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Abstract: Automated voice disorder systems that distinguish pathological voices from healthy ones have been developed
with the aid of machine learning methods. Both clinicians and patients can benefit from these systems as they provide
many advantages, compared to the invasive techniques. These systems can produce binary (healthy/pathological) or
multiclass (healthy/selected pathologies) decisions. However, multiple disorders might exist in an individual’s voice.
Multilabel classification should be considered in such cases. By this time, only a single report is available on this topic,
where hand-crafted features were used, and a data augmentation technique was utilized to overcome class imbalances.
In this study, a similar experimental setup is followed to investigate the suitability of raw voice signals as inputs for
multilabel classification. A deep learning model which consists of residual blocks and a novel gating mechanism is
proposed. The gating mechanism weighs the channels of a residual block’s output based on both its output and the
previous layer’s output. Using a SincNet filterbank that operates directly on the raw waveform as the initial layer, 0.99
accuracy and 0.98 F1 score were observed for natural /a/ vowels of Saarbruecken Voice Database with time domain
augmentation to balance the class samples. On the other hand, reducing the number of augmented samples decreased
the performance for both systems, indicating the need for a balanced dataset to avoid oversampling underrepresented
classes. The proposed architecture performed consistently better than ResNet18 with deep connected attention, which
verified the effectiveness of the proposed gating mechanism.

Key words: Convolutional neural network, deep learning, multilabel classification, voice pathology

1. Introduction
Speech is the most natural way of communication between people. It is a naturally information-rich signal,
including speaker identity, sex, language, and emotion. It even includes information regarding the mental health
status of the speaker [1]. Abnormal changes in the human voice generation system may lead to voice disorders.
An earlier study conducted in United States reported that about 30% of the general population have experienced
a voice disorder during their lifetime [2]. For teachers, the prevalence goes up to 58%, indicating that voice
disorders are more common for professional groups who may overuse their voice such as teachers, singers, and
actors. Despite the fact that voice disorders are very common, its diagnosis is difficult due to several factors
stated in several studies [3–6]. Absence of standardized terminology, subjective evaluation, symptoms ignored
by patients, difficult and expensive clinical processes are among those factors.

Automated speech pathology detection aims to solve the abovementioned difficulties with the aid of
machine learning. Modern machine learning, and more specifically deep learning, algorithms have made huge
impacts in many diverse areas. Voice signal analysis for health is an emerging topic where the researchers aim
∗Correspondence: gdisken@atu.edu.tr
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to develop systems that will objectively and accurately detect disorders and diseases. Recent surveys showed
that there is an active and increasing research interest on this topic, with a particular emphasis on deep learning
[3, 6–8].

Popular datasets for automated voice disorder detection are Saarbruecken Voice Database (SVD), Mas-
sachusetts Eye and Ear Infirmary (MEEI), Arabic Voice Pathology Database (AVPD), and VOice ICar fEDerico
II (VOICED). Details and a metaanalysis for SVD, MEEI and AVPD sets can be found in [9] and details of
the VOICED set can be found in [10]. SVD is one of the widely used datasets, and it is also utilized in this
study. The SVD set provides multilabels, i.e. multiple voice disorders are present in the same individual. The
majority of the reported studies in automated voice disorder detection area focused on binary classification
(healthy or pathological). The pathological class can be a single disorder or can consist of a selected subset of
disorders such as dysphonia, laryngitis, or it can consist of all available disorders for the dataset (for instance,
71 pathologies are available for the SVD dataset). A recent study [11] considered multiple voice disorders in
the same individual, which reflects real-life scenarios, thus has a practical importance. Besides that, there is no
other report regarding multilabel voice disorder detection, to the best of the author’s knowledge. The primary
reason for this may be the limited data. In [11], data augmentation was applied to reduce imbalanced classes.
Another issue with the multilabel classification is that the system must detect all labels of a given sample to
achieve a perfect score. Missing one or more labels will decrease the performance; hence it is a relatively harder
task compared to single label or binary classification tasks.

In this study, the same multiclass classification with multilabel conditions used in [11] is investigated for
deep learning models based on ResNet [12] style blocks. A novel gating mechanism between residual blocks
proposed in this study. Proposed architecture directly operates on raw waveforms, eliminating the feature
extraction processes contrary to the vast amount of the studies in the related literature. Using raw waveforms
produced state-of-the-art results for various speech related studies such as speech recognition [13], speaker
recognition [14]. For voice disorder detection, raw waveforms were considered in few studies [15–17]. However,
these studies used speech frames as the input to the deep models. In this study, entire utterances are used as
inputs, without dividing them into short segments. To verify the effectiveness of the proposed gating technique,
ResNet18 with deep connected attention (DCA) model is used for comparison. DCA was proposed in [18] and
applied to voice disorder detection in [19]. Also in [19], it was reported that ResNet18 generally achieved a
higher performance compared to ResNet34 and ResNet50 models; hence, ResNet18 was chosen as a competitive
candidate for assessing the performance of the proposed approach.

The highlights and contributions of this study can be summarized as follows:

• Raw waveforms are directly fed to deep models for multilabel multiclass voice disorder classification.
To the best of the author’s knowledge, this is the first study to utilize raw wave for multilabel voice
disorder classification.

• A novel gating mechanism is proposed. The experimental results showed that the proposed method
can achieve better results compared to deep connected attention method.

• Compared to the hand-crafted features [11], which also forms the basis of this study, better perfor-
mances were observed with raw waveforms for the augmented dataset. Similar performances were observed
when the number of augmented samples were reduced.
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The rest of the paper is organized as follows: Section 2 reviews some of the most recent studies on
automated voice disorder detection. Section 3 proposes the deep model used in this study. Section 4 gives the
details of the experimental setup including the SVD dataset and the obtained results. The experimental results
are discussed in Section 5 and possible future research topics are mentioned. Finally, Section 6 concludes the
paper.

2. Related work
Many different hand-crafted features have been proposed for voice pathology detection. Similarly, various
machine learning algorithms have been used for classification. In this section, some of the most recent studies
are addressed and then difficulties in this particular research topic are discussed briefly. The motivation behind
this study is given at the end of this section.

In [20], convolutional neural networks (CNNs) were used for healthy-pathological classification (six
pathologies from SVD dataset). Spectrograms extracted from sustained vowel /a/ at neutral pitch were used
as inputs in this case. The reported values were 0.77 for accuracy and 0.78 for F1 score. Convolutional deep
belief network was used in a following study [21] to pretrain weights of CNN; however, the classification accuracy
decreased to 0.71. CNN and long short-term memory (LSTM) models were compared in [22] and they performed
similarly, where the inputs were 27 dimensional vectors consists of various hand-crafted features. In [23–26],
many different hand-crafted features were also used. VoiceLens is a system that combines deep learning based
features with hand-crafted features [27] which produced 97.5% accuracy for healthy and six different pathology
classes. Octave scaled spectrogram is used in [28] as input to pretrained ResNet34 model, 96.11% accuracy
was reported. Pretrained VGG-19 and SVM were employed in [29] to detect voice disorders using /i/ vowels
from SVD dataset. Stacked sparse autoencoder was used in [30] for VOICED dataset. CNN-LSTM model with
sinusoidal rectified unit activation was proposed in [31] for multiclass classification. Bi-LSTM with constant-Q
cepstral coefficients was found to be superior to MFCCs in [4]. Self-attention based LSTM was proposed in
[32] where severities of pathological voice were classified. MFCCs and spectrograms were used as inputs for
multibranch CNN model to detect dysphagia in [33].

Raw speech and glottal flow waveforms were used as input to CNN architectures [15], and obtained better
results with glottal flow features. Similar results were observed in [34] for both SVD and MEEI datasets. Raw
waveforms were also used in [35] where SincNet [36] was found to be more effective than traditional convolutional
layers for FEMH Speech Disorders database. Raw waveform segments were fed into 1-D convolutional layers in
[16] and severity of pathological voice was classified. In [17], raw wave segments were used as inputs to a deep
model which consists of CNN, LSTM, and dense (fully-connected) layers. An overall accuracy of 68.08% was
observed for binary classification considering healthy and pathological classes (consists of all 71 pathologies)
based on the experiments conducted on the sustained vowel /a/ of the SVD data. Another model with raw
inputs was proposed in [37] where the data was transformed into 100 × 100 matrix to fed 2-D convolutional
layers.

Log mel-frequency spectral coefficients were used to train DCA ResNet model [19] which detects healthy
and pathological (four different pathologies) classes. The DCA part is the same as squeeze-excitation block [38].
The attention modules between the adjacent ResNet blocks were connected to prevent frequent information
changes between the attention modules. Multimodal transmission network [39] is another architecture that
controls the information flow through the network via multimodal transfer module. Other multimodal studies
include [40, 41].
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The recent studies mentioned in the previous paragraphs showed that there is no standard procedure
to evaluate machine learning algorithms for voice pathology detection. Varying numbers of healthy and
pathological voices were used in the reported studies, which makes direct comparisons between proposed systems
harder. In fact, class imbalances were analyzed in [42] for MEEI and SVD datasets, fuzzy clustering synthetic
minority oversampling technique (FC-SMOTE) was used to increase the balance between classes, which led to
clear performance improvements. Different data augmentation strategies were investigated for voice pathology
detection in [43]. Random Gaussian noise was used in [44] and time stretching was used in [32] for data
augmentation purposes. Hence, the data itself can be considered as a limiting factor for this area. On the
other hand, creating a balanced, labelled, real-life dataset is very hard as stressed in [11]. Further, in [44], three
previously published systems were reimplemented in order to compare their performances on the same data and
performance metric (performance metrics varies between studies too, although accuracy and F1 score values
are preferred in general).

Another issue related to this subject is the chosen classes. Most of the studies dealt with binary case
(i.e. healthy-pathological). However, the number of selected pathologies varies as some studies considered
all available pathologies, some focused on a small number of pathologies. A limited number of researchers
considered multiclass case, for instance [11, 27, 39, 42, 45]. Multiple disorders in the same individual, i.e.
multilabel for a single sample, have not been investigated except a recent study [11]. Therefore, more effort
should be put through developing systems which can identify multiple disorders in an individual’s voice. It is
also more appropriate in terms of practical applications. With this regard, deep models operate on raw voice
signals are developed in this study to fill the mentioned gap.

3. Proposed system
The authors of [46] argued that as a network gets deeper it performs better at semantic understanding tasks,
but deeper networks may not be necessary for tasks that do not require high level semantic information. They
developed a relatively shallow ResNet variant, namely Res-TSSDNet, for audio spoof detection. Following the
same argument, the same residual blocks are used in this study since voice disorder detection does not require
any semantic information. As the first convolutional layer that operates on the raw voice signal, both the
traditional convolution as in the original Res-TSSDNet and sinc filters are considered. The purpose of SincNet
filterbank [36], or sinc filters, is to extract more interpretable features compared to the traditional convolutional
layers. Time-domain convolution is performed on the input waveform with sinc filters. The lowest and highest
frequencies (cut-in and cut-off) are learned through training. Sinc filters were proven to be effective for voice
disorder detection [35]. The fixed scale was found to be more effective than learnable scales for audio spoof
detection [47], hence also preferred in this study. Both 1-D and 2-D configurations are considered. For 1-D,
all convolutional layers in the model are 1-D convolutions. On the other hand, 2-D models consist of 2-D
convolutions except the initial convolution/sinc filter layer. Once the initial layer is applied to the raw signal,
a channel dimension is added to the obtained feature maps, hence transformed into a 2-D time-frequency
representation [48].

Many modern CNN architectures exploit channel weights. Assigning different weights to each channel of
convolutional block can be viewed as feature recalibration, attention, or gating mechanism. The purpose of this
approach is to suppress less informative channels, hence better flow of information through the layers. For the
considered task, the information can be understood as artifacts, corruptions, etc. found in the convolutional
maps that will aid to the discrimination of healthy/pathological samples. One of the most popular methods
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for this operation is the squeeze-and-excitation (SE) block [38], which uses global average pooling to “squeeze”
global spatial information. Another method is convolutional block attention module (CBAM) [49] where channel
attention is followed by spatial attention. Efficient channel attention (ECA) [50] utilizes 1-D convolution to
create channel weights in a fast manner without dimensionality reduction, contrary to SE and CBAM. DCA
adds connection between attention blocks so the layers can exploit both the extracted features and attention
information of previous block. These types of gating mechanisms were also applied to speech related tasks.
Channel-wise gating was implemented within Res2Net blocks [51, 52] for audio spoof detection and DCA was
used for voice pathology detection [19].

The proposed model includes a novel gating mechanism which utilizes the multigroup channel-wise gate
of [51] with inverted inputs and applies it between the residual blocks. Therefore, the deeper blocks can exploit
the information obtained at the previous blocks. In [51], previous feature maps were gated based on the
current feature maps within a Res2Net block. This approach lets integration of the previous information that is
analogous to the current information. Contrary to this, in the proposed approach, the previous block’s feature
maps are used to gate the current block’s feature map, hence the inverted inputs. The goal here is to create an
information flow mechanism similar to the DCA approach while benefiting from multigroup attention. Contrary
to [51], proposed approach will encourage the model to extract information analogous to the previous layers.

The proposed model is illustrated in Figure 1. The details of the model that are not shown in the figure
for a compact illustration are as follows. After the initial convolution/sinc filters, batch normalization (BN),
ReLU, and max pooling are applied. A total of four residual blocks are used with three gate blocks (the output of
the first residual block is not gated). Note that 1 × 1 convolutions are applied to match the channel dimensions
between residual blocks if necessary. After obtaining the final gated output, a global average pooling layer is
applied. Hence, the following classification layer’s input dimension is equal to the number of channels in the
last residual block and the output dimension is equal to the number of classes. For a single labeled sample, the
output for the corresponding class will be one, while the others are zero. For a multilabeled sample, all true
labels will be one, while the others are zero. The inner architectures of the residual block and gate block are also
shown in Figure 1. The skip connections joined to the main path via element-wise addition and element-wise
multiplication for residual and gate blocks, respectively.

The mathematical expressions for the gating mechanism are given below for completeness. The first
step is to apply average pooling to both inputs. It should be reminded that both 1-D and 2-D versions of the
proposed model are considered. Therefore, average value is computed over the time dimension for 1-D case, and
over the frequency and time dimensions for 2-D case (assuming time-frequency representation after the initial
layer). Following [51], the average value for 2-D case can be computed as Eq. 1, where Favg is the average
value, Ri ∈ RC×S×T is the output of ith residual block with C channels. Eq. 2 shows the average value for the
output of the previous block’s max pooling layer.

Favg(Ri) =
1

S × T

S∑
s=1

T∑
t=1

Ri(:, s, t) (1)

Favg(Mi−1) =
1

S × T

S∑
s=1

T∑
t=1

Mi−1(:, s, t) (2)
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3 x 3, CR, BN, RELU

3 x 3, CR, BN, RELU

3 x 3, CR, BN, RELU

 3 x 3, CR, BN, RELU

1 x 1, CR, BN, RELU

Res-Block Max Pool Res-BlockConv / Sinc
Filter

GATE

1 x 1 Conv

Max Pool

Avg Pool Avg Pool

Concatenate

Linear

Sigmoid

Output of
 Max Pool{i-1}

Output of
Res-Block{i}

Channel-wise gated
output of Res-Block{i}

 x 3

Global Average

Raw Voice
Signal

Healthy

Vox Senilis

CLMD

Dysphonia

Laryngitis

Reinke's
Edema

Figure 1. Proposed deep model with channel-wise gating between blocks. The model outputs represent single labels
(healthy and five pathologies) and multilabels (dysphonia-laryngitis or laryngitis-Reinke’s edema).

In the case of different channel dimensions, the max pooling output first goes through a 1 × 1 convolutional
layer before being fed into the gate block. Once the average values are obtained, they can be concatenated
and fed to a linear layer which transforms 2C channel dimensions back to C channels via a linear matrix
W ∈ R2C×C . By applying a sigmoid function (σ ), channel weights are obtained. Eq. 3 gives the expression for
channel weights (ai),

ai = σ
{
WT [Favg(Ri)||Favg(Mi−1)]

}
(3)

where || represents concatenation. Note that for the 1-D case, the frequency dimension (S) is absent in Eqs. 1
and 2. Once the channel weights are computed, they are element-wise multiplied with Ri, creating the gated
output. Table 1 shows the details such as channel dimensions, kernel sizes, and output sizes for the proposed
deep model when the initial layer is the sinc filter. For the traditional convolution as the initial layer, kernel size
is chosen as 7 and the channel dimension as 16, all other layers of the model are the same and the output sizes
vary accordingly. An important difference between the 1-D and 2-D models is the kernel size of max pooling
layers. For 1-D, all kernels are chosen as 4. On the other hand, 2-D models use (2, 5) and (1, 5) kernels. The
reason for this choice is the dimension difference between frequency and time (70 and 23,750, respectively, for
sinc filter). When using the same numbers for each axis, the frequency dimension gets smaller much faster than
the time dimension. Hence, time dimension is reduced more aggressively than the frequency dimension by using
the kernel sizes given in Table 1.
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Table 1. Layer parameters of the proposed deep model for 1-D/2-D cases. The first layer is common for both cases,
and the input is 1 × 24000 raw voice signal.

Layer Kernel Channel Output size
Sinc Filters 1 × 251 70 70 × 23,750/1 × 70 × 23,750
Max Pool 4/(2, 5) - 70 × 5937/1 × 35 × 4750
Res-Block 1 1 × 3/3 × 3 32/16 32 × 5937/16 × 35 × 4750
Max Pool 1 4/(1, 5) 32 × 1484/16 × 35 × 950
Res-Block 2 1 × 3/3 × 3 64/32 64 × 1484/32 × 35 × 950
Max Pool 2 4/(2, 5) 64 × 371/32 × 17 × 190
Res-Block 3 1 × 3/3 × 3 128/64 128 × 371/64 × 17 × 190
Max Pool 3 4/(1, 5) 128×92/64 × 17 × 38
Res-Block 4 1 × 3/3 × 3 128/128 128×92/128 × 17 × 38
Global Max Pool - - 128
Classification - - 6

4. Experiments
The experimental setup follows [11] as it is the only one to consider multilabel multiclass voice disorder detection
for SVD dataset and will serve as a baseline. Organization of the data and performance metrics are chosen
similarly. Although a direct comparison may not be meaningful due to the different setups, results from some
of the recent deep learning models are given at the end of this section.

4.1. Dataset
SVD dataset1 contains more than 2000 individuals’ voice records. It consists of /a/, /i/, and /u/ vowels with
different pitch options and a continuous sentence in German. /a/ vowels in normal pitch have been used in
many studies and it reportedly achieved good detection performances. They were also used in this study. The
dataset contains 71 different pathologies, but a subset of pathologies was used. For single label pathologies,
Dysphonia (DYS), Reinke’s edema (RDE), Vox Senilis (VSE), Laryngitis (LAR), Central Laryngeal Motion
Disorder (CLMD) were chosen. For multilabel pathologies (i.e. multiple disorder in a voice signal) Dysphonia-
Laryngitis (DYS-LAR) and Laryngitis-Reinke’s edema (LAR-RDE) were chosen. Multilabel means that the
voice record was labeled with “both” of the disorders. Therefore, it belongs to each of the labels. As an
example, if a sample was labeled as DYS, then detecting dysphonia from the sample is necessary. If a sample
was labeled as DYS-LAR, then detecting both disorders is necessary, missing any of them will lead to a reduced
performance. Besides the chosen five pathological classes, healthy (HEA) class was also considered. Therefore,
a total of six classes were available.

Table 2 shows the distribution of voice files for the chosen classes. The data is highly imbalanced. To
overcome this situation, data augmentation methods in the time domain were applied to the original signals as
they were found to be effective previously [32, 43]. Audiomentations2 library was used to apply Gaussian noise,
shift, time stretch, and polarity inversion transforms. Gaussian noise was added with high signal-to-noise ratios
to avoid corrupting the original record. Shift means shifting the samples of the record forwards or backwards.
Time stretch corresponds to changing the speed without affecting the pitch. Polarity inversion multiplies the

1Saarbruecken Voice Database [online]. Website https://www.stimmdatenbank.coli.uni-saarland.de [Accessed 28 November
2023].

2Audiomentations Python Library [online]. Website https://github.com/iver56/audiomentations [Accessed 14 January 2024].
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waveform by –1, and thus, the sound remains the same, but the sample signs are inverted. All transformations
applied randomly with random parameters (within a sensible range) to create as many different data as possible.
Therefore, a created sample may be the result of more than one transformation.

The HEA class has 687 samples. The “Augmented” dataset has 687 samples for each class to match the
number of HEA samples. Note that some classes have a very limited number of samples. Despite the randomly
applied transformations as augmentation method, this fact will inevitably affect the results as in [11]. For this
reason, another set (“Aug140”) with a smaller number of artificial data is created. The “Aug140” dataset has
140 samples for each pathological class to analyze the effect of sample size on the detection performance. These
augmented versions were akin to the augmented sets of [11]. As a final note, the sampling rate of SVD dataset
was 50,000 but the raw voices were down sampled to 16,000. Also, the mean duration of the chosen utterances
was found to be around 1.2 s. Therefore, all files were padded or truncated to give 24,000-dimensional vector
per raw voice file. Padding was realized by replicating the required number of samples from the beginning of
the file. For truncation, the samples after the 24000th sample were dropped.

Table 2. Number of samples per class for the original and augmented sets. Aug140 represents the case where pathology
classes were augmented to 140 samples to imitate 20% balancing rate of [11].

HEA DYS LAR RDE VSE CLMD DYS-LAR LAR-RDE
Original 687 70 82 34 23 11 5 10
Augmented 687 687 687 687 687 687 687 687
Aug_140 687 140 140 140 140 140 140 140
[11] (95%) 686 621 648 627 638 650 648 648
[11] (20%) 686 137 137 132 132 130 136 135

4.2. Performance metrics
Widely used metrics such as precision (4), recall (5), F1 score (6), and accuracy (7) were used to assess the
performance of the proposed system.

precision =
1

m

m∑
i=1

|Yi ∩ Zi|
|Zi|

(4)

recall =
1

m

m∑
i=1

|Yi ∩ Zi|
|Yi|

(5)

F1score =
1

m

m∑
i=1

2|Yi ∩ Zi|
|Yi| ∪ |Zi|

(6)

accuracy = 1− 1

m

m∑
i=1

|Zi∆Yi|
|L|

(7)

In the given equations, Yi represents the ith sample of the true set of labels, Zi represents the ith instance of the
predicted set of labels, ∆ is the symmetric difference, and L is the total number of samples. The accuracy is
calculated as “1-Hamming loss” since it is suitable for multilabel classification [11]. All labels must be correctly
detected for the multilabeled samples in order to achieve a high performance with the considered metrics.
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4.3. Training parameters
All deep learning processes were realized via PyTorch toolkit on an Nvidia RTX 3090 GPU. A 10-fold stratified
crossvalidation strategy was followed, as it was common in the automated voice disorder detection literature.
Scikit-learn library was used for crossvalidation with random seed set to 1 to avoid dataset variation between
models. All models were trained from scratch with a fixed learning rate of 0.001, ADAM optimizer, and binary
cross entropy loss function. Training was stopped when the training loss did not decrease for 15 epochs. In
general, the models converged around 100 epochs.

4.4. Experimental results

The original version of Res-TSSDNet [46] (ResNet-1D in short), its sinc filter (ResNetSinc-1D) and gated versions
with sinc filter were considered (GatResNetSinc-1D) as 1-D models. ResNetSinc-2D and GatResNetSinc-2D are
their corresponding 2-D versions. Also, to verify the effectiveness of sinc filters, a gated model was used where
the initial convolution layer had 70 filters to match the number of sinc filters (ResNet70-2D). To compare the
proposed model’s performance, DCA-ResNet18 [19] model was chosen. To make a fair comparison, the initial
convolutional layer was changed to sinc filters in DCA-ResNet18 model too. All models were trained from
scratch as explained previously. Figure 2 shows the results for the augmented SVD dataset. The results showed
that sinc filters were more suitable for raw voice than the traditional convolution. ResNet70-2D performed worse
than 1-D sinc filter models. On the other hand, 2-D sinc filter models performed better than 1-D sinc filter
ones. The proposed gating mechanism boosted the performance of both 1-D and 2-D models. GatResNetSinc-2D
model outperformed the others at all metrics. This outcome indicated that the gating/attention mechanisms
were useful for voice disorder detection. Further, the proposed gating blocks have effectively boosted the
performance of the ResNetSinc model.

F1 scores for each class are given in Figure 3 for the best performing models, i.e. ResNetSinc-2D,
GatResNetSinc-2D, and DCA-ResNet18. An interesting observation is that the F1 scores for healthy class were
less than the pathological ones. Furthermore, when Aug140 set was used, the performances rapidly decreased.
This situation emphasizes the importance of a balanced dataset. A similar observation can be found in [11] for
the selected classifiers. Also, other studies such as [42] reported superior performance with the balanced set
compared to the imbalanced set for various classifiers. To summarize the results, the proposed gating approach
achieved the best overall results with relatively low computational load increment. ResNetSinc-2D model had
about 511 K learnable parameters, while GatResNetSinc-2D had 565 K parameters.

F1 score Precision Recall Accuracy
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DCA-ResNet18-2D

Figure 2. Performances of the deep models for the augmented dataset.
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Figure 3. F1 scores for each class obtained via the best performing models.

4.5. Comparison with other systems
In this subsection, proposed model’s performance is compared to other models from the recent studies. Num-
ber of healthy and pathological samples used in the respective studies are given in the table. However,
train/validation and test distributions are not necessarily the same. Most of the studies given in the table
have used /a/ wovel at neutral pitch and 71 pathologies. Using less number of pathologies can increase the
accuracy, as seen for LSTM in [27]. The upper part of the table shows the multilabel classification results as
discussed previuosly. The lower part of the table shows the results for binary classification. Note that in this
case, data augmentation was not applied to the proposed model since all available data were used. A 10-fold
validation was utilized and the average results are shown in the table for the proposed GatREsNetSinc-2D and
for the DCA-ResNet18 models. As seen in the lower part of Table 3, the proposed approach achieved on par
performance compared to several other models. SMMFNet and MFCC-SVM models had the hightest accuracies
and F1 scores, where the others had accuracies varying between 0.681 and 0.696. The results showed that the
proposed approach is effective for both multilabel classification and binary classification.

Table 3. Accuracy and F1 scores of the proposed model and other deep learning models. (ML: multilabel, MC:
multiclass, BC: binary class.)

Model Acc. F1 Condition Number of healthy/
pathological Number of pathologies

GatResNetSinc-2D 0.994 0.982 ML – MC 687/4809 6
GatResNetSinc-2D (Aug_140) 0.962 0.919 ML – MC 687/980 6
DCA-ResNet18 0.989 0.963 ML – MC 687/4809 6
DCA-ResNet18 (Aug_140) 0.963 0.922 ML – MC 687/980 6
DNN (r = 95%) [11] - 0.972 ML – MC 686/4480 6
DNN (r = 20%) [11] - 0.916 ML – MC 687/939 6
GatResNetSinc-2D 0.685 0.683 BC 687/1356 71
DCA-ResNet18 0.674 0.673 BC 687/1356 71
SMMFNet [41] 0.781 0.844 BC 687/1354 71
2-D CNN [43] 0.696 0.69 BC 357/357 -
CNN – SVM [53] 0.690 - BC 687/1354 71
MFCC – SVM [53] 0.764 - BC 687/1354 71
LSTM [27] 0.975 0.981 BC - 6
DNN [57] 0.681 - BC 687/1356 71
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A more detailed comparison with [11] is beneficial at this point. Albeit not given here, [11] also analyzed
different problem transformation methods. The proposed GatResNetSinc-2D achieved a higher accuracy for
the augmented data compared to all those problem transformation methods. Another important issue is the
selected features. The proposed models operated directly on raw waveforms. On the other hand, signal energy
[54], zero-crossing rate [55], and signal entropy [56] were considered as feature vectors in [11]. Hence, this
study showed that deep models with raw waveform inputs can achieve a similar performance compared to the
hand-crafted. The results observed with the DCA-ResNet18 model support this claim.

5. Discussion
The experimental results have provided important insights for the handled task. The most important conclusion
may be the influence of the artificially created data. Due to the very limited amount of data, a meaningful
result could not be derived without data augmentation. On the other hand, creating new samples from a limited
number of original samples is not ideal. Experimental results observed in this study and in [11] verifies this
situation. Although not a simple task, creating a more balanced multilabeled data should be prioritized by the
researchers, which will inherently boost the number of research conducted on this topic.

Another important outcome of the experiments is the effectiveness of the proposed gating block. It was
experimentally proven to be effective for both 1-D and 2-D models. For the chosen metrics, GatResNetSinc-2D
achieved the highest values among the other ResNet variant models, including the DCA-ResNet18. Although
in this study a relatively shallow network was used, the proposed gate block can be exploited by different CNN
architectures. It can be also used in different research areas since it is not specific to voice disorder detection.

Majority of the automated voice pathology detection studies employed hand-crafted features. Experimen-
tal results showed that models operating on the raw voice files can compete with the hand-crafted features for
multilabel multiclass classification. Superior performance of sinc filters compared to the traditional convolution
filters was verified. 2-D models with the sinc filter delivered better performances than their 1-D counterparts.
This situation may indicate the usefulness of time-frequency representations of the voice signals. Hence, when
operating directly on raw waveform, transforming it into a 2-D representation after the initial layer can be a
good starting point before applying any other layer. Future studies may focus on finding more optimal sinc filter
parameters or designing a novel filter set in order to extract more discriminative information that suits voice
disorder detection task. Due to the consistent performance of the 2-D models over the 1-D models, an attention
mechanism that put more emphasis on the frequency information may be another topic worth investing.

6. Conclusion
This study proposed a deep learning architecture which consists of residual blocks and gating mechanisms.
Gate blocks were placed between residual blocks to control the flow of information through the model. Hence,
discriminative information captured in the earlier layers may be used by later layers in the forward propagation.
The proposed model was applied to multilabel multiclass voice disorder detection task, which is a neglected task
primarily due to the absence of a balanced dataset. However, a patient may suffer from more than one disorder
and detecting them automatically from voice samples has enormous practical advantages. In order to achieve
this, raw waveforms were used as inputs to deep models. Using sinc filters to obtain 2-D representations from
the raw waveforms, slightly better results compared to a DNN model with handcrafted features were achieved.
The proposed gate blocks were also found to be more efficient than deep connected attention. Although the
experimental results were promising, a more balanced dataset is necessary to avoid effects of oversampling the
less presented classes.
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