right	9.61 ± 2.37	9.7 (1.18–13.97)	1007.000	0.004
Interior temporal gyrus	Left	10.33 ± 2.45	10.6 (1.31–15.06)	1007.000	0.094

PEKMEZ et al. / Turk J Med Sci

Table 7. Comparison	of the volumes of	the lobus frontali	s, lobus parietalis	, and lobus	temporalis in t	the right and	left hemispheres of	of
the control group.								

Variables	Groups	Mean ± SD	M (range)	Test	р
	Right	14.39 ± 2.48	13.99 (9.91–21.36)	1122 500	0.202
Superior frontal gyrus	Left	14.06 ± 2.45	13.62 (9.13–20.13)	1123.500	0.565
Superior frontal gyrus	Right	6.37 ± 1.28	6.11 (3.96–9.26)	1024 500	
medial segment	Left	6.01 ± 1.23	5.86 (2.79–9.16)	1034.500	0.137
Opercular inferior frontal	Right	3.4 ± 0.61	3.44 (2.3–5.05)	670.000	0.001*
gyrus	Left	2.88 ± 0.59	2.78 (1.75-4.26)	679.000	0.001
Triangular inferior frontal	Right	2.9 ± 0.67	2.89 (1.61-4.6)	029 500	0.022*
gyrus	Left	3.21 ± 0.72	3.16 (1.93-5.02)	938.300	0.032
Orbital inferior frontal	Right	1.02 ± 0.37	1.03 (0.26–2.01)	1070 500	0.216
gyrus	Left	1.11 ± 0.34	1.08 (0.4–1.98)	1070.300	
Duranturi	Right	12.15 ± 1.9	11.82 (7.55–17.14)	1014 500	0.104
Precentral gyrus	Left	12.54 ± 2.55	12.44 (1.09–18.25)	1014.500	0.104
De sterreter l'errore	Right	8.93 ± 1.31	8.76 (6.55–12.27)	(20.000	0.001*
Postcentral gyrus	Left	10.15 ± 1.35	10.02 (7.41–13.78)	620.000	
Postcentral gyrus medial	Right	1.01 ± 0.23	0.99 (0.56–1.59)	1112 500	0.343
segment	Left	0.96 ± 0.25	0.99 (0.46-1.5)	1112.300	
Superior periotal labula	Right	10.68 ± 1.63	10.58 (7.33–14.19)	1086 000	0.259
Superior parietai lobule	Left	11.05 ± 1.62	11.02 (8.29–15.24)	1086.000	0.258
Des sus sus	Right	12.14 ± 2.51	12.01 (8.08–19.42)	1218 000	0.025
Precuneus	Left	11.99 ± 2.26	11.42 (8.35–17.84)	1218.000	0.825
Sum arian tamp and armus	Right	7.12 ± 1.18	7.31 (4.32–9.39)	012 500	0.020*
Superior temporal gyrus	Left	7.65 ± 1.96	7.82 (0.81–11.85)	912.300	0.020
Middle town and summe	Right	13.39 ± 2.06	13.81 (10.81–18.86)	1040.000	0.149
Middle temporal gyrus	Left	12.56 ± 2.16	12.08 (9.31–18.1)	1040.000	0.148
Inforior townsord	Right	9.93 ± 1.8	9.77 (7.14–15.53)	817.000	0.003*
Interior temporal gyrus	Left	11.23 ± 2.15	10.75 (7.78–16.71)	017.000	0.005

verbal memory, are linked to the size of particular areas of the cortex [19]. Furthermore, studies have indicated that issues like fatigue, memory capacity, depression, anxiety, and muscle difficulties are linked to brain volume [20–23]. In our study, significant atrophy findings were observed in the speech-related areas of the frontal, temporal, and parietal lobes of MS patients.

Studies have shown that 45% of MS patients have speech disorders [11]. Individuals with MS may experience various speech-related issues, including a decrease in speech rate, increased pauses, and changes in speech rhythms. Additionally, weakness in tone of voice and difficulty initiating speech are common speech impairments associated with MS [24]. Previous studies reported aphasia-like symptoms such as difficulty in naming objects or remembering words, decreased verbal fluency, repetition of words, and impaired spelling [25].

Measurements of various regions in the brains of MS patients were examined in previous studies. Pagani et al. [26] reviewed the MRI images of 466 MS patients and 279 healthy controls. In that study, a significant level of atrophy was detected in the right superior frontal gyrus, bilateral gyrus precentralis, and pars orbitalis section of the inferior frontal gyrus in MS patients compared to the control group. Similarly, in our study, bilateral gyrus precentralis volume decreased and bilateral volume loss was observed in the gyrus frontalis superior. The volume loss in the pars orbitalis part of the inferior frontal gyrus was not significant. In addition, in our study, the opercular part of the inferior frontal gyrus was significant in volume in the MS group compared to the control group. Among the findings of Pagani et al. [26], while the gyrus postcentralis, gyrus temporalis superior, and inferior were atrophied bilaterally in MS patients, the gyrus temporalis medius was significantly reduced only in the right hemisphere. Similarly, bilateral gyrus temporalis superior and right gyrus temporalis medius volumes were decreased in our study. The gyrus postcentralis volume was significantly reduced only on the right side. The change in the gyrus temporalis inferior was not significant.

In our study, the volume losses observed in the frontal, precentral gyrus, and precuneus of MS patients are similar to previous findings in the literature [27–29]. In addition, some studies have reported a decrease in left gyrus

temporalis volume in MS patients [27,30]. In our study, only a reduction in the volume of the gyrus temporalis superior from the left temporal region was observed. In addition, no significant difference was found between the right and left temporal gyrus in the MS group.

As a result of our research, a significant decrease was found in the volumes of 18 of 26 speech-related regions in MS patients. It was determined that whole brain volumes were decreased in the MS group compared to the control group. However, the volume of the right gyrus temporalis medius was increased. Some functions in brain regions may be more dominant on the right or left side. Studies show that the right hemisphere has various language functions, but when the right is surgically removed, the left hemisphere can undertake those tasks [31]. The left gyrus temporalis medius being affected due to MS may have caused a compensation mechanism to develop in the right gyrus temporalis medius, which is associated with similar tasks [32].

In this study, volume measurements of more speechrelated areas were performed in comparison to the few related studies conducted previously. Our study's findings will contribute to future research. While our results are noteworthy, future studies could involve larger sample sizes and broaden the research by exploring the variances among different types of multiple sclerosis. Moreover, conducting speech tests on patients and investigating the correlation between their performance and brain volume could yield valuable insights.

Declarations

The authors declare no conflict of interest, financial or otherwise. This study has no financial resources and no sponsors.

Acknowledgment/disclaimers/conflict of interest

The authors declare no conflict of interest, financial or otherwise. This study has no financial resources and no sponsors.

Ethical approval was obtained with the decision of the Malatya Turgut Özal University Non-Invasive Clinical Research Ethics Committee numbered 2022/18-173 and dated 01.11.2022.

References

- 1. Cameron MH, Nilsagard Y. Balance, gait, and falls in multiple sclerosis. Handbook of Clinical Neurology 2018; 159: 237-250. https://doi.org/10.1016/B978-0-444-63916-5.00015-X
- Abdel-Aziz K, Schneider T, Solanky BS, Yiannakas MC, Altmann DR et al. Evidence for early neurodegeneration in the cervical cord of patients with primary progressive multiple sclerosis. Brain 2015; 138 (6): 1568-1582. https://doi. org/10.1093/brain/awv086
- Walton C, King R, Rechtman L, Kaye W, Leray E et al. Rising prevalence of multiple sclerosis worldwide: insights from the Atlas of MS, third edition. Multiple Sclerosis Journal 2020; 26 (14): 1816-1821. https://doi.org/10.1177/1352458520970841
- Leray E, Moreau T, Fromont A, Edan G. Epidemiology of multiple sclerosis. Revue Neurologique 2016; 172 (1): 3-13. https://doi.org/10.1016/j.neurol.2015.10.006
- 5. Bradley WG. Bradley's Neurology in Clinical Practice. Dordrecht, the Netherlands: Elsevier; 2016.
- Conrad A, Coenen M, Schmalz H, Kesselring J, Cieza A. Validation of the comprehensive ICF core set for multiple sclerosis from the perspective of physical therapists. Physical Therapy & Rehabilitation Journal 2012; 92 (6): 799-820. https:// doi.org/10.2522/ptj.20110056
- Coenen M, Cieza A, Freeman J, Khan F, Miller D et al. The development of ICF Core Sets for multiple sclerosis: results of the International Consensus Conference. Journal of Neurology 2011; 258 (2011): 1477-1488. https://doi.org/10.1007/s00415-011-5963-7
- Hickok G, Poeppel D. Dorsal and ventral streams: a framework for understanding aspects of the functional anatomy of language. Cognition 2004; 92 (1-2): 67-99. https://doi. org/10.1016/j.cognition.2003.10.011
- Nasios G, Dardiotis E, Messinis L. From Broca and Wernicke to the neuromodulation era: insights of brain language networks for neurorehabilitation. Behavioural Neurology 2019; 2019 (1): 9894571. https://doi.org/10.1155/2019/9894571
- Baylor C, Yorkston K, Bamer A, Britton D, Amtmann D. Variables associated with communicative participation in people with multiple sclerosis: a regression analysis. American Journal of Speech-Language Pathology 2010; 19 (2): 143-153. https://doi.org/10.1044/1058-0360(2009/08-0087)
- Noffs G, Perera T, Kolbe SC, Shanahan CJ, Boonstra FMC et al. What speech can tell us: a systematic review of dysarthria characteristics in multiple sclerosis. Autoimmunity Reviews 2018; 17 (12): 1202-1209. https://doi.org/10.1016/j. autrev.2018.06.010
- Rusz J, Vaneckova M, Benova B, Tykalova T, Novotny M et al. Brain volumetric correlates of dysarthria in multiple sclerosis. Brain and Language 2019; 194 (2019): 58-64. https://doi. org/10.1016/j.bandl.2019.04.009
- Popescu V, Klaver R, Voorn P, Galis-de Graaf Y, Knol DL et al. What drives MRI-measured cortical atrophy in multiple sclerosis? Multiple Sclerosis Journal 2015; 21 (10): 1280-1290. https://doi.org/10.1177/1352458514562440

- Gronseth GS, Ashman EJ, Practice parameter: The usefulness of evoked potentials in identifying clinically silent lesions in patients with suspected multiple sclerosis (an evidence-based review): Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 2000; 54 (9): 1720-1725. https://doi.org/10.1212/WNL.54.9.1720
- Manjón JV, Coupé P. VolBrain: An online MRI brain volumetry system. Frontiers in Neuroinformatics 2016; 10: 30. https://doi. org/10.3389/fninf.2016.00030
- Mishra P, Pandey CM, Singh U, Gupta A, Sahu C et al. descriptive statistics and normality tests for statistical data. Annals of Cardiac Anaesthesia 2019; 22 (1): 67-72. https://doi. org/10.4103/aca.ACA_157_18
- Merson RM, Rolnick MI. Speech-language pathology and dysphagia in multiple sclerosis. Physical Medicine and Rehabilitation Clinics of North America 1998; 9 (3): 631-641. https://doi.org/10.1016/s1047-9651(18)30254-7
- Bauer HJ, Hanfeld F. Multiple sclerosis: its impact from childhood to old age. Major Problems in Neurology 1993; 26: 177. https://doi.org/10.1001/archneur.1996.00550020020005
- Davion JB, Lopes R, Jougleux C, Viard R, Dumont J et al. Brief International Cognitive Assessment for Multiple Sclerosis scores are associated with the cortical thickness of specific cortical areas in relapsing-remitting patients. Revue Neurologique 2022; 178 (4): 326-336. https://doi.org/10.1016/j. neurol.2021.06.014
- Moumdjian L, Feys P, van Asch P, Popescu V, Van Wijmeersch B et al. Effects of an individual 12-week community-located "start-to-run" program on physical capacity, walking, fatigue, cognitive function, brain volumes, and structures in persons with multiple sclerosis. Multiple Sclerosis Journal 2019; 25 (1): 92-103. https://doi.org/10.1177/1352458517740211
- Fenu G, Lorefice L, Arru M, Sechi V, Loi L et al. Cognition in multiple sclerosis: between cognitive reserve and brain volume. Journal of the Neurological Sciences 2018; 386 (2018): 19-22. https://doi.org/10.1016/j.jns.2018.01.011
- 22. Zorzon M, de Masi R, Nasuelli D, Ukmar M, Pozzi Mucelli R et al. Depression and anxiety in multiple sclerosis. A clinical and MRI study in 95 subjects. Journal of Neurology 2001; 248 (2001): 416-421. https://doi.org/10.1007/s004150170184
- 23. Dalgas U. Exercise therapy in multiple sclerosis and its effects on function and the brain. Neurodegenerative Disease Management 2017; 7 (Suppl. 6): 35-40. https://doi.org/10.2217/ nmt-2017-0040
- Johansson K, Schalling E, Hartelius L. Self-reported changes in cognition, communication and swallowing in multiple sclerosis: data from the Swedish multiple sclerosis registry and from a national survey. Folia Phoniatrica et Logopaedica 2021; 73 (1): 50-62. https://doi.org/10.1159/000505063
- 25. Hartelius L, Svensson P. Speech and swallowing symptoms associated with Parkinson's disease and multiple sclerosis: a survey. Folia Phoniatrica et Logopaedica 1994; 46 (1): 9-17. https://doi.org/10.1159/000266286

- Pagani E, Storelli L, Pantano P, Petsas N, Tedeschi G et al. Multicenter data harmonization for regional brain atrophy and application in multiple sclerosis. Journal of Neurology 2023; 270 (1): 446-459. https://doi.org/10.1007/s00415-022-11387-2
- Pagani E, Rocca MA, Gallo A, Rovaris M, Martinelli V et al. Regional brain atrophy evolves differently in patients with multiple sclerosis according to clinical phenotype. American Journal of Neuroradiology 2005; 26 (2): 341-346.
- Calabrese M, Rinaldi F, Grossi P, Mattisi I, Bernardi V et al. Basal ganglia and frontal/parietal cortical atrophy is associated with fatigue in relapsing-remitting multiple sclerosis. Multiple Sclerosis Journal 2010; 16 (10): 1220-1228. https://doi. org/10.1177/1352458510376405
- Prinster A, Quarantelli M, Orefice G, Lanzillo R, Brunetti A et al. Grey matter loss in relapsing–remitting multiple sclerosis: a voxel-based morphometry study. NeuroImage 2006; 29 (3): 859-867. https://doi.org/10.1016/j.neuroimage.2005.08.034

- Benedict RH, Zivadinov R, Carone DA, Weinstock-Guttman B, Gaines J et al. Regional lobar atrophy predicts memory impairment in multiple sclerosis. American Journal of Neuroradiology 2005; 26 (7): 1824-1831.
- Sholihah RA. Language and brain: neurological aspects in language acquisition. Muharrik-Jurnal Dakwah Dan Sosial 2022; 5 (1): 215-228. https://doi.org/10.37680/muharrik. v5i01.1069
- 32. Xu J, Lyu H, Li T, Xu Z, Fu X et al. Delineating functional segregations of the human middle temporal gyrus with resting-state functional connectivity and coactivation patterns. Human Brain Mapping 2019; 40 (18): 5159-5171. https://doi. org/10.1002/hbm.24763