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was not the primary site of freeze injury when slow freezing 
took place [36,37]. Lippi [16] reported that freeze/thawing 
did not lyse leukocytes completely. In the current study, 
flow cytometric analysis revealed that most leukocytes 
were intact even though morphological changes were 
occurred (Figure 3). There was evidence that centrifugation 
of chemical-lized blood could harvest nuclear pellets [17, 
18]. This could be due to the organization of nDNA by 
histone proteins called chromatin in the interphase cells 

[38–40]. This organization of nDNA leads to an increase in 
molecular weight; thereby, centrifugation enables organized 
nDNA in the lysed fraction to harvest in the pellet (Figure 
2c). Therefore, intact leukocytes or organized DNA in lysed 
leukocytes in FTB can be centrifuged and washed before 
DNA isolations. This application can be used for the desired 
DNA isolations with high-quality and high-quantity.

DNA samples with high-quality and high-quantity 
are desired for successful downstream applications such 

Figure 3. Flow cytometry analysis of fresh (a) and freeze-thawed (b) blood samples. A representative result is shown; the 
experiment was repeated five times, but similar results were obtained.

Figure 4: Quantities and qualities in the isolated DNA samples. (a) DNA concentrations, (b) A260/A230 ratios, and (c) A260/A280 
ratios in the isolated DNA samples in each group. * indicates p < 0.05, ** indicates p < 0.01, and *** indicates p < 0.001.

Figure 5. nDNA and mtDNA levels in the isolated DNA samples. nDNA level 
(a) and mtDNA level (b) are shown, which are obtained by 2–∆∆Ct method 
based on CtTERT-ND1 and CtND1-TERT, respectively. * and ** indicate p < 0.05 and p 
< 0.01 statistically significant levels, respectively.
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as SNP genotyping, PCR, and sequencing [1,28,41–43]. 
Here, it was shown that harvesting two-volume of FTB by 
centrifugation led to obtaining DNA with higher quantity 
and quality by using the same materials with one-volume 
of FTB (Figure 4a). This could be due to harvesting more 
genomic sources and eliminating hemoglobin/EDTA in 
lysed blood. Interestingly, TE washing of FTB led to a 
decrease in the isolated DNA yield. TE might decrease 
the DNA binding properties to the silica column or 
increase the lysis of the freeze-thaw-injured leukocytes. 
For a high-quality DNA sample, A260/A280 and A260/A230 
ratios should be ~1.8 and 2-2.2, respectively [28]. A260/A230 
ratio decreases in the presence of contaminants including 
EDTA, guanidine HCl (used for DNA isolations), 
lipids, carbohydrates, phenol, or salts [44]. Even though 
centrifugation and washing of the FTB had no significant 
effect on A260/A280 ratios, these applications significantly 
increased A260/A230 ratios, indicating contaminant-free 
DNA in all tested groups (Figure 3c). This might be due 
to the elimination of hemoglobin and EDTA found in the 
blood tubes at the beginning of DNA isolation with the 
pretreatments.

In general, DNA purifications from fresh or FTB, 
nDNA, and mtDNA, which compose total DNA, are 
isolated together,. When one target is required, the other 
DNA source is waste [45]. Otherwise, when a special study 
such as mtDNA copy number research has been carried 
out, mtDNA and nDNA levels are important [46–50]. 
Therefore, the effect of centrifugation or washing on 
mtDNA/nDNA ratios in the isolated DNA samples was 
checked. It should be expected that the mtDNA level might 
decrease due to ice-induced cell lysis and centrifugation 
[14, 29]. However, it was shown that mtDNA levels 
did not decrease in the centrifuge and washing groups 
(Figure 5b). Flow cytometry analysis shed light on this 
situation (Figure 3). It was shown that most of the cells 

were intact in FTB even morphological and subcellular 
differentiations occurred (Figure 2). This finding was also 
reported by Lippi [16]. Lippi reported that freeze/thawing 
did not lyse leukocytes completely. The remaining intact 
leukocytes in the pellet might be the source of mtDNA. 
Furthermore, direct centrifugation increased mtDNA 
levels in isolated DNA samples (Figure 5b). It is suggested 
that hemoglobin forms insoluble hemoglobin complexes 
and decreases the saturation of silica membrane, which 
results in decreasing DNA yield and purity. Decreasing 
hemoglobin concentration and EDTA in the tubes might 
increase membrane saturation, resulting in increased 
mtDNA capturing. Water and PBS washing of FTB did 
not affect the isolated mtDNA/nDNA levels (Figure 5). 
However, TE washing of FTB decreased the mtDNA levels 
in the isolated DNA, where nDNA enriched almost 2-fold 
(Figure 5a). It should be noted that TE washing of FTB 
resulted in almost two-fold decrease in DNA yield (Figure 
4a). Therefore, it can be concluded that TE washing of FTB 
did not affect nDNA amount in total; however, it caused a 
decrease in the mtDNA level. This can be clearly shown in 
qPCR analysis (Figure 5). TE might affect the binding of 
mtDNA to the column membrane or cause lysis of freeze-
injured leukocytes in FTB, leading to loss of mitochondria 
during the TE washing steps.

Previous studies have shown that freeze-thawing causes 
double-stranded breaks (DSBs) in genomic DNA. An 
earlier study revealed the marginated chromatin patterns 
and nuclear ice crystals in the frozen cells [51]. Trusal et 
al. [35] showed chromatin distribution and disruption in 
frozen (–20°C ) bovine endothelial cells. It was reported 
that freeze-thaw cycles increased DNA degradation [52]. 
A recent study reported that the cryoprotectant dimethyl 
sulfoxide (DMSO) protected DNA from ice-induced DSBs 
[53]. Therefore, the effects of centrifugation and washing 
of FTB on isolated DNA integrity were investigated. It was 
shown that direct centrifugation of one and two-volume 
of FTB and elimination of supernatant (hemoglobin/
EDTA e.g) lowered isolated DNA integrity (Figure 6). 
This could be due to the elimination of supernatant, where 
hemoglobin and EDTA levels decreased significantly. 
This might increase column binding and capture of the 
fragmented DNA. However, all washing applications of 
FTB did not affect isolated DNA integrity. In the washing 
steps, fragmented DNA could be lost, and thereby DNA 
integrity did not change.

A limitation of the study is that a commercial DNA 
isolation kit was used in the present study. Different DNA 
isolation kits could be used to check achieved results. 
However, a lot of current DNA isolation kits use column-
based DNA isolation. In this study, a column-based DNA 
isolation kit was used, which indicates that similar results 
could be obtained.

Figure 6. DNA integrity levels in the isolated DNA samples. * 
indicates p < 0.05, ** indicates p < 0.01.
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In conclusion, centrifugation and washing of FTB 
can be used to wash and harvest intact leukocytes and 
lysed nuclear pellet in FTB as a pretreatment in DNA 
purifications. These applications can be used to obtain 
high-quality and high-quantity DNA samples. When 
mtDNA/nDNA levels and DNA integrity are considered, a 
relevant application described in the study can be used and 
improved in light of the current study.
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