1-1-2000

Congenital Chylothorax

NİLGÜN KÖKSAL
SULTAN DEMİR
MEHMET OKAN
CENGİZ GEBİTEKİN
IŞİK ŞENKAYA

Follow this and additional works at: https://dctubitak.researchcommons.org/medical

Part of the Medical Sciences Commons

Recommended Citation

KÖKSAL, NİLGÜN; DEMİR, SULTAN; OKAN, MEHMET; GEBİTEKİN, CENGİZ; and ŞENKAYA, IŞİK (2000) "Congenital Chylothorax," *Turkish Journal of Medical Sciences*: Vol. 30: No. 3, Article 18. https://doi.org/10.3906/sag-9907-4

Available at: https://dctubitak.researchcommons.org/medical/vol30/iss3/18

This Article is brought to you for free and open access by TÜBİTAK Academic Journals. It has been accepted for inclusion in Turkish Journal of Medical Sciences by an authorized editor of TÜBİTAK Academic Journals.
Congenital Chylothorax

Although chylothorax is an uncommon disorder, it is the most common cause of pleural effusion in the newborn infant. The majority of spontaneously occurring cases lack any known cause, while others occur secondary to thoracic and cardiovascular surgery and some are associated with lymphangiomatosis (1). It occurs twice as often in males, and the incidence has been reported as 1/10,000-15,000 (2). In this report, a male infant with congenital chylothorax who had ultrasonographically established left pleural and pericardial effusion in the prenatal period, is presented.

A 21-year-old primipara was referred to the perinatal unit of the Uludağ University Faculty of Medicine for evaluation of nonimmune hydrops that was detected during ultrasound examination at 38 weeks. The fetus was noted to have left pleural and pericardial effusion and subcutaneous edema. Moderate hydramnios was also present. Immune causes of fetal hydrops were excluded.

The infant boy was born by spontaneous vaginal delivery with a birth weight of 3000 g and Apgar scores of three and five at one and five minutes, respectively. Because of respiratory insufficiency he was intubated and mechanical ventilation was instituted. Physical findings revealed a depressed baby with respiratory difficulty and absent breath sounds in the left hemithorax. A chest roentgenogram showed a large left-sided pleural effusion which was confirmed by ultrasonography. One hundred eighteen milliliters of yellow-brown fluid was removed from the left chest by thoracentesis. The pleural fluid contained about 3860 white cells/mm³ with 90% lymphocytes, red blood cells 1.180/mm³. Total protein was 5.3 g/dl, glucose 179 mg/dl. The specific gravity was 1.015, and the pH of the fluid was 8. Gram stain showed no bacteria, and the culture was sterile after 7 days. Echocardiography showed no cardiac defect except pericardial effusion (4 mm) and a computed tomography of the chest showed pleural effusion only. Complete blood count showed a hemoglobin of 13.5 g/dl, hematocrit of 41%, white blood cell count of 13,780/mm³ with 64% segmented neutrophils, 32% lymphocytes and 4% eosinophils. Other laboratory investigations revealed normal urinalysis, blood urea nitrogen, creatinine, liver function tests, electrolytes, total protein (5.7 gr /dl), albumin (3.5 gr/dl), triglyceride (83 mg/dl), cholesterol (154 mg/dl), and glucose (122 mg/dl) levels. Blood gases demonstrated respiratory acidosis. Serologic tests for toxoplasma, rubella, cytomegalovirus and parvovirus (B-19) were negative. The karyotype was 46 XY.

In the first 24 hours, the infant required multiple thoracentesis and subsequently the placement of a chest tube into the left pleural space, which drained 180 ml of pleural fluid. Analysis of repeated samples of pleural fluid was similar to the original specimen. The infant was given prophylactic antibiotic treatment. He had a right focal seizure that was treated with phenobarbital on the 2nd day. Ultrasonography and cranial tomography showed intraventricular hemorrhage. Subsequently, the pleural fluid had a milky appearance with a high triglyceride level (1266 mg/dl) and the feedings were stopped. Total parenteral nutrition was initiated followed by a formula containing medium-chain triglyceride. Losses through the chest tube were replaced with fresh frozen plasma and
Congenital Chylothorax

The optimal treatment of congenital chylothorax has not been defined. Treatment is mainly conservative. In cases of chylothorax, feeding with formulas containing long-chain fatty acids is believed to lead to persistence of the pleural effusions by enhancing intestinal lymph flow. The basal flow of lymph in the thoracic duct can increase tenfold following a fatty meal, although smaller increases occur after a meal of protein or carbohydrate (1). It has been reported in animals that even water ingestion leads to increased lymphatic flow. Medium- or short-chain fatty acids, unlike other lipids containing long-chain fatty acids, bypass the intestinal lymphatics and are absorbed directly into the portal vein system, leading to a marked diminution in both volume and lipid concentrations of the pleural effusion (8). In many cases resolution of the chylothorax occurs spontaneously with time. The presumption is that collateral lymphatic channels develop. Repeated thoracenteses and mechanical ventilation may be needed in cases with respiratory distress. Chest tube drainage may be performed in persistent cases. When drainage remains persistent and copious, surgery may be necessary (5). Successful ligation of the thoracic duct in a case of congenital chylothorax was reported in 1957 by Randolph and Gross who, however, also sutured several small leaks in the duct (9). No lymphedema developed in our patient after ligation of the duct. Loss of electrolytes and protein in the pleural drainage may lead to decreased blood serum levels and the resultant hyponatremia or metabolic acidosis must be corrected. Because of the high concentration of lymphocytes in the fluid, lymphopenia can also occur and infection may follow (1). If the pleural effusion has not been arrested with medical management at the age of 6 weeks, exploratory thoracotomy should be performed, as in the case described here.

The prognosis of congenital chylothorax is good. Perinatal mortality is between 15 and 30 percent. Prematurity, accompanying pulmonary hypoplasia and development of nonimmune hydrops increase mortality (6). Recently, drainage has been performed in the fetus to try to prevent compression of the lungs and pulmonary hypoplasia (10).

The workup of a fetus with hydrothorax should include fetal karyotype determination, maternal antibody screen and viral studies, fetal echocardiography, and a thorough ultrasound examination to look for associated anomalies. In cases of congenital chylothorax, knowledge of the disease at birth revealed by antenatal diagnostic procedures could be life-saving and prevent severe asphyxia. Supportive mechanical ventilation is usually necessary because of either insufficient lung expansion, persistent fetal circulation or lung hypoplasia.
Resuscitation immediately after birth in the congenital form, supportive mechanical ventilation, parenteral nutrition and supplementation of noted fluid losses, lead to improvement in the final prognosis of chylothorax in the newborn.

References

