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Abstract: This paper explores the determination of any load or load combination in a power system at any moment. This
process requires measurements at the main electric utility service entry of a house, known as nonintrusive measurement.
To accurately identify loads, total harmonic distortion, RMS, third harmonic currents, and power consumption are
considered their fingerprints. Based on these fingerprints, an algorithm called the competitive decision process is
developed and integrated into an embedded system. This algorithm has a two-level decision mechanism. In the first
stage, the winner loads with the highest similarity scores from each feature are determined, and the loads with a similarity
score higher than 90 move to the second stage to be evaluated. Loads that do not pass the first stage in all features are
not considered for the next one. In the second stage, the scores from each feature of the loads passed to this stage are
summed, and the load with the highest score is determined. It is experimentally validated that the method significantly
detects correct load or load combinations for six residential appliances. Fifty-six type-tests are performed, and each
type-test contains ten measurements. As a result, a total success rate of over 97 percent is obtained in all metrics.

Key words: Harmonic analysis, nonintrusive load identification, residential appliances, embedded system, similarity
score

1. Introduction
This paper focuses on the determination and identification of loads present at any moment in a power system.
This method, also known as nonintrusive load monitoring (NILM), was first proposed by Hart [1, 2]. He
declared that appliances operated in the house could be identified from the measurement captured at the utility
side. Only active and reactive power (P and Q) measurements are recorded during 5-s intervals, and loads
are determined by a clustering algorithm. Although simple, the method requires continuous recording, and
inaccurate identifications are possible for similar loads. Significant progress has been made over time using very
different approaches and features in the studies in this field, which started with Hart.

In [3], an approach is proposed to identify harmonic source loads for industrial users. The study monitors
current and voltage signals, and the integrated equivalent impedance is calculated. Then, complex local mean
decomposition (CLMD) and complex fast independent component analysis (CFICA) are used to separate the
equivalent impedance signal. The results illustrate that the approach is suitable for industrial users. The
authors in [4] propose a rule-based approach for load identification. The Fourier transform of the current
signal is employed, and some statistical features, such as minimum, maximum, and standard deviation, are
extracted from this signal. Then, the appliances are classified according to the rule table constructed from
∗Correspondence: smcinar@gmail.com
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the boundaries of each load appliance in terms of extracted features. Over 90% accuracy is obtained in this
study. The authors in [5] also use statistical features for low-sampling NILM systems. An event detection-
based structure is designed, and a sliding window (SW)-based algorithm that monitors the statistical properties
of the aggregated load data is employed. Around 90% of performance is obtained in terms of precision and
recall metrics. In [6], a Raspberry Pi-based system is designed for real-time nonintrusive load monitoring. In
the designed system, current and voltage signals are collected, and some features such as active, reactive, and
apparent power and RMS values of current and voltage are calculated from these signals. The fractional hidden
Markov model and an automatic state detection algorithm are combined for load disaggregation. [7] also designs
a Raspberry Pi-based system that uses active, reactive, and apparent power. Some statistical approaches, such
as the hidden Markov model (HMM) [8], the factorial hidden Markov model (FHMM) [9], and additive factorial
approximate maximum a-posteriori (AFAMAP) [10] are also used in different studies with power signal features.
The differences by converting the time domain to the frequency domain for load currents are investigated, and
the change in the current waveform is traced and isolated in [11]. The isolated current frequency spectrum is
compared with each load frequency spectrum in the database, and load disaggregation success is remarkable.
The linear and nonlinear properties of loads were investigated from the harmonic point of view and presented
that harmonic components and active and reactive powers could be used as distinguishing features in their
analysis [12][13].

The authors in [14] propose a transfer learning-based approach for NILM studies. Some features such as
power factor, power, and maximum power index are used as features, and the long short-term memory(LSTM
) method is used for feature extraction. Then, the probabilistic neural network is employed to classify the
appliances. It is shown that the proposed method can work on limited data. The authors in [15] also use
LSTM with power information. The target dataset is employed to pretrain the network in the first stage, while
supervised downstream tasks are used to fine-tune the pretrained network. In the last stage, load disaggregation
is performed by the fine-tuned network. In [16], 1st, 3rd, 5th, 7th, and 9th harmonic currents, the angles of
these signals and total harmonic distortion (THD) information are employed as features, and their importance
is investigated. Then, the radial basis function and Elman neural network methods are used to classify the
appliance. In [17], the current and voltage signals are transformed into structured images representing the
relation between load types and features. Then, convolutional neural networks and combined support vector
machines are employed for the classification of the images and data. The results obtained show that the
proposed method is more successful than many existing conventional methods. The authors in [18] also propose
a deep learning approach called a physics-informed time-aware neural network method for industrial loads. In
the study, active, reactive, and apparent power are employed as features, and the success of the approach is
compared with the conventional deep learning approach. The experimental results on real-world industrial data
illustrate the success of the approach.

As seen in the existing literature, many NILM studies consider events, such as edge, sequence, and
duration, that occurred in power measurements [19–21]. Since the method requires a very long measurement
time to capture the necessary events, any interruption during the process may affect the accuracy. Common
features of all these studies include the search for distinctive characteristics in identifying each of the loads and
determining loads based on these characteristics. Some have focused on macroscopic features (such as ON/OFF
states), while others have examined microscopic features (such as transients and harmonics) [22–25]. However,
most studies agree that investigating microscopic properties is the most effective detection method.
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Contrary to steady-state measurements, transient currents that occurred during the energizing and de-
energizing moments of each appliance are considered in determining load [26, 27]. In addition, both steady-state
and transient currents are evaluated to estimate the load [28]. However, it is hard to detect transients when
energized or deenergized low-power loads in high-power environments. Furthermore, event-based strategies
require tracking and storing the previous state information; in case of any loss of this information, many of
the approaches fail. Machine learning and artificial intelligence methods are generally preferred in such studies
when classifying appliances. However, the computational complexity of such methods is relatively high, and
depending on the training section and models, the success rate of the method changes significantly.

This study proposes a novel method called the competitive decision process (CDP). The method has
a two-level decision mechanism. In the first level, all winner loads with a similarity score (SS) higher than
90 are determined for each feature and sent to the second level for the final decision. The final winner is
selected according to a total score in the second level. In this way, high identification performance can be
achieved by considering only combinations of high importance while reducing the complexity of the process. The
proposed approach does not require a training stage, and the computational complexity is reduced; therefore,
it gets advantages in real-time applications. In the decision process, only one cycle current for individual
appliances is used as reference signals. For combinations, reference signals are obtained from individual appliance
measurements, and SS values are calculated for all possible appliance/appliance combinations. The method uses
THD, power consumption, RMS, and third harmonic current as features. In order to operate and control the
whole process, an STM-based embedded system is designed. Therefore, a fast, accurate, and autonomous
system is presented. Moreover, it does not require continuous and long measurements, so the predictions are
not affected by any failure in the system during data acquisition. The study includes 560 measurements, and 547
(97.67%) are correctly identified with only one-period measurement. The method is validated by experiments.
Results are presented and discussed in the text.

The paper is organized as implementation steps, and details of the embedded system are demonstrated
in Section 2. Features that are used in the selection criteria are explained in Section 3. The competitive
decision process and calculations of the proposed method are explained in Section 4. Experimental results and
discussions are illustrated in Section 5, and the conclusions of the paper are presented in Section 6.

2. Implementation steps and details
In this section, the experimental setup, architecture of the embedded system, and data acquisition interface of
the real-time load identification system are presented.

2.1. Experimental setup

The experimental setup (Figure 1) consists of current and voltage probes that measure the current and voltage
of the power line, signal conditioning circuits adapted to the probes’ output voltages to the microcontroller
ADC (analog-digital converter) inputs, a development board, and a user interface that performs the monitoring
and recording of the test results.

Pintek DP 25 voltage probe and Fluke 80i-110s current probe are used for corresponding measurements.
Output signals are multiplied by 10 for current and 200 for voltage calibration. They are also protected from
noise with galvanic isolation between the power line and the signal conditioning circuit. Signal conditioning
circuits are designed to match the probe outputs to the ADC input level of the development board. These
circuits perform two basic functions: scaling and adding an offset of probe outputs.
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The STM32F4 Discovery board is preferred as the development board. There is an STM32F407VGT6
microcontroller with a 32-bit ARM® Cortex®-M4 core, frequency up to 168 MHz, 1-MB flash memory, and
192-KB random access memory (RAM) on the discovery board. This microcontroller is equipped with a single-
precision floating-point unit (FPU), which supports all ARM single-precision data-processing instructions and
data types.

The user interface is designed on the MATLAB/Simulink development platform. It performs two primary
functions, such as displaying the data received from the microcontroller and saving them to the MATLAB
workspace.

Tested loads

Power line

Voltage 

probe

Current 

probe

Signal conditioning circuits

Development board
USB to RS232 

TTL converter

Programming and debug port

User interface

Figure 1. Experimental setup of the real-time load identification system.

2.2. The architecture of the embedded system
Model-based design (MBD) has many advantages in embedded system design, such as rapid prototyping,
simplification of debugging processes, modular design, and avoidance of manual code writing and coding errors
that may occur in this process.

The powerful, efficient, modular, and successful MBDmust be separated into logical partitions. Therefore,
the study divides the MBD into four logic components: the tested loads, voltage and current probes and their
signal conditioning circuits, the microcontroller, and the user interface (Figure 2).

The microcontroller continuously samples the current and voltage signals to take 512 samples per period,
buffers them in memory, runs the load recognition algorithm once a second, and sends the results to the user
interface as explained in detail below.

The ADC unit is triggered with a timer with a frequency of 25.6 kHz so that 512 samples can be taken
per period for sampling V/I signals. Data is buffered into RAM with the direct memory access (DMA) module
when the analog conversion is completed. Then, the load identification algorithm is executed and buffers the
results to the RAM with a 1-s interval. Finally, the buffered data is sent to the interface via the Universal
Synchronous Asynchronous Receiver Transmitter (USART) unit supported by the DMA unit.

3. Features of load identification
The literature presents loads that have unique features to separate them. Although features are the most
crucial part of NILM studies, the key idea is to identify loads with the minimum number of features to
mitigate complexity and increase accuracy. Therefore, several experiments are performed to investigate the
distinctiveness and determine features.
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Tested 

loads
User 

interface
V/I probes

Signal 
conditioning

Programing and debug

Microcontroller

Code generation

ADC, Time, 

USART

Figure 2. Partitioning the MBD.

Appliances are evaluated in three classes: ON/OFF, finite state machine (FSM), and continuously variable
[1]. While a single operating mode exists in the ON/OFF class, multiple operating modes exist in the FSM class,
such as a washing machine’s rinsing, drying, and spinning modes. In each mode, the transition occurs in a step
increase or decrease, and each can be considered a different load. In the continuously variable class, the change
in load consumption is not a consistent step but a continuously variable consumption situation (light dimmers,
sewing machines, etc.). Thus, six residential appliances in the ON/OFF class are selected for experiments and
presented in Table 1, including their nominal powers and initials. Please note that initials will be used in the
study for the corresponding loads.

Three experiments are conducted for the selection of features. The first experiment is performed with LC
and HL in a single case. The harmonic distribution of LC and HL is presented in Figures 3 and 4, respectively.
The nominal power of LC is 65W, while that of HL is 70W. In addition, the total harmonic distortion of currents
(THDI ), which will be described in the next section, are 190% and 4%, respectively. Although they have low
power consumption and similar RMS currents, their third harmonic currents are distinctive, as seen in Figures
3 and 4. Thus, these two loads could be separated by their THDI ’s and the third harmonic currents.

Table 1. Loads in experiments.

Appliances Initials Nominal power (W)
Vacuum cleaner VC 1000
Halogen light HL 70
Heater HE 600
Laptop charger LC 65
Monitor MO 25
LCD television TV 21

The second experiment is performed with LC and MO. They are expected to have similar features since
both have power converter units, e.g., AC-DC and DC-DC, and their harmonic distributions are presented
in Figure 3 for LC and Figure 5 for MO. In comparing both figures, it is clearly seen that they have similar
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harmonic distribution and THDI. However, the RMS current and power consumption of LC are almost three
times higher than MO. Thus, they differ from power and RMS current, although they show similarities regarding
harmonic distribution.

 

Figure 3. Harmonic distribution of LC current.

 
Figure 4. Harmonic distribution of HL current.

 
Figure 5. Harmonic distribution of MO current.
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LC and MO are operated together (multiple load case) for the third experiment, and the harmonic
distribution is presented in Figure 6. The fundamental current of multiple operations is higher than that
consumed by each of their single case operations. In addition, THDI (180%) is also less than their individual
cases. However, the harmonic current distribution demonstrates similarities for both. The fundamental current
of both loads is at most 0.22A. Thus, it is seen that the load presented in Figure 6 is not only LC or MO. It should
be multiple load cases, so LC-MO (90W) and HL-MO (95W) are two options based on their power consumption.
For the HL-MO case, the third harmonic current would be much less than 90% (Figure 7). However, for the
LC-MO case, the third harmonic current would be around 90% because both have the same harmonic current
concerning their fundamental currents. Hence, all results indicate that LC and MO are operated together after
all features are considered.

The distinctiveness of the 5th, 7th, and 9th harmonics is lower than that of the 3rd one, although these
harmonic currents have a higher effect, as indicated in [16]. Therefore, harmonics higher than the 3rd one are
not considered.

These experiments demonstrate that power consumption, RMS current, THDI , and the third harmonic
current have sufficient and critical information for loads. However, the acquisition of each data and their correct
interpretations are the most critical factors that will increase the accuracy of the method applied. It will be
explained in the next section.

 

Figure 6. Harmonic analysis of MO and LC current.

 

Figure 7. Harmonic analysis of MO and HL current.
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4. Competitive decision process
This study proposes a new method called the competitive decision process (CDP). The proposed method only
needs a one-cycle current and voltage measurement for each individual load to store in the database as a
reference. One of the most important advantages of the method is that it does not require a training stage
and continuous measurement. The proposed method utilizes the similarity score metric introduced in [29] while
deciding, and it has a two-level decision process to identify the residential load or loads used in the experiments.
It can identify both individual loads and load combinations. In the first level of this approach, similarity scores
belonging to each feature are calculated by using measured signal and reference signals, as explained in detail
in the following section, for all possible combinations. It should be noted that one-period reference signals
are required only for individual loads, and reference signals for combination loads are not needed. The steady
state measurements are used in calculation of the similarity score metric and then the winner/winners with a
similarity score above 90 are determined. The reason is that there are deviations due to various reasons (noise,
voltage fluctuations, etc.) in the different measurements of the same load. Since they remained in the band of
about 10%, the value of 90 was considered appropriate as the threshold level for this study and is applied. In
this way, it is aimed to create a stronger decision mechanism where weak relationships are ignored and only
strong features are considered. In the second stage, only the winner payload combinations selected for each
feature in the first stage are considered. A final score value is obtained by summing the scores from each feature
for each load combination that moves to the second stage. The highest score load combination (final winner) is
assigned as the selected combination. If a load combination enters the second stage with a score higher than 90
for each used feature, the probability of that load combination being selected will be relatively high. Likewise,
suppose a load combination is chosen with a high score from one feature but not from another. In that case,
the probability of the highest final score will decrease since no value will come from that feature (zero). In this
way, not only a more robust method has been created, but also measurement instabilities that may arise from
the hardware are prevented from negatively affecting the decision. Furthermore, the computational complexity
of the approach is thus reduced, as some load/load combinations are excluded from the calculation and no
calculations are performed for them. One advantage of the approach is that identification can be performed
any time without needing previous state information, which differs from the event-based methods. In other
words, continuous measurements are optional. In this way, the storage space required to store the previous
state information in embedded system applications is saved, and the loss of the previous state information does
not have a negative impact on the identification performance (in event-based methods, this negatively affects
the identification performance). In addition, the steady-state, the longest part of the load, has been considered
in the paper since the transient effect is absorbed quickly.

After measurements, SS, which ranges from 0 to 100 for each feature, calculations are initiated. Power
consumption, RMS current, THDI , and third harmonic current are selected and employed as features during
analyses. Therefore, the load combinations with scores higher than 90 are determined for each. In the second
level, the sum of SSs is calculated for loads past this stage. Then, the measured load is identified as the
reconstructed load with the highest SS. Therefore, all SS calculations are described below to perform the load
identification process.
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4.1. Power SS
Power consumption calculated as in (1) is the most common evaluation feature for NILM studies.

Pu =
1

T

∫
i(t)v(t)d(t). (1)

Here Pu is the power consumption of an unknown load, and i(t) and v(t) are the instantaneous current
and voltage measurements, respectively. To determine the SS, reconstructed power (PRC ) for each type-test
should be calculated and compared to Pu . The reconstruction process starts with calculating each single-load
power consumption for each type-test and ends with their sum. Then, SS is calculated as in (2).

Pss =

{
100 ∗ PRC

Pu
, PRC < Pu.

100 ∗ Pu

PRC
, Pu < PRC .

(2)

Here Pss is the similarity score of power consumption. Then, scores higher than 90 are considered for
the second level.

4.2. RMS current SS
RMS current is another feature to be used for the identification, calculated as in (3).

Irms−u =

√
1

T

∫ ∑
i(t)2dt (3)

Here Irms−u is the RMS current of the measured (unknown) load, and i(t) is the instantaneous current.
The SS of RMS current, Irms−ss , is calculated in (4).

Irms−ss =

{
100 ∗ Irms−rc

Irms−u
, Irms−rc < Irms−u.

100 ∗ Irms−u

Irms−rc
, Irms−u < Irms−rc.

(4)

Here Irms−rc is the reconstructed RMS current for any possible cases. All possible combinations of loads
are considered to find the closest Irms−rc to Irms−u . Therefore, Irms−rc is presented in (5) based on Kirchhoff’s
current law.

Irms−rc =

√
1

T

∫ ∑
j

ij(t)2dt. (5)

Here ij(t) is the sum of instantaneous currents for each corresponding load located in the database. For
example, if we consider the load combination of MO and TV, the ij(t) is equal to the sum of imo(t) and itv(t) .

4.3. THD SS
FFT, the faster version of discrete Fourier transform (DFT), calculates harmonics (amplitude, angle, and
harmonic order). The voltage waveform is not considered for FFT to reduce the complexity and calculation
time. Therefore, FFT is only applied to the current waveform, and the angle and amplitude for each harmonic
are obtained. Then, THDI is calculated by (6) [30], and THDSS, which is the SS of THD, is calculated by (7).
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THDI =

√∑50
h=2 I

2
h

I1
∗ 100. (6)

THDss =

{
100 ∗ THDI−rc

THDI−u
, THDI−rc < THDI−u.

100 ∗ THDI−u

THDI−rc
, THDI−u < THDI−rc.

(7)

Here Ih is the harmonic current, and I1 is the fundamental current. In multiple load cases, Ih is obtained
by the vectorial sum of the corresponding harmonic currents since they may not be in phase with each other,
and I1 is obtained by the sum of the corresponding fundamental currents of loads. THDI−u and THDI−rc

are the THDI for the unknown load and reconstructed load, respectively.

4.4. Third harmonic SS
The third harmonic current is another layer for the identification process. The ratio of the third harmonic
(150Hz) to fundamental current (50Hz) depends on the load structure, as seen in Figures 3 and 4. Figure 3
depicts a highly nonlinear characteristic load, while Figure 4 illustrates a linear characteristics load. As a result,
(8) is adopted to determine similarities between the measured load and the predicted one.

Iss−3 =

{
100 ∗ i3−rc

i3−u
, i3−rc < i3−u.

100 ∗ i3−u

i3−rc
, i3−u < i3−rc.

(8)

Here i3−rc is the vectorial sum of the corresponding third harmonic current of loads. i3−u is the third
harmonic current for the unknown load.

All steps are converted to an algorithm and presented below based on the evaluations.
1. Get measurements (time vs. current and voltage).
2. Extract one-period zero-crossing voltage and corresponding current from measurement.
3. Perform FFT for the current waveform.
4. Calculate the RMS current, third harmonic current, THDI, and power consumption.
5. Calculate the SSs for all features.
6. Pick all the load combinations with higher scores than 90 according to the scores for each feature.
7. Calculate the final scores from the selected load combination in the previous step.
8. Decide the one with the highest SS as the decision (final winner).

5. Experimental results and discussions

All experiments presented in Table 2 are performed with the proposed method. Remember that each type-test
contains ten measurements, and there are 56 type-tests in total. As a result, 560 identifications are evaluated by
the embedded system, which performs the algorithm, and results are obtained. These results present accurate
loads of 53 type-tests (530 experiments). However, three type-tests, 10, 11, and 32, contain a varying number
of incorrect results. When we investigate the results, type-test-32 has only one inaccurate result out of 10
measurements. In addition, type-test-10 has two failed results, and type-test-11 cannot be identified in any of
the measurements. Therefore, all these failed predictions are deeply investigated.
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5.1. Failed predictions
Three type-tests have failed predictions, and the first one is the type-test-10. Although the exact combination
of the type-test-10 is VC and MO (loads 1 and 5), the method determines it as VC and TV (loads 1 and 6) in
two cases. As indicated, VC is the common load for all evaluations, but MO is misidentified as TV in two. Also,
Table 3 presents the SSs of the correct and failed experiments of the corresponding type-test. Figure 8 shows the
current waveforms of measurement and reconstructed current waveforms, both correct and failed ones. Although
MO and TV are completely different in harmonic distributions and power consumption, it should be considered
load composition. Since the evaluations of combination loads are based on the reconstructed waveforms, it is
noticed that the measured current is located between the reconstructed ones. Therefore, the result is classified
as type-test-11 instead of type-test-10 for the failed experiment with a tiny difference.

Table 2. Load tests.

Type-test* Load Type-test* Load
1 VC 29 VC-LC-MO
2 HL 30 VC-LC-TV
3 HE 31 VC-MO-TV
4 LC 32 HL-HE-LC
5 MO 33 HL-HE-MO
6 TV 34 HL-HE-TV
7 VC-HL 35 HL-LC-MO
8 VC-HE 36 HL-LC-TV
9 VC-LC 37 HL-MO-TV
10 VC-MO 38 HE-LC-MO
11 VC-TV 39 HE-LC-TV
12 HL-HE 40 HE-MO-TV
13 HL-LC 41 LC-MO-TV
14 HL-MO 42 VC-HL-HE-LC
15 HL-TV 43 VC-HL-HE-MO
16 HE-LC 44 VC-HL-HE-TV
17 HE-MO 45 VC-HL-LC-MO
18 HE-TV 46 VC-HL-LC-TV
19 LC-MO 47 VC-HL-MO-TV
20 LC-TV 48 VC-HE-LC-MO
21 MO-TV 49 VC-HE-LC-TV
22 VC-HL-HE 50 VC-HE-MO-TV
23 VC-HL-LC 51 VC-LC-MO-TV
24 VC-HL-MO 52 HL-HE-LC-MO
25 VC-HL-TV 53 HL-HE-LC-TV
26 VC-HE-LC 54 HL-HE-MO-TV
27 VC-HE-MO 55 HL-LC-MO-TV
28 VC-HE-TV 56 HE-LC-MO-TV
* Each set contains ten measurements.

The second failed type-test is type-test-11, consisting of VC and TV (loads 1 and 6). The load is identified
as VC, HL, and MO (loads 1, 2, and 5) at the failed results. VC is the expected load for all results due to its
relatively higher SS effect in the combination. However, TV cannot be determined in all experiments as TV. It
is thought that the reason behind this situation is the measurement errors.
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The last failed one is type-test-32. Although it is a combination of HL, HE, and LC, one of the
measurements is determined as HE, LC, and TV. As seen on the load combinations, HL is misidentified as
TV. The reason is the same as the previous cases. As a result, there are only 13 failed predictions out of 560
experiments.

 

Figure 8. Harmonic analysis of MO and HL current.

Table 3. Correct and failed experiment results for type-test-10.

Correct Evaluation Failed Evaluation
Type-test SS Type-test SS
10 290.52 11 290.06
11 290.26 10 289.39
9 196.43 9 196.6
47 98.73 47 99.44
25 98.10 25 97.74
23 97.22 23 96.53
29 95.44 29 95.51

5.2. Evaluations
To evaluate the success of the approach, accuracy (9), precision (10), recall (11), and F-score (12) metrics are
employed.

Accuracy =
Numberofsuccessfulidentification

Numberofexperiments
. (9)

Precision =
TP

TP + FP
. (10)

Recall =
TP

TP + FN
. (11)
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F − score = 2 ∗ precision ∗ recall
precision+ recall

. (12)

Here TP, FN, and FP are true-positive (detected condition when the condition is present), false-negative
(not detected condition when the condition is present), and false-positive (detected condition when the condition
is absent), respectively.

Table 4. Performance results

Accuracy Precision Recall F-score
Individual load 100 1 1 1
Two loads 92.0000 0.9290 0.9600 0.9442
Three loads 99.5000 0.9983 0.9983 0.9983
Four loads 100 1 1 1
Total performance 97.6786 0.9853 0.9916 0.9884

The performance results are presented in Table 4. As can be seen in Table 4, an accuracy rate of 97.67% is
obtained when considering all experiments. Furthermore, in all metrics, above ninety percent success is obtained.
While the accuracy is about 97%, the precision and recall values are about 99%. It indicates that a significant
portion of the loads in a combination are correctly determined, while one or two loads are misidentified. These
results clearly show the success of the method. For single-load cases, it is indicated that all tests are accurately
estimated. When evaluating combinations consisting of different numbers of loads separately, a success rate of
over 92% is achieved in all metrics. Table 5compares the success of the proposed method with existing methods
in the literature.

Table 5. Comparison of the proposed approach with existing methods in the literature.

No NILM technique Dataset Accuracy F-score
1 Du et al.[31] WHITED 87.08 87.31
2 Liu et al.[32] PLAID 80.70 78.71
3 Qu et al.[33] WHITED 95.99 95.43
4 De Baets et al.[34] PLAID 90.05 90.40
5 Proposed model Laboratory prototype 97.67 98.84

In comparison, two base criteria called accuracy and F-score metrics are used. As seen in Table 5, the
proposed approach outperforms the selected studies in terms of both accuracy and F-score. Due to factors
such as the method used, measurement techniques, and the loads’ characteristics, varying performances may be
observed across different datasets. However, the results highlight the effectiveness of the proposed method.

6. Conclusion
This paper proposed a CDP method to determine any load/load combination in the system. THDI, RMS and
third harmonic current, and power consumption are evaluated to identify loads. These electrical features ob-
tained from high-frequency measurements (512 samples/period) have been considered for the study. In addition,
this method contains a low-complexity algorithm that uses one-period current and voltage measurement.

The method is validated by six different loads and their fifty-six combinations. Each experimental test
is repeated ten times, so there are ten measurements of each combination. As a result, 560 measurements are
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obtained, and 547 of them (97.67%) are perfectly identified. Remember that the rest of the inaccurate results
(2.33%) include partly correct load determinations, as explained in the paper.

In the proposed method;
• A novel competitive decision process is introduced for the first time in this study.
• A real-time STM-based embedded system is designed to perform the whole process.
• In all load combination cases, the total success rate of over 97% is achieved with all metrics.
• Waiting for any step changes and recording more than one-period data are eliminated since the method

does not require a continuous measurement.
• Low power consumption loads can be disaggregated in most cases.
• Since only one-period measurements of single-load cases are required as references, a minimum database

space is needed.
• The complexity of the approach is reduced by the proposed two-level process.
The future scope of the work includes conducting in-depth research on demand-side management and

system stability based on the dynamic model for conservation voltage reduction (CVR) studies since accurate
load determination ensures a correct understanding of the load side.

References

[1] Hart G. Nonintrusive appliance load monitoring. Proceedings of the IEEE 1992; 80 (12): 1870-1891.
https://doi.org/10.1109/5.192069

[2] Zeng W, Han Z, Xie Y, Liang R, Bao Y. Non-intrusive load monitoring through coupling se-
quence matrix reconstruction and cross stage partial network. Measurement 2023; 220: 113358.
https://doi.org/10.1016/j.measurement.2023.113358

[3] Zhang Y, Lin C, Shao Z, Liu B. A non-intrusive identification method of harmonic source loads for industrial users.
IEEE Transactions on Power Delivery 2022; 37 (5):4358-4369. https://doi.org/10.1109/TPWRD.2022.3168835

[4] Akarslan E, Dogan R. A novel approach for residential load appliance identification. Sustainable Cities and Society
2020; 63:102484. https://doi.org/10.1016/j.scs.2020.102484

[5] Rehman AU, Lie TT, Vall‘es B, Tito SR. Event-detection algorithms for low sampling nonintrusive load monitoring
systems based on low complexity statistical features. IEEE Transactions on Instrumentation and Measurement
2020; 69 (3): 751-759. https://doi.org/10.1109/TIM.2019.2904351

[6] Wu Z, Wang C, Xiong L, Li R, Wu T et al. A smart socket for real-time nonintrusive load monitoring. IEEE
Transactions on Industrial Electronics 2023;70 (10):10618–10627. https://doi.org/10.1109/TIE.2022.3224164

[7] Klemenjak C, Jost S, Elmenreich W. YoMoPie: a user-oriented energy monitor to enhance energy efficiency
in households. In: IEEE 2018 IEEE Conference on Technologies for Sustainability (SusTech); 2018. pp. 1-7.
https://doi.org/10.1109/SusTech.2018.8671331

[8] Guo Z, Wang ZJ, Kashani A. Home appliance load modeling from aggregated smart meter data. IEEE Transactions
on Power Systems 2015;30 (1):254–262. https://doi.org/10.1109/TPWRS.2014.2327041

[9] Egarter D, Bhuvana VP, Elmenreich W. PALDI: Online load disaggregation via particle filtering. IEEE Transactions
on Instrumentation and Measurement 2015;64 (2):467–477. https://doi.org/10.1109/TIM.2014.2344373

[10] Ji TY, Liu L, Wang TS, Lin WB, Li MS et al. Non-intrusive load monitoring using additive factorial approximate
maximum a posteriori based on iterative fuzzy c -means. IEEE Transactions on Smart Grid 2019;10 (6):6667–6677.
https://doi.org/10.1109/TSG.2019.2909931

[11] Wu X, Han X, Liu L, Qi B. A load identification algorithm of frequency domain filtering under current under
determined separation. IEEE Access 2018;6:37094–107. https://doi.org/10.1109/ACCESS.2018.2851018

587



ÇINAR et al./Turk J Elec Eng & Comp Sci

[12] Akbar M, Khan ZA. Modified nonintrusive appliance load monitoring for nonlinear devices. In: IEEE 2007 IEEE
International Multitopic Conference; 2007. pp. 1-5. https://doi.org/10.1109/INMIC.2007.4557691

[13] Laughman C, Lee K, Cox R, Shaw S, Leeb S et al. Power signature analysis. IEEE Power and Energy Magazine
2003;1 (2):56–63. https://doi.org/10.1109/MPAE.2003.1192027

[14] Zhou Z, Xiang Y, Xu H, Yi Z, Shi D et al. A novel transfer learning-based intelligent nonintrusive load-
monitoring with limited measurements. IEEE Transactions on Instrumentation and Measurement 2021; 70:1–8.
https://doi.org/10.1109/TIM.2020.3011335

[15] Chen S, Zhao B, Zhong M, Luan W, Yu Y. Nonintrusive load monitoring based on self-supervised learning. IEEE
Transactions on Instrumentation and Measurement 2023; 72:1–13. https://doi.org/10.1109/TIM.2023.3246504

[16] Akarslan E, Dogan R. A novel approach based on a feature selection procedure for residential load identification.
Sustainable Energy, Grids and Networks 2021; 27:100488. https://doi.org/10.1016/j.segan.2021.100488

[17] Wu X, Guo Y, Yan M, Li X, Yao L et al. Non-intrusive load monitoring using identity library based on struc-
tured feature graph and group decision classifier. IEEE Transactions on Smart Grid 2023; 14 (3):1958–1973.
https://doi.org/10.1109/TSG.2022.3209213

[18] Huang G, Zhou Z, Wu F, Hua W. Physics-informed time-aware neural networks for industrial
nonintrusive load monitoring. IEEE Transactions on Industrial Informatics 2023; 19 (6):7312–22.
https://doi.org/10.1109/TII.2022.3211075

[19] Ramadan R, Huang Q, Bamisile O, Zalhaf AS. Intelligent home energy management using internet of
things platform based on nilm technique. Sustainable Energy, Grids and Networks 2022; 31:100785.
https://doi.org/10.1016/j.segan.2022.100785

[20] Zhang F, Qu L, Dong W, Zou H, Guo Q et al. A novel NILM event detection algorithm based
on different frequency scales. IEEE Transactions on Instrumentation and Measurement 2022; 71:1–11.
https://doi.org/10.1109/TIM.2022.3181897

[21] Kotsilitis S, Kalligeros E, Marcoulaki EC, Karybali IG. An efficient lightweight event detection algorithm for
on-site non-intrusive load monitoring. IEEE Transactions on Instrumentation and Measurement 2023;72:1–13.
https://doi.org/10.1109/TIM.2022.3232169

[22] Li Y, Wang X, Xia Y, Sun L. Sparse bayesian technique for load identification and full response reconstruction.
Journal of Sound and Vibration 2023; 553:117669. https://doi.org/10.1016/j.jsv.2023.117669

[23] Yan L, Tian W, Han J, Li Z. Event-driven two-stage solution to non-intrusive load monitoring. Applied Energy
2022; 311:118627. https://doi.org/10.1016/j.apenergy.2022.118627

[24] Ruoyuan Z, Ma R. Non-invasive load identification method based on abc-svm algorithm and transient feature.
Energy Reports 2022; 8:63–72. https://doi.org/10.1016/j.egyr.2022.10.075

[25] Le TTH, Kim H. Non-intrusive load monitoring based on novel transient signal in household appliances with low
sampling rate. Energies 2018; 11 (12):3409. https://doi.org/10.3390/en11123409

[26] Tsai MS, Lin YH. Modern development of an adaptive non-intrusive appliance load monitoring system in electricity
energy conservation. Applied Energy 2012; 96:55–73. https://doi.org/10.1016/j.apenergy.2011.11.027

[27] Lin YH, Tsai MS. Development of an improved time–frequency analysis-based nonintrusive load monitor for
load demand identification. IEEE Transactions on Instrumentation and Measurement 2014; 63 (6):1470–83.
https://doi.org/10.1109/TIM.2013.2289700

[28] Chang HH, Lian KL, Su YC, Lee WJ. Power-spectrum-based wavelet transform for nonintrusive demand
monitoring and load identification. IEEE Transactions on Industry Applications 2014; 50 (3):2081–2089.
https://doi.org/10.1109/TIA.2013.2283318

588



ÇINAR et al./Turk J Elec Eng & Comp Sci

[29] Doğan R, Akarslan E. Investigation of electrical characteristics of residential light bulbs in load modelling stud-
ies with novel similarity score method. IET Generation, Transmission & Distribution 2020; 14 (23):5364–5371.
https://doi.org/10.1049/iet-gtd.2020.0674

[30] F II I. Ieee recommended practices and requirements for harmonic control in electrical power systems. New York,
NY, USA 1993.

[31] Du L, He D, Harley RG, Habetler TG. Electric load classification by binary voltage–current trajectory mapping.
IEEE Transactions on Smart Grid 2016;7 (1):358–365. https://doi.org/10.1109/TSG.2015.2442225

[32] Liu H, Wu H, Yu C. A hybrid model for appliance classification based on time series features. Energy and Buildings
2019; 196:112–123. https://doi.org/10.1016/j.enbuild.2019.05.028

[33] Qu L, Kong Y, Li M, Dong W, Zhang F et al. A residual convolutional neural network with multi-
block for appliance recognition in non-intrusive load identification. Energy and Buildings 2023; 281:112749.
https://doi.org/10.1016/j.enbuild.2022.112749

[34] De Baets L, Ruyssinck J, Develder C, Dhaene T, Deschrijver D. Appliance classification using vi trajectories and
convolutional neural networks. Energy and Buildings 2018;158:32–6. https://doi.org/10.1016/j.enbuild.2017.09.087

589


	A real-time embedded system designed for NILM studies with a novel competitive decision process algorithm
	Recommended Citation

	Introduction
	Implementation steps and details
	Experimental setup
	The architecture of the embedded system

	Features of load identification
	Competitive decision process
	Power SS
	RMS current SS
	THD SS
	Third harmonic SS

	Experimental results and discussions
	Failed predictions
	Evaluations

	Conclusion

