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1. Introduction
The livestock sector in Türkiye holds a significant position 
and potential among agricultural activities [1–3]. Türkiye, 
considered one of the most significant domestic breeding 
centers, also provides essential infrastructure for animal 
husbandry because of its geographical location and 
climatic conditions [4–7]. Sheep constitute 78.9% of the 
approximately 57 million sheep and goats in Türkiye.1 In 
this context, Türkiye emerges as a reservoir of an important 
livestock heritage, being home to 41 different sheep breeds.2 

Sheep breeding activities, which hold significant 
cultural importance in Türkiye, are commonly carried out 
under extensive conditions [2,8,9]. In Türkiye, it is relatively 
challenging to maintain yield and pedigree records in 
sheep breeding systems, which are primarily family-
owned. In 2005, the Ministry of Agriculture and Forestry 
General Directorate of Agricultural Research and Policies 
introduced the National Genetic Improvement Project 
for Small Ruminants at Breeders’ Conditions nationwide. 
Thanks to this breeding initiative, farms participating in 
the program systematically maintain their yield records and 
adhere to controlled mating programs as closely as possible. 
1Food and Agriculture Organization of the United Nations. Crops and livestock products [online]. Website https://www.fao.org/faostat/en/#data/QCL 
[accessed 20 January 2024]
2Food and Agriculture Organization of the United Nations. Breed data sheet [online]. Website https://www.fao.org/dad-is/browse-by-country-and-
species/en/ [accessed 20 January 2024]

However, the absence of the necessary infrastructure for 
controlled mating on some farms occasionally leads to 
inaccuracies in processing pedigree records. Moreover, it 
is almost impossible to obtain pedigrees from these farms 
due to the widespread practice of free mating on farms not 
affiliated with any breeding program.

Ensuring the provision of accurate information about 
ancestors in selection programs is crucial for estimating 
genetic parameters with precision. Therefore, accurate and 
reliable pedigree records maintained at livestock farms play 
a crucial role in ensuring the estimation of these parameters. 
It is possible to identify two types of pedigree errors on 
farms: incorrect pedigree information and incomplete 
(unknown) pedigree information [10]. The most critical of 
these errors is incorrect pedigree information. Inaccurate 
pedigree information leads to biased estimation of genetic 
parameters and breeding values in animal breeding 
programs, which, in turn, negatively affects genetic progress 
[11–13].

The most critical pedigree inaccuracies occur in 
situations such as large herd size, extensive breeding, and 
uncontrolled mating [14,15]. The utilization of molecular 
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genetic markers has enabled the elimination of missing 
pedigree information in enterprise records and the 
verification of pedigree information, thereby preventing 
errors [16–18]. Microsatellites and SNPs are the most 
commonly utilized genome-wide markers in paternity 
testing to confirm pedigree records among molecular 
genetic markers [16,19–21].

Breeding programs must seek solutions that can provide 
reliable pedigree information, especially in livestock 
activities such as sheep and goat breeding in extensive 
conditions. It is also important that these solutions are 
inexpensive, easy to implement, and accessible. Numerous 
studies have demonstrated that paternity test panels 
utilizing microsatellites in paternity tests for accurate 
pedigree records are effective, cost-effective, easy to use, 
and accessible [15,22–27]. 

In 2007, a breeding program was initiated to enhance 
fertility and lamb growth traits in Eşme sheep, a native 
breed in Western Anatolia. As a result of the scientific 
research activities conducted in this field, the Eşme breed 
was officially recognized as a national breed in 2020 [28–31]. 

The objective of the present study was to establish 
multiple microsatellite paternity test panels suitable for 
efficient, cost-effective, simple, and accessible paternity 
assessments in the Eşme sheep breed, which has gained 
significance in Western Anatolia.

2. Materials and methods
2.1. Animal material
A total of 2432 sheep from the Eşme breed were included in 
the study, comprising 2285 offspring from 16 breeder farms, 
along with 147 rams involved in a controlled mating program 
on these farms. Blood was collected from the rams during 
the breeding season and from the lambs during the lambing 
period. The blood was drawn from the jugular vein into 5-mL 
tubes containing K3EDTA using the appropriate technique. 
The collected DNA was stored at –20 °C until molecular 
genetic analyses were performed.
2.2. DNA isolation, polymerase chain reaction (PCR), and 
fragment analysis
A commercial DNA isolation kit (Applied Biological Materials 
Inc., Canada) was used to extract genomic DNA. After the 
DNA was isolated, its quality and quantity were assessed 
using a NanoDrop 2000 spectrophotometer manufactured 
by Thermo Scientific, USA.

For this research, 17 microsatellite markers recommended 
by the FAO [32] were used to create paternity test panels. 
Microsatellites with similar allele sizes were labeled with 
different fluorescent dyes (D2, D3, and D4) recognized by 
the Beckman GeXP device (Table 1). Two multiplex groups 
(Table 2) were then formed by considering the allele sizes and 
fluorescent markers of the microsatellites used in the study to 
enable the PCR of multiple microsatellites in the same well.

Table 1. Details of considered microsatellite loci [32].

Multiplex group Primer name 
(Accession no.)

Allelic range 
(Chr. no.) Label Primer sequence 

M1

BM8125
(G18475)

110–130
(OAR17) D3 CTCTATCTGTGGAAAAGGTGGG

GGGGGTTAGACTTCAACATACG
CSRD0247
(---)

209–261
(OAR14) D3 GGACTTGCCAGAACTCTGCAAT

CACTGTGGTTTGTATTAGTCAGG
HSC
(M90759)

267–301
(OAR20) D2 CTGCCAATGCAGAGACACAAGA

GTCTGTCTCCTGTCTTGTCATC
BM1329
(G18422)

145–161
(OAR6) D2 TTGTTTAGGCAAGTCCAAAGTC

AACACCGCAGCTTCATCC
MAF214
(M88160)

174–282
(OAR16) D4 GGGTGATCTTAGGGAGGTTTTGGAGG

AATGCAGGAGATCTGAGGCAGGGACG
McM0527
(L34277)

165–179
(OAR5) D3 GTCCATTGCCTCAAATCAATTC

AAACCACTTGACTACTCCCCAA
OarFCB128
(L01532)

96–130
(OAR2) D2 ATTAAAGCATCTTCTCTTTATTTCCTCGC

CAGCTGAGCAACTAAGACATACATGCG
OarJMP29
(U30893)

96–150
(OAR24) D4 GTATACACGTGGACACCGCTTTGTAC

GAAGTGGCAAGATTCAGAGGGGAAG

M2

BM1818
(G18391)

258–270
(23) D4 AGCTGGGAATATAACCAAAGG

AGTGCTTTCAAGGTCCATGC
D5S2
(Z22743.1)

190–210
(---) D4 TACTCGTAGGGCAGGCTGCCTG

GAGACCTCAGGGTTGGTGATCAG
INRA0132
(EF507691.1)

152–172
(20) D4 AACATTTCAGCTGATGGTGGC

TTCTGTTTTGAGTGGTAAGCTG
INRA0023
(X67830)

195–225
(3) D3 GAGTAGAGCTACAAGATAAACTTC

TAACTACAGGGTGTTAGATGAACTC
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The PCR was conducted in a total volume of 25 μL, 
using approximately 50 ng of DNA. The PCR master mix 
was composed of 0.10 μM primer, 0.20 mM dNTPs, 2.0 mM 
MgCl2, 1X PCR buffer, and 1 unit of Taq DNA polymerase. 
Since the microsatellites used in the study had different 
annealing temperatures, the touch-down PCR method [33] 
was employed (Table 2).

Fragment analysis of fluorescently labeled microsatellites 
was performed on a Beckman Coulter GeXP genetic analyzer 
in accordance with the manufacturer’s recommendations.
2.3. Setting up paternity test panels
The 17 microsatellite markers used in the study were ranked 
from high to low based on polymorphic information 
content (PIC) and probability of exclusion (PE) values. 
Microsatellites with lower values were then added one by 
one to the microsatellite marker with the highest PIC and 
PE values to form 16 different paternity test panels (Table 3).
2.4. Statistical analysis 
GenALEX genetic analysis software [34] was used to define 
allele number (Na), effective allele number (Ne), observed 
heterozygosity (Ho) and expected heterozygosity (He) 
values, and Hardy–Weinberg equilibrium. Additionally, 
PIC, PE, probability of identity (PI), probability of combined 
exclusion (CPE), combined probability of identity (CPI), 
mean proportion of genotyped individuals (GR), and null 
allele frequency (F(Null)) values were obtained using the 
program CERVUS3 [35–37]. Formulas for the paternity test 
statistics are presented in the supplementary file (S1). The 
PROC CORR procedure in the statistical software package 
SAS [38] was used to analyze the phenotypic correlations 
among PIC, PE, and PI values.
3Marshall TC. (1998/2006). Cervus 3.0 [online]. Website https://www.fieldgenetics.com/ [accessed 02 July 2008]

3. Results
Table 4 presents the molecular genetic variability findings 
related to paternity testing for each microsatellite used in 
the investigation.

Across the 17 microsatellites analyzed, a total of 481 
alleles were observed. Notably, the MAF214 locus exhibited 
the highest number of alleles (57), while the OARCP34 locus 
exhibited the lowest number of alleles (19). The PIC values 
derived from the examined microsatellites exhibited a range 
exceeding 0.75, with an overall mean value of 0.85 for this 
parameter. The average values calculated for both Ho and 
He across all examined loci were 0.72 and 0.86, respectively. 
The results of the χ2 test for Hardy–Weinberg equilibrium 
indicate that the allele distributions of all microsatellites 
used in the study were not in this equilibrium. The highest 
PE value, which is a crucial parameter in resolving parentage 
disputes in paternity test studies, was observed at the 
CSRD247 locus. The PI values, which are used to determine 
the likelihood of random genetic profile matching between 
pairs of individuals examined in the study, ranged from 
1.29E–02 to 6.51E–02. Additionally, null allele frequencies 
obtained for all investigated microsatellites were less than 
0.20.

Phenotypic correlation coefficients among PIC, PE, and 
PI in the study are provided in Table 5.

When examining Table 5, a high positive correlation 
coefficient is found between PIC and PE, while a high 
negative correlation coefficient is found between PE 
and PI.

Table 6 illustrates the statistical outcomes of paternity 
test panels constructed using varying numbers of 
microsatellites, based on their PIC and PE values.

OarAE0129
(L11051)

135–165
(5) D2 AATCCAGTGTGTGAAAGACTAATCCAG

GTAGATCAAGATATAGAATATTTTTCAACACC
OarCP34
(U15699)

112–130
(OAR3) D4 GCTGAACAATGTGATATGTTCAGG

GGGACAATACTGTCTTAGATGCTGC
OarFCB193
(L01533)

96–136
(OAR11) D3 TTCATCTCAGACTGGGATTCAGAAAGGC

GCTTGGAAATAACCCTCCTGCATCCC
OarFCB20
(L20004)

92–118
(OAR2) D2 AAATGTGTTTAAGATTCCATACAGTG

GGAAAACCCCCATATATACCTATAC
OarFCB304
(L01535)

148–190
(OAR19) D3 CCCTAGGAGCTTTCAATAAAGAATCGG

CGCTGCTGTCAACTGGGTCAGGG

Table 1. (Continued.)

Table 2. Touch-down PCR conditions.

Multiplex
group

First
denaturation Denaturation Annealing Extension Cycle Final

extension

M1 95 °C
(5 min)

95 °C
(40 s)

60–50 °C
(40 s)

72 °C
(1 min) 34 72 °C

(10 min)

M2 95 °C
(5 min)

95 °C
(40 s)

63–54 °C
(40 s)

72 °C
(1 min) 30 72 °C

(10 min)
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Table 3. Paternity test panels (P) created according to the individual PIC and PE values of microsatellites.

Microsatellite Panels
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

CSRD0247 PIC 0.91 * * * * * * * * * * * * * * * *PE 0.71

HSC PIC 0.90 * * * * * * * * * * * * * * * *PE 0.68

INRA0023 PIC 0.90 * * * * * * * * * * * * * * *PE 0.68

MAF214 PIC 0.88 * * * * * * * * * * * * * *PE 0.65

BM8125 PIC 0.87 * * * * * * * * * * * * *PE 0.62

BM1818 PIC 0.87 * * * * * * * * * * * *PE 0.63

OarFCB20 PIC 0.86 * * * * * * * * * * *PE 0.61

OARJMP29 PIC 0.86 * * * * * * * * * *PE 0.60

BM1329 PIC 0.86 * * * * * * * * *PE 0.60

INRA0132 PIC 0.86 * * * * * * * *PE 0.60

OARFCB128 PIC 0.85 * * * * * * *PE 0.58

OarAE0129 PIC 0.84 * * * * * *PE 0.56

MCM0527 PIC 0.83 * * * * *PE 0.54

OarFCB304 PIC 0.83 * * * *PE 0.55

OarFCB193 PIC 0.80 * * *PE 0.49

OarCP34 PIC 0.78 * *PE 0.45

D5S2 PIC 0.78 *PE 0.45
No. of microsatellites in the panels 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

PIC: polymorphic information content, PE: probability of exclusion, * microsatellites used in the panel.

Table 4. Genetic variability and paternity analysis parameters of microsatellites.

Loci Na Ne Ho He PIC PE PI HWE F(Null)
CSRD0247 39 11.86 0.79 0.92 0.91 0.713 1.29E-02 *** 0.071
INRA0023 23 10.23 0.66 0.90 0.90 0.682 1.59E-02 *** 0.159
HSC 27 10.39 0.70 0.90 0.90 0.680 1.64E-02 *** 0.130
MAF214 57 9.03 0.74 0.89 0.88 0.647 2.08E-02 *** 0.096
BM1818 31 8.18 0.73 0.88 0.87 0.625 2.31E-02 *** 0.085
BM8125 28 8.42 0.71 0.88 0.87 0.623 2.39E-02 *** 0.112
OarFCB20 23 7.95 0.80 0.87 0.86 0.608 2.66E-02 *** 0.035
BM1329 35 7.56 0.59 0.87 0.86 0.601 2.73E-02 *** 0.184
INRA0132 20 7.58 0.74 0.87 0.86 0.597 2.78E-02 *** 0.074
OARJMP29 34 7.72 0.72 0.87 0.86 0.598 2.83E-02 *** 0.095
OARFCB128 27 7.50 0.71 0.87 0.85 0.579 3.15E-02 *** 0.097
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The assessment of paternity test panels involved an 
analysis of key parameters, including the mean number 
of alleles (MNa), mean expected heterozygosity (MHe), 
mean polymorphic information content (MPIC), CPE, 
and CPI. Upon scrutiny, Panel 4 exhibited the highest 
MNa value, while Panel 1 showcased the highest MHe and 
MPIC values. Noteworthy is the attainment of a 99.99% 
CPE value for Panel 8. The trajectory of CPE values 
demonstrated a rapid escalation until Panel 4, followed by 
a moderate incline from Panel 5 onward. Variations in the 
CPI values ranged from 2.11E–04 (Panel 1) to 7.73E–27 
(Panel 16), with Panel 16 representing the peak.

4. Discussion
Upon analyzing the MNa, Ho, He, and PIC values obtained 
from the study, it is evident that the microsatellites used 
demonstrate a significantly high level of polymorphism. 
Particularly noteworthy is the substantially higher MNa value 
obtained in comparison to several prior studies on the subject 
[39–44]. Conversely, the results related to Ho, He, and PIC 
values were lower compared to those in some studies [45–47] 
and higher than those in others [39,41,48,49]. The observed 
disparities in genetic polymorphism statistics compared 
to the literature are presumed to arise from variations in 
both breed characteristics and the microsatellites used. The 
elevated PIC value, which is crucial in formulating paternity 
test panels, observed in the present study notably enhanced 
the efficacy of the constructed paternity test panels within 
the study’s framework. The obtained χ2 test results show that 
the allele distributions of all microsatellite loci are not in 
Hardy–Weinberg equilibrium. In previous studies [39–43], 
similar situations to the findings regarding compliance with 
Hardy–Weinberg equilibrium have been reported. This can 

be considered a typical finding considering the selection 
studies conducted in the populations under investigation.

The individual PE values of microsatellites, a critical 
parameter for designing effective paternity test panels 
and ensuring their reliability, were derived in the present 
study. Notably, these values exceed those documented in 
prior research on the subject [15,25,50,51]. The correlation 
between PE and PI is significantly important in the context 
of paternity testing. Upon analyzing this relationship, a 
strong negative correlation of –0.968 is observed. Although 
no definitive mathematical relationship exists, a lower 
PI value corresponds to a higher PE value. Conversely, a 
higher PI value indicates greater genetic similarity among 
the individuals under study, thereby complicating the 
exclusion of nonpaternal candidates in paternity tests. 
When analyzing the PI values obtained in the study, it is 
observed that these values fall within the ranges outlined 
in the literature [23–25,51,52].

On the other hand, the null allele frequencies 
determined for all microsatellites used in the study were 
lower than the critical threshold (0.20) defined by Dakin 
and Avise [53]. Given the parameters of PIC, PE, and PI 
and the null allele frequencies derived from the study, it 
was ascertained that all microsatellites used can be reliably 
incorporated into paternity test panels. Upon analyzing 
the PIC and PE values obtained from the microsatellites 
used, a significant positive correlation (0.998) between 
these parameters was observed. Consequently, these 
metrics were prioritized as primary criteria in formulating 
paternity test panels within the study. It is noteworthy that 
all CPI values obtained for the constructed paternity test 
panels fall within the range reported by Waits [54]. This 
observation suggests dissimilarity in genetic characteristics 

OarAE0129 23 6.62 0.67 0.85 0.84 0.556 3.59E-02 *** 0.118
OarFCB304 28 6.41 0.77 0.84 0.83 0.547 3.88E-02 *** 0.039
MCM0527 21 6.51 0.67 0.85 0.83 0.541 3.94E-02 *** 0.117
OarFCB193 26 5.28 0.80 0.81 0.80 0.493 4.89E-02 *** –0.007
OarCP34 19 5.09 0.83 0.80 0.78 0.448 6.38E-02 *** –0.024
D5S2 20 5.03 0.61 0.80 0.78 0.446 6.51E-02 *** 0.138
Overall Mean 28.29 7.73 0.72 0.86 0.85

Na: number of alleles, Ne: number of effective alleles, Ho: observed heterozygosity, He: expected heterozygosity, PIC: polymorphic 
information content, PE: probability of exclusion, PI: probability of identity, HWE: Hardy-Weinberg Equilibrium (* p < 0.05, ** p < 0.01, 
*** p < 0.001), F(Null):  null allele frequency.

Table 4. (Continued.)

Table 5. Phenotypic correlation coefficients among PIC, PE, and PI.

PIC PE
PE 0.998***

PI –0.967*** -0.968***

PIC: polymorphic information content, PE: probability of exclusion, PI: probability of identity, ***: p <0.001.
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within the study cohort, thereby increasing the likelihood 
of higher exclusion probabilities.

The minimum CPE value reported in the literature to 
accurately identify the true father is 0.999 [18,55–57]. 

5. Conclusion
Upon scrutinizing the CPE values across the 16 distinct 
paternity test panels devised within the study, it is discerned 
that Panels 1–5 exhibit inadequately low exclusion 
probability values, making them unsuitable for use in 
paternity testing endeavors. However, panels containing 7 
or more microsatellites had a PE value above 0.999, making 
them suitable for use in paternity tests in Eşme sheep. 
However, cost, ease of analysis, and reliability are crucial 
factors in paternity tests. In this context, Panel 6, which 
consists of 7 microsatellites, stands out. With the use of this 
panel, it was revealed that a lower-cost, reliable, and easier-
to-analyze test can be performed compared to other panels.

Accurate and reliable acquisition of genetic parameters 
is of paramount importance in animal breeding programs. 
Instances of errors in pedigree records, which are common 
in animal breeding, can significantly compromise the 
accuracy of genetic parameter estimations. This, in turn, 
undermines the efficacy of selection processes, potentially 
hindering the realization of desired genetic progress. 
Consequently, the increasing significance of paternity tests 
within breeding programs is evident, serving as crucial tools 
to mitigate inaccuracies and enhance the effectiveness of 
genetic management strategies. The most tangible problem 
of the breeding programs conducted in small ruminant 
breeding models, such as in Türkiye, where small ruminant 

breeding is primarily done under extensive conditions, 
is ensuring the accuracy of the results reported in hand-
mating practices and correctly identifying the parents. In 
the present study, which was conducted on a very large 
population, the effectiveness of the microsatellites used 
was demonstrated, and recommendations for paternity 
test panels with fast, economical, and high accuracy were 
presented. The valuable findings obtained will make a 
significant contribution to solving the paternity test issue 
under breeders’ conditions in comprehensive projects 
such as the National Genetic Improvement Project for 
Small Ruminants at Breeders’ Conditions conducted by 
the Ministry of Agriculture and Forestry.
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Table 6. Genetic variability and paternity analysis parameters for paternity test panels.

Panels NMP MNa MHe MPIC CPE CPI GR (%)
1 2 33.00 0.91 0.9033 0.9079844 2.11E-04 92.46
2 3 29.67 0.91 0.9008 0.9707122 3.35E-06 90.80
3 4 36.50 0.90 0.8958 0.9896706 6.96E-08 92.33
4 5 34.80 0.90 0.8909 0.9961068 1.67E-09 92.97
5 6 34.17 0.89 0.8874 0.9985402 3.86E-11 92.94
6 7 32.57 0.89 0.8839 0.9994286 1.03E-12 92.57
7 8 32.75 0.89 0.8808 0.9997701 2.91E-14 93.16
8 9 33.00 0.89 0.8783 0.9999082 7.94E-16 92.87
9 10 31.70 0.89 0.8762 0.9999630 2.21E-17 93.30
10 11 31.27 0.88 0.8741 0.9999845 6.94E-19 93.54
11 12 30.58 0.88 0.8709 0.9999931 2.49E-20 93.35
12 13 29.85 0.88 0.8679 0.9999968 9.81E-22 93.57
13 14 29.71 0.88 0.8652 0.9999986 3.81E-23 93.83
14 15 29.47 0.87 0.8607 0.9999993 1.86E-24 94.07
15 16 28.81 0.87 0.8556 0.9999996 1.19E-25 94.29
16 17 28.29 0.86 0.8509 0.9999998 7.73E-27 94.34

NMP: number of microsatellites in the panel, MNa: mean number of alleles, MHe: mean expected heterozygosity, MPIC: mean 
polymorphic information content, CPE: combined probability of exclusion, CPI: combined probability of identity, GR: mean proportion 
of the genotyping individuals.
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Allele number (Na), effective allele number (Ne), observed 
heterozygosity (Ho), expected heterozygosity (He) and Hardy-
Weinberg equilibrium (HWE) were obtained using the GenALEX 
analysis program [1], following the equations provided in the 
literature [2-4].

Mathematical formulas for Na, Ne, Ho, He and chi-square for 
HWE
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In the formula Nai = total number of alleles at locus i, Xi = mean 
number of alleles at locus i, r = total number of loci studied, 
Ho = observed heterozygosity, Nij = number of heterozygous 
individuals, N = total number of individuals analysed, 
He=expected heterozygosity, Pi=allelic frequency.

Polymorphic information content (PIC) values were calculated 
using the formula reported by Botstein et al. [5] with the Cervus 
program [6-9].
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In the formula PIC=polymorphic information content, 
pi=number of alleles at ith locus, n=number of alleles.
Probability of exclusion (PE), combined probabilities of exclusion 
(CPE) were calculated in the Cervus programme [6-9] using 
formulae described in the literature [10].
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In the formula, PE = exclusion probability, h = number of 
heterozygotes, H = number of homozygotes, CPE = combined 
exclusion probability.

The probability of identity (PI) was calculated in the Cervus 
programme [6-9] using the formulae described in the literature 
[11].
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where pi and pj are the frequencies of the ith and jth alleles and i ≠ j

Pearson correlation coefficient was calculated using the following 
formula in SAS [12] statistical package programme. 
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Where cov is the covariance, σ is the standard deviation of X, and 
σ is standard deviation of Y.”
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