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Abstract: Predictive maintenance (PdM), a fundamental element of modern industrial systems, employs machine
learning to monitor equipment conditions, estimate failure probabilities, and optimize maintenance schedules. Its
core objective is to enhance equipment reliability, extend lifespan, and minimize costs through data-driven insights
by enabling efficient maintenance scheduling, reducing downtime, and optimizing resource allocation. In this paper, we
propose a novel ordinal predictive maintenance with ensemble binary decomposition (OPMEB) method for the PdM
domain, considering the hierarchical nature of class labels reflecting the machine’s health status, including categories
like healthy, low risk, moderate risk, and high risk. The proposed OPMEB method was validated by executing on
the C-MAPSS, AI4I 2020, and a real-world hydraulic system’s condition datasets. The experimental outcomes were
evaluated with four distinct metrics: accuracy, recall, precision, and F-measure. The findings showed the improvement
in the model’s predictive capabilities achieved by the proposed approach when compared to the traditional ordinal
classification algorithm. Furthermore, the experimental results demonstrated the superior performance of the OPMEB
method over other ordinal binary decomposition methods, including OneVsAll, OneVsFollowers, and OneVsNext.

Key words: Predictive maintenance, ordinal classification, binary decomposition, machine learning, classification,
ensemble learning

1. Introduction
Management of maintenance planning and optimization is a very critical issue in various industry areas. Several
maintenance strategies have been proposed to construct an effective solution to schedule maintenance properly
and to ensure the reliability and safety of the systems by minimizing downtime. The most common strategies can
be categorized into three approaches [1]. Run-to-failure (R2F) is the most basic strategy, where maintenance
occurs only when a machine’s components break down. This approach leads to long shutdown times and
unplanned maintenance actions, making it very costly and the least effective option. The second strategy,
preventive maintenance (PvM), has been used as a solution to these problems. PvM schedules the maintenance
at planned time intervals, preventing unexpected failures and downtimes. However, it can result in maintenance
actions that occur either too early or too late, leading to inefficient use of components and increased operating
costs. In response to the growing industrial demand for efficiency, availability, cost-effectiveness, and safety, a
third major maintenance strategy has evolved: predictive maintenance (PdM). PdM predicts the health status
of machine components to determine the optimal time for maintenance, ensuring more appropriate maintenance
∗Correspondence: derya@cs.deu.edu.tr
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decisions. The main purpose of the PdM strategy is to increase the useful life of the components, save cost
and energy by reducing fault rates, and maximize the production and operational availability of components
and systems. Fault detection, diagnosis, and prognosis are the major principles of PdM. The PdM approach is
capable of detecting a failure that will occur, identifying a specific type of failure, and predicting the remaining
useful life (RUL) of the machine’s components. High-accuracy forecasting through machine learning algorithms
is crucial across various domains, as these predictions offer a significant and positive contribution to decision and
policy makers in diverse fields [2, 3]. For instance, high-accuracy predictions play a pivotal role in constructing
a robust and efficient maintenance strategy.

Ordinal classification (OC) is a unique type of multiclass classification in which the classes possess a
natural underlying sequence. In traditional classification algorithms, the significant inherent order information
is disregarded, whereas OC considers the relationships among class labels. It has been observed that considering
this ordering information among classes leads to improved predictions when estimating the target value [4].
Naive, threshold, and ordinal binary decomposition approaches are the three main categories for the OC
algorithm [5]. The naive approaches, in this context, refer to the usage of other machine learning paradigms
such as regression, nominal, and cost-sensitive classification to obtain the model. The threshold approaches
acquire a collection of thresholds by dividing the target class values into consecutive intervals, with each class
label being assigned to an interval determined by these thresholds [4]. In ordinal binary decomposition (OBD)
approaches, the main principle is based on the concept of “divide and conquer”, as it involves dividing the
ordinal label into several binary labels. Subsequently, the ultimate class labels are selected by consolidating the
binary outputs into a single one. In this study, we introduce a novel algorithm that utilizes the OBD approach
to enhance the performance of the classic OC algorithm.

PdM applications often overlook the structured information inherent in class labels, representing the
machine’s health status. Numerous studies have consistently demonstrated that the OC approach consistently
outperforms nominal classification methods when dealing with datasets featuring ordered class targets [4–11].
This paper proposes a novel ordinal predictive maintenance with ensemble binary decomposition (OPMEB)
algorithm that involves the decomposition of ordered multiclass problems into multiple binary subproblems.
We aimed to enhance the predictive performance of the OC algorithm by introducing the new OBD method
and to demonstrate the applicability of OC in the PdM domain, primarily because it is feasible to categorize
the machine’s health status according to the risk of failure. For instance, a machine that has been in operation
for a short period poses no risk, whereas one with an extended operational history may present a critical risk
in terms of potential failure.

The key contributions and novelty of this work can be listed as follows. (i) It has been demonstrated
that the OC algorithm outperforms traditional classification algorithms in the field of PdM. (ii) A novel ordinal
predictive maintenance with ensemble binary decomposition (OPMEB) algorithm is proposed by integrating
PdM and OC paradigms, further enhancing the success of the OC algorithm. (iii) This study is also original in
that it provides a comparative analysis of alternative OBD methods, such as OneVsAll (OVA), OneVsFollowers
(OVF), and OneVsNext (OVN). (iv) The proposed OPMEB approach can be utilized with any ordinal data
without necessitating prior knowledge of the specific PdM dataset, thus rendering it versatile and widely
applicable. (v) The demonstrated superior performance of the OPMEB approach across diverse datasets,
including C-MAPSS, AI4I 2020, and real-world hydraulic system datasets, underscores its robustness and
generalizability across various PdM scenarios in terms of accuracy, recall, precision, and F-measure evaluation
metrics.
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In the experimental studies, the OPMEB algorithm was tested on three versions of the C-MAPSS and
AI4I 2020 datasets, each discretized into three, four, and five ordinal class labels. Furthermore, the performance
of the OPMEB algorithm was examined on a real-world hydraulic system dataset, which encompassed three
distinct fault types, with both three and four ordinal class labels. Then, we conducted a comparative analysis by
contrasting its performance with the standard OC algorithm [4]. Additionally, the results were compared with
other OBD methods including OVA, OVF, and OVN. The results indicated that the OPMEB method effectively
categorizes machine health states within the PdM domain, demonstrating its adaptability and suitability for
diverse industrial machinery contexts.

This paper comprises five sections. Section 2 presents the related work in the literature on the subject. In
Section 3, the novel proposed approach is explained thoroughly. Section 4 provides an overview of the datasets
and showcases the experimental and comparative outcomes. Lastly, Section 5 discusses the final observations
and possible future research paths.

2. Related work
Predictive maintenance (PdM) has become increasingly critical in recent years owing to its powerful strategy
to present effective maintenance plans. A great number of studies have been introduced in different research
areas, such as automotive [12], aerospace [13–16], energy [17–20], manufacturing [21–26], and transportation
[6, 27, 28]. Understanding the present status, key issues, gaps, challenges, and future research directions in PdM
is crucial. Review articles play a critical role by summarizing all available literature information. Numerous
systematic literature reviews in various areas showcase the current state-of-the-art machine learning techniques
applied in PdM [12, 13, 29, 30]. Jain et al. [12] addressed machine learning techniques for automotive PdM and
vehicle health diagnosis, while Stanton et al. [13] highlighted difficulties and opportunities in aircraft PdM.

In the realm of artificial intelligence, machine learning and, more recently, deep learning, have surfaced
as effective methodologies for constructing PdM models, attributed to their proficiency in executing failure
prediction tasks. Machine learning paradigms, including regression, classification, and clustering, are employed
in various studies to predict anomalies, failures, and unusual behaviors in machines successfully in different
sectors as summarized in Table 1. For instance, the growing interest in using machine learning in manufacturing
has led to the development of many different machine learning algorithms for various situations [21–26].

Another crucial aspect is the prediction of the remaining useful time (RUL) value, which holds significant
importance as it shows the duration a machine is expected to operate before requiring replacement or revealing
potential failures [15, 21, 22, 27]. In this regard, numerous deep learning methodologies have been suggested
to address PdM challenges, such as forecasting the RUL of turbofan engines [16], railway equipment [27],
and fault diagnosis of conveyor motors [25], and semiconductor lasers [23]. Moreover, CNNs have emerged
as the leading deep learning architecture for predicting faults in various machinery across diverse domains,
encompassing conveyor motors, turbines, and turbofan engines [16, 19, 25]. Additionally, they introduced
various deep neural network (DNN) models, including LSTM networks [3] and autoencoders, for PdM tasks
[21, 27]. When clustering is preferred in machine learning, the K-means algorithm successfully recognizes faults
[17, 26]. Research has shown that artificial intelligence-driven methods, encompassing both machine learning
and deep learning, display enhanced efficacy and precision in PdM tasks such as estimating RUL, and diagnosing
faults [31].
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Table 1. Summary of different machine learning techniques in PdM systems.

Ref. Year Algorithm Application Approach Industry
[16] 2023 Convolutional neural network

(CNN), Monte Carlo dropout
RUL prediction of turbofan en-
gine

Regression Aviation

[17] 2023 K-Means Detection of unusual behavior
in wind turbines

Clustering Energy

[23] 2022 Gated recurrent unit (GRU),
autoencoder

Health prognosis of semiconduc-
tor laser

Classification,
Regression

Manufacturing

[24] 2022 Decision tree (DT) Failure prediction of the gear-
box for roasting oilseeds

Classification Manufacturing

[27] 2022 Long short-term memory
(LSTM), autoencoder

RUL prediction of railway
equipment

Regression Transportation

[19] 2021 Recurrent neural network
(RNN), Convolutional neural
network (CNN)

Prediction of the real-time
power of a turbine

Regression Energy

[20] 2020 DT, K-nearest neighbor (KNN) Prediction of wind turbine blade
delamination

Classification Energy

[25] 2020 CNN, SVM Fault diagnosis of conveyor mo-
tors

Classification Industry

[26] 2020 K-Means Fault recognition model for ro-
tating machinery

Clustering Manufacturing

[31] 2020 Multilayer perceptron (MLP),
support vector machine (SVM)

Fault prediction of a centrifugal
pump in the oil and gas industry

Classification Industry

Recently, ordinal classification has demonstrated successful applications across diverse research domains
such as transportation [6], human activity recognition [7], and image processing [8]. In [9], an ordinal classifi-
cation algorithm based on an ensemble approach is presented. This proposed method makes a final estimation
through a weighted voting system by minimizing the cost of classification. In [10], the authors investigated
semisupervised learning for ordinal classification and presented extensive experimental study results to show
the success of the proposed algorithm. Ensemble techniques and ordinal classification are already explored
areas in the literature; however, the combination of these fields, particularly in conjunction with the binary
decomposition approach in predictive maintenance, has yet to be deeply investigated, representing an intriguing
avenue for further research. Our method aims to combine the strengths of these fields to address the challenges
inherent in the classification problems in predictive maintenance. The proposed approach leverages the ordinal
classification task with the ensemble learning principles to address classification tasks, considering relatively
uncharted territory in the literature.

The PdM studies aforementioned focus on different research areas by applying various machine learning
techniques. Although there are many studies in the field of PdM in the literature, the number of papers
applying the ordinal classification algorithm in the PdM area is almost nonexistent. To the best of our
knowledge, ordinal classification has never been considered comprehensively; only in [11], the author applied
the ordinal classification method in the field of PdM but in a different way. In our study, we introduce a
novel ordinal predictive maintenance with ensemble binary decomposition (OPMEB) method which utilizes the
ordinal classification algorithm by presenting a new ordinal binary decomposition technique that considers the
hierarchical nature of class labels reflecting the machine’s health status for the PdM domain.
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3. Materials and methods
This section contains background information concerning the techniques applied in this study and describes the
proposed approach, “ordinal predictive maintenance with ensemble binary decomposition” called OPMEB in
detail.

3.1. Ensemble learning
Ensemble learning combines predictions from multiple classifiers to improve accuracy and robustness in machine
learning, particularly in classification tasks [6]. The fundamental idea behind ensemble algorithms is to leverage
the collective intelligence of a diverse set of base classifiers. Instead of relying solely on the predictions of a single
classifier, ensemble methods combine these predictions in a strategic manner to form a unified and typically more
accurate classification. This collective decision-making process tends to outperform the individual classifications
provided by each base classifier in isolation [9]. In essence, ensemble learning enhances predictive performance
by merging the strengths of individual classifiers.

3.2. Ordinal classification
Ordinal classification (OC) is a supervised learning problem that represents a unique form of multiclass classi-
fication characterized by an inherent order among the classes. For instance, class labels of a target value for a
machine’s components can have ranking values such as healthy, low risk, moderate risk, high risk, and critical
failure, arranged from the most favorable condition to the most severe.

The OC algorithm [4] involves predicting the label, denoted as y , for a given input vector x , where X

is a d-dimensional input space, XϵRd . The label y belongs to a label space Y , which consists of n distinct
labels, represented as y ∈ Y ={C1, C2, . . . , Cn−1, Cn} where C1 < C2 < . . . < Cn−1 < Cn . The “<” symbol
indicates the ordering relationship between the labels. The main goal is to discover a classification function,
denoted as f : X → Y , which accurately forecasts the label y for a given x new input.

3.3. The ordinal binary decomposition approach
One of the major approaches for OC is the binary decomposition method. The fundamental concept of this
approach involves breaking down the ordinal problem into multiple binary classification subproblems, treating
each problem independently by constructing multiple models. Subsequently, the binary outputs are combined
to determine the final label during the classification phase, enabling the prediction of the ordinal class.

One of the significant approaches for ordinal binary decomposition (OBD), known as OrderedPartitions,
involves assigning a label of 1 to classes with higher ranking order while labeling the remaining ones as -1 to
indicate their negative status. In the OC algorithm they introduced [4], Frank and Hall utilized the decision
tree C4.5 as the base learner, and subsequently, the final decision of various binary classifiers was ascertained
through the computation of the respective probabilities assigned to each class. Then, the class with the highest
probability among all the classifiers is selected.

Different binary decomposition techniques have been proposed to address the question of how to effectively
decompose the ordinal target variable into a series of binary variables [5]. In the OneVsAll (OVA) technique,
each binary dataset consists only of instances belonging to a single class. This means that classifiers are trained
using instances exclusively from one class in each binary dataset. Only the instances belonging to the current
class is assigned to 1, while instances from all other classes are labeled as -1, ensuring that each binary classifier
is focused on discriminating one class from the rest of the classes in the multiclass problem [32].
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In the OneVsFollowers (OVF) technique, the first class is labeled as -1, and all the following classes with
higher ranking order are labeled as 1. The classes with lower ranking order are labeled as 0 and not included in
the dataset. This process is repeated for each subsequent class until all the ordered labels have been assigned,
ensuring that each class is labeled based on its relative position in the ordinal sequence [33].

When employing the OneVsNext (OVN) technique, the dataset is constructed by including only the next
class with a higher ranking order. The class being considered is labeled as 1, indicating its positive status.
The current class is set to -1, denoting its negative status. All the remaining classes are assigned a label of 0
and are not included in the learning process. This approach ensures that each binary dataset focuses on the
classification between a specific class and the next higher-ranked class while disregarding the other classes [33].

3.4. The proposed approach: ordinal predictive maintenance with ensemble binary decomposition
(OPMEB)

In predictive maintenance (PdM) studies, classification, and regression techniques are applied to carry out
target class and remaining useful life (RUL) predictions. During these investigations, the inherent order among
classes is often overlooked despite its relevance. When considering the health status of machines, the risk
of failure follows a discernible pattern. Machines that are in their early operational stages exhibit a lower
risk of malfunction, while those that have been in operation for a while may transition to a moderate-risk
category. However, as machines continue to operate over an extended period, the risk profile tends to ascend,
potentially reaching higher or even critical risk levels, ultimately leading to potential breakdowns. It also
indicates the inherent presence of a natural hierarchy among the health condition categories within PdM data.
Although traditional classification methods ignore this order, its positive impact on prediction power and
improved accuracy results were already demonstrated in [4]. Motivated by this insight, we proposed a novel
algorithm named ordinal predictive maintenance with ensemble binary decomposition (OPMEB) in the PdM
domain, utilizing the OC algorithm to leverage this order and enhance predictive outcomes.

Figure 1 demonstrates the comprehensive process of the OPMEB approach. This sequence involves
distinct phases, including constructing different ordinal binary decomposition (OBD) approaches, generating
binary datasets for each different OBD approach, training models, executing directional decision-making strate-
gies in classification, evaluating prediction performance, and determining the best prediction performer. The
initial step involves dynamically constructing multiple ordinal binary decomposition approaches based on the
target class number. By forming upward and downward unions of classes, considering the inherent order among
existing classes, all possible combinations are applied to create a variety of OBD approaches. For an n -class
dataset, (n − 1)2 different OBD approaches are generated, denoted as OBD1 , OBD2 , OBD3 , and extend-
ing up to OBD(n−1)2 . Each OBDx decomposes the original multiclass problem into a unique set of simpler
multiclass subproblems. In the subsequent step, corresponding subbinary datasets are created for each OBD
approach. For an n -class dataset, n−1 subdatasets are generated by assigning labels of 0, -1, and 1 to indicate
the instances from lower- and higher-ranking classes within each subdataset, represented as SD1 , SD2 , …,
SD(n−1) .

During the training step, the C4.5 classification algorithm is applied to each generated subdataset while
retaining the natural order between the class values. Training occurs for each subclass, leading to n − 1

applications of the C4.5 binary classifier for an n -class dataset. This yields distinct models, labeled as M1 ,
M2 , …, M(n−1) , each trained with a subset associated with different classes, enabling diverse training scenarios.
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After obtaining prediction results from all models, the OPMEB approach assigns a class to the input data
using binary classifiers constructed in the previous phase. This involves applying a decision-making strategy
in either the forward or backward direction. This strategy involves verifying each model’s predictions using
three distinct decision techniques: forward, forward iteration, and backward. The forward method aligns binary
classifiers, prioritizing the identification of the lowest-level classes first and the highest-level last. Conversely, the
backward method orchestrates binary classifiers in the opposite direction. During forward iteration, classifiers
prioritize the prediction of lower-level classes before progressing to higher levels. This process involves the
prediction result of the next higher-level class and validating it until a negative class is encountered.

Following that, 10-fold cross-validation is conducted and the most successful classification strategy is
identified for each subdataset. Afterward, an overall assessment determines the optimal directional decision-
making strategy exhibiting the highest performance across all subdatasets. The path with the most successful
predictive power is preferred among all obtained results. Finally, using the ensemble learning approach through
a collective assessment of these results based on their prediction performance, the combination of the OBD tech-
nique and the directional decision-making strategy achieving the highest prediction performance is determined
for the given PdM dataset when applying the C4.5 classification algorithm. For instance, the OPMEB method
determines that the OBD2 + backward approach or OBD5 + forward approach yields the best performance.
Consequently, this specific combination is selected for future predictions to assist maintenance strategists and
decision-makers.

3.5. The formal definition of the proposed OPMEB approach
In an ordinal dataset D with k instances, denoted as D={(xi, yi) | i=1, 2, . . . , k} , each data point (xi, yi)

consists of an input xi and a corresponding machine’s health status class label yi . The input vector xi ,
belonging to the d-dimensional feature space X⊆ Rd , is paired with a class label yi associated with the health
status set Y ={c1, c2, . . . , cn} , representing statuses like healthy, low risk, moderate risk, and high risk, where
n represents the number of classes. The status classes are ordered consistently as c1 < c2 < . . . < cn , denoting
their order. The primary objective in this context is to determine a decision function f : X → Y which
accurately predicts the health status class for any machine’s data with the best possible fit.

Definition 1 The OPMEB method aims to develop an improved classification approach in the PdM domain,
taking into consideration the inherent order of class labels representing the health status of machines to
accurately predict the future state or performance of the system. This is achieved through a novel ordinal
binary decomposition (OBD) approach.

The proposed OPMEB method comprises four main steps. In the first step, various OBD approaches are
dynamically constructed based on the target class number in the given dataset. In the second step, for each
derived OBD approach, the ordinal PdM problem, involving n health statuses of machines, is transformed into
n− 1 binary classification problems. These states represent categories such as healthy < low risk < moderate
risk < high risk. In the third step, a base learner is employed to construct n − 1 models for each binary
dataset individually, enabling predictions to be made. In the final step, during the interpretation, a directional
decision-making strategy is employed to make a prediction. Finally, all prediction results are evaluated and the
model with the best predictive performance is chosen.
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Ordinal dataset 
(n classes)

Constructing OBD approaches

Training

Executing directional decision-making
strategy 

...
OBD(n-1)

2OBD1

SD1 SD(n-1)

...

SD2

C4.5 ...

...

Evaluating prediction performance

10-fold
cross-validation

Evaluating the results1

...

... Evaluating the results(n-1)
2

Deciding the best prediction performer

...

SD1 SD(n-1)SD2

...

M1 M2 M(n-1)

...

M(n-1)M(n-2)M1

...

Creating subbinary datasets

Forward 
iteration

BackwardForward

...

Backward

Forward 
iteration

Forward

C4.5

Figure 1. A comprehensive summary of the proposed OPMEB approach.

Definition 2 The OPMEB method dynamically generates multiple OBD approaches, involving the transforma-
tion of a multiclass problem into a set of binary subproblems by forming essential upward and downward unions
of classes in distinct manners based on the given dataset and considering the number of classes.

Let OBDx denote the xth ordinal binary decomposition approach. For an n -class ordinal dataset OBD1 ,
OBD2 , …, OBD(n−1)2 approaches are applied to the original dataset D , where x spans from 1 to (n − 1)2 .
Each OBDx is formulated by assigning labels to lower and higher classes in different ways, indicating their
ordinal relationships. In all these formulations, the preceding labels can be extended from 0 to n − 1 , while
the subsequent labels can be extended from 1 to n− 2 . It means at least one subsequent higher-class labeling
is performed. For example, in a 4-class dataset D , the preceding class number to be labeled is 2, and the
subsequent class number is 1. Then, Y ′={ci−2, ci−1, ci, ci+1} . The label yj ∈ Y ′ linked with the instance xj

is substituted with yj =−1 , ∀yj ≤ ci , and, yj =1 , ∀yj > ci , and yj =0 for the others. In other words, when
considering class ci , class values higher than ci are labeled as 1, class values lower than or equal to ci are
labeled as -1, and the rest are labeled as 0. Labels 1, -1, and 0 represent positive, negative, and unselected class
statuses, respectively. Unselected signifies that they are not included in the binary subdataset. By applying
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this labeling process for each OBDx , the OPMEB method transforms the ordinal classification problem with
n classes into n − 1 binary classification problems, encoding the ordinal sequence of the class labels. In this
way, a collection of all potential OBD approaches is generated, each capturing different aspects of the ordinal
relationships within the dataset.

Figure 2 shows different OBD approaches formulated for a 4-class ordinal dataset scenario as an example.
The matrices illustrate the distribution and arrangement of classes within each method’s decomposition formu-
lations. The values R1 , R2 , R3 , and R4 in Figure 2 serve as examples representing the risk classes associated
with a machine’s health status, denoting healthy, low risk, moderate risk, and high risk, respectively. This bi-
nary dataset contains a target value, determined by checking if the class value in the original dataset is equal to,
below, or above the rank of the associated class, with T used to indicate the target class. In these matrices, the
columns present the binary subproblems, while the rows indicate the role of each class within each subproblem.
Each element Mij in the decomposition table M takes values from the set {-1, 1, 0}, where 1 or -1 represents
the assigned positive or negative class, respectively, and 0 indicates an unselected class that is not considered
in the learning process. Each decomposition matrix M displays a range denoted as [L : x][H : y] . Here, L and
H represent the lower and higher classes, respectively. x indicates how many preceding classes will be labeled
as lower, and y denotes the number of subsequent higher classes to be labeled. All these matrices present how
classes are organized in the different OBD formulations of each approach. The objective is to experiment with
all possible combinations of labeling lower and upper classes in a distinct manner, resulting in the generation
of diverse OBDs.

[L:2][H3] T > R1 T > R2 T > R3 [L:2][H2] T > R1 T > R2 T > R3 [L:2][H1] T > R1 T > R2 T > R3

R1 -1 -1 -1 R1 -1 -1 -1 R1 -1 -1 -1

R2 1 -1 -1 R2 1 -1 -1 R2 1 -1 -1

R3 1 1 -1 R3 1 1 -1 R3 0 1 -1

R4 1 1 1 R4 0 1 1 R4 0 0 1

[L:1][H3] T > R1 T > R2 T > R3 [L:1][H2] T > R1 T > R2 T > R3 [L:1][H1] T > R1 T > R2 T > R3

R1 -1 -1 0 R1 -1 -1 0 R1 -1 -1 0

R2 1 -1 -1 R2 1 -1 -1 R2 1 -1 -1

R3 1 1 -1 R3 1 1 -1 R3 0 1 -1

R4 1 1 1 R4 0 1 1 R4 0 0 1

[L:0][H3] T > R1 T > R2 T > R3 [L:0][H2] T > R1 T > R2 T > R3 [L:0][H1] T > R1 T > R2 T > R3

R1 -1 0 0 R1 -1 0 0 R1 -1 0 0

R2 1 -1 0 R2 1 -1 0 R2 1 -1 0

R3 1 1 -1 R3 1 1 -1 R3 0 1 -1

R4 1 1 1 R4 0 1 1 R4 0 0 1

Figure 2. Generated binary datasets with the proposed decomposition method for 4-class labels.

The labeling process for lower and higher classes varies, leading to different OBD approaches. Ordered-
Partitions, OVA, OVF, OVN, and similar OBD approaches label lower and higher classes in unique ways,
thereby generating different binary subdatasets. Models are then trained differently for each specific binary
dataset. The crucial aspect in this context lies in understanding how the underlying binary datasets are formed
for each OBD approach. In this study, the C4.5 base learner is applied to the generated binary datasets to
build n − 1 models in the training stage. Let Mi , for i=1, 2, . . . , n − 1 , denote the model generated for the
ordinal classification problem. A separate model Mi is trained on their corresponding subdatasets: SD1 , SD2 ,
…, SD(n−1) , respectively.
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Definition 3 The OPMEB method establishes a rule for forecasting unseen inputs once the prediction results
are obtained. Following the learning process, predictions from each model are examined to conclude a label as
a result. This is achieved through the implementation of a directional decision-making strategy, which includes
three decision techniques: forward, forward iteration, and backward.

The forward method starts with the initial model, M1 . If an unseen instance is classified as 0 by M1 , it
proceeds to the next model, and this process continues until the last model, M(n−1) , is assessed. The method
concludes when a model predicts 1 for the test instance, and the outcome of that specific model is selected.
This method aligns binary classifiers, with a priority on identifying the lowest-level classes first and progressing
towards the higher levels. Let Class(x) be a function as defined in Equation (1):

Class(x) = Ci+1 where i =

{
∃Mj(x) ∈ {1}, min{j |Mj(x) = 1}
0, otherwise

(1)

This notation states that the assigned class for the test instance x is Ci+1 , where i is the index of the first
model that predicts a positive label for the given test instance x , and i can take values from 0 to n− 1 . The
notation min{j | Mj(x)=1} denotes the minimum index j satisfying the condition Mj(x)=1 . If there is no
such j , then i is set to 0 concerning the lowest-level class.

The forward iteration method fundamentally follows the same logic as the forward method, but the
key difference is that in forward iteration, the prediction made by the subsequent model is also verified. If
the following model predicts a positive label for the given test instance x , then the prediction made by that
subsequent model proceeds to be verified as well. This iterative validation process persists until the subsequent
model predicts a negative label. The final selection is then made based on the prediction of the last model that
forecasted a positive label.

Drawing upon the same logic, the backward method initiates with the M(n−1)th model. All the subsequent
steps follow the same procedure as the forward method but in reverse order. This method is designed to align
binary classifiers, prioritizing the identification of higher-level classes first and progressing toward the lower
levels.

For instance, in a labeled [L : 1][H : 2] dataset with four target classes, M1 compares C1 with C2 ,
C3 ; M2 compares C1 , C2 with C3 , C4 ; and M3 compares C2 , C3 with C4 . Predictions from three different
models are evaluated using directional decision-making strategies. Our example scenario is as follows: M1

predicts 0; M2 predicts 1; M3 predicts 1 for a classification task. Applying the forward method, the result of
the first positive prediction is considered correct, and for this case, it is assigned the C3 class. According to the
backward and forward iteration method, the C4 class is assigned.

After applying the aforementioned methods, the obtained results are evaluated, and the one with the
highest success among all these results is selected using the ensemble learning approach. The decision on which
binary decomposition method and directional decision-making strategy to be used together comes from this
evaluation.

3.6. The algorithmic structure of the proposed OPMEB approach
Algorithm 1 illustrates the pseudocode for the introduced OPMEB approach, structured into three distinct
steps. In the initial step, the algorithm iterates through potential lower and higher class pairs (L, H), and
binary datasets Di are constructed for each pair. Instances in the original dataset are assigned new labels {-1,

543



YÜREK and BİRANT/Turk J Elec Eng & Comp Sci

1, 0} based on their ordinal relationship with the current class. During the second step, an individual model Mi

is constructed to train an ordinal classifier (Ci ) for the current class using the training dataset Di associated
with class i . Then, the set of ordinal classifiers (C∗ ) is updated by adding the newly trained classifier Ci .
Upon completion of the loop, this step builds a collection of ordinal classifiers (C∗ ) by training individual
classifiers for each class in the ordinal dataset. This approach ensures that the ordinal relationships among
classes are taken into account during the training process. In the last step, the algorithm iterates through each
directional predictor p in the set P and predicts class labels for each instance x in T . The results are stored
in a predicted test set T ′ , and it dynamically updates the best performer based on model performance. The
process ensures the selection of the most effective combination of ordinal classifiers and directional predictors
for accurate ordinal class label predictions.

The computational time complexity of the initial part is O((k−1)2×n) , where n represents the number
of instances and k denotes the number of classes in the dataset. The time complexity for the second step is
O((k − 1) × T (n)) , where T (n) indicates the time needed for the execution of a base learner on n instances.
For the last step, the total computational complexity is O(q ×m × (k − 1) × |P |) , where q is the number of
directional predictors, m is the size of the test set, and |P | is the size of the set of directional predictors. So,
the total time complexity is O((k − 1)2 × n+(k − 1)× T (n)+q ×m× (k − 1)× |P |) since the method builds
(k − 1)2 models.

4. Experimental studies
In the experimental studies, the C-MAPSS, AI4I 2020, and a real-world hydraulic system’s condition datasets
were used to show the impact of the proposed approach on prediction success in the field of predictive mainte-
nance (PdM). It is important to note that the proposed algorithm was tested on three different configurations
of PdM datasets, encompassing datasets from three distinct domains. This study aimed to demonstrate how
the OPMEB technique enhances the accuracy of predictions within the PdM domain.

The OPMEB approach was developed using the C# programming language, employing the WEKA
machine learning library [34]. In the experiments, the C4.5 classification algorithm was used as a base learning
algorithm for the ordinal classification (OC) algorithm with its default parameters. The performance of the
proposed algorithm was measured using accuracy, precision, recall, and F-measure metrics. Accuracy provides
an overall measure of the model’s correctness, while recall and precision offer deeper insights into the model’s
ability to identify relevant instances and its exactness in doing so, respectively. Accuracy is quantified by
determining the ratio of accurately predicted observations to the overall count of observations in the dataset as
given in Equation (2):

Accuracy =
TN + TP

FP + TN + FN + TP
(2)

where false positives (FP) represent the count of incorrectly classified data examples, true positives (TP)
denote the count of accurately classified positive data examples, false negatives (FN) indicate the count of
misclassified positive data examples, and true negatives (TN) signify the count of correctly predicted negative
data examples. Precision represents the proportion of positive observations that are accurately classified
compared to all the positive outcomes. (Equation (3))

Precision =
TP

TP + FP
(3)
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Algorithm 1 Ordinal predictive maintenance with ensemble binary decomposition (OPMEB)
Inputs:
D : the ordinal dataset D = {(x1, y1), (x2, y2), . . . , (xn, yn)} with n instances
X : input feature set, an input vector xi ∈ X
Y : ordinal class labels, a class label yi ∈ Y = {c1, c2, . . . , ck} with a relationship c1 ≺ c2 ≺ . . . ≺ ck
k : the number of classes
C∗ : ordinal classifiers
P : directional predictors, a predictor p ∈ P = {forward, forward iteration, backward}
L : lower class
H : higher class
T : test set that will be predicted
T ′ : predicted test set
Output:
M : ordinal classification model M = {C∗, P}
Begin Algorithm:
for L← 0 to k − 2 do

for H ← 1 to k − 1 do
// Step 1 - Generation of binary datasets from the ordinal dataset, D
for i← 1 to k − 1 do

for all (xj , yj) in D do
if (ci−L ⪯ yj ⪯ ci) then

Di .Add(xj ,−1) // Class values less than or equal to ci are labeled as −1
else if (ci ≺ yj ⪯ ci+H) then

Di .Add(xj , 1) // The class values greater than ci are labeled as 1
else

Di .Add(xj , 0) // Do not add this instance, skip it
end if

end for
end for
// Step 2 - Generation of unified binary classifiers
for i← 1 to k − 1 do

Ci = Train(Di ) // Constructing a classifier on the training set employing a learning algorithm
C∗ = C∗ ∪ Ci

end for
// Step 3 - Evaluation of directional decision-making strategy
for all p in P do

for all x in T do
y = p(C∗, x)
T ′
i .Add(x, y )

end for
if M is empty then

M = {C∗, p}
else

M = BestPerformer(M, {C∗, p})
end if

end for
end for

end for
End Algorithm
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Recall shows the proportion of right predictions for a specific class relative to all the correct predictions attributed
to that class (Equation (4)).

Recall = TP

TP + FN
(4)

Lastly, the F-measure serves as a valuable performance indicator of prediction quality, computed as the harmonic
mean of precision and recall as defined in Equation (5). This measure yields values within the range of 0 to 1,
where 1 indicates the best performance.

F-measure =
2× Precision× Recall

Precision + Recall (5)

These metrics are critical in the PdM field as they directly impact the reliability and efficiency of
maintenance scheduling. High accuracy ensures the model’s general reliability, while high recall ensures that
most potential failures are detected, minimizing unexpected downtimes. Precision, on the other hand, ensures
that maintenance actions are necessary and not overly frequent, which optimizes resource use. Therefore, our
model’s performance, as indicated by these metrics, demonstrates its effectiveness in predicting maintenance
needs accurately and efficiently, thereby contributing significantly to reducing operational costs and improving
equipment uptime in industrial settings.

In this work, the n -fold cross-validation technique with n chosen as 10 was used to compute the
classification accuracies. This validation technique, which includes randomly dividing the data into ten separate
and equal partitions, is iterated n times with changing parts for the training and testing phases. Each repetition
involves reserving one partition for testing purposes, while the remaining partitions are used to train the model.
The validity of the model is evaluated based on the average error at the conclusion.

We planned three experiments to explore the effects and outcomes of the following key aspects. In
experiment 1, in order to assess the superiority of OC over the standard classification approach, we conducted
an evaluation of the nominal and ordinal classification algorithms described in [4] using PdM datasets, aiming
to demonstrate their relative performance. In experiment 2, we performed a comparative analysis between the
OPMEB method and the conventional OC algorithm as described in [4] to demonstrate the efficacy of our
approach on PdM datasets. In experiment 3, we evaluated the prediction performance of the OPMEB method
against other ordinal binary decomposition techniques, including OneVsAll (OVA), OneVsFollowers (OVF), and
OneVsNext (OVN), in order to establish its superiority on PdM datasets. Finally, the results obtained from the
experiments have all been thoroughly analyzed and illustrated via charts and tables.

4.1. Dataset description
To validate the proposed approach’s efficacy in predictive maintenance (PdM), we utilized the C-MAPSS, AI4I
2020, and hydraulic system datasets. The C-MAPSS dataset [35], developed by NASA, features simulated
data on aircraft turbofan engine degradation generated through a model-based simulation program. C-MAPSS
comprises FD001, FD002, FD003, and FD004 subdatasets, representing distinct operating and fault conditions.
For this study, we focused on subset FD004, comprising 61,249 instances and 26 attributes. The dataset includes
engine numbers, operational sensor settings, and multivariate temporal data collected from 21 sensors per flight
cycle, along with run-to-failure (R2F) data for these sensor measurements. Over time, the engine units begin
to degrade until a failure occurs, so the main objective is to predict the RUL as the target attribute. The AI4I
2020 PdM dataset [36] on milling processes shows real maintenance data that industries often deal with. The
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dataset contains information about failures of milling machines, comprising 10,000 instances, with each row
having 14 features stored in columns. The milling machine failure comprises five distinct independent modes:
tool wear, heat dissipation, power, overstrain, and random failures. A real-world hydraulic system’s condition
dataset [37] is constructed based on the measured process values obtained from multiple sensors on a hydraulic
test rig, including temperature, motor power, vibration, cooling efficiency, volume flows, efficiency factors, and
pressure, as well as four fault types of hydraulic components such as cooler performance, valve status, internal
pump leakage, and the state of the hydraulic accumulator. It consists of 2205 instances with 17 inputs and four
target attributes. In this study, we examined valve condition, internal pump leakage, and hydraulic accumulator
fault types, each with ordinal target class values of 4, 3, and 4, respectively.

The hydraulic system’s condition dataset is already ordinal, while the C-MAPSS and AI4I 2020 PdM
datasets are not specifically intended for ordinal classification. To implement the OC algorithm, the target
attribute values, originally numerical, were transformed into ordinal class labels using equal bin discretization
which involves dividing the target variable into different bins with an equal number of instances in each bin.
The transformation was performed in response to the algorithm’s requirement for ordinal class representations.
Varied bin configurations were applied to the same dataset, resulting in the generation of distinct datasets from
the original one. The target value for the C-MAPSS and AI4I 2020 PdM datasets were discretized into three,
four, and five ordinal class labels, respectively, leading to the creation of three different versions. Categorical
labels were assigned to establish an ordering relation among them. For example, in the case of a 4-class dataset
with labels R1 , R2 , R3 , and R4 , each label corresponds to different risk factors of machines. The ordering of
the labels, such as R4 > R3 > R2 > R1 , reflects the magnitude of risk, representing high risk, moderate risk,
low risk, and healthy, respectively, based on the RUL value associated with each instance in the dataset.

4.2. Experimental results

4.2.1. The results of experiment 1

In the first experiment, the aim is to observe the prediction performance of nominal and ordinal classification
algorithms in the PdM domain. The expectation here is to observe that in the ordinal-transformed PdM
datasets, as has been previously demonstrated in different domains [4–11], the ordinal classification algorithm
achieves predictions with a high level of accuracy. For this experiment, we worked with three different versions
of the C-MAPSS, AI4I 2020, and hydraulic system’s condition datasets, each having three, four, and five
target classes. Since the ordinal classification algorithm employs the C4.5 decision tree algorithm as its base
learner, the same algorithm was selected for nominal classification as well. Then, we applied both nominal
and ordinal classification algorithms [4] to each dataset. The results of both the C-MAPSS and AI4I 2020
datasets, each with ordinal target class versions of 3, 4, and 5, and for the hydraulic system dataset, specifically
for valve condition, internal pump leakage, and hydraulic accumulator fault types, each with ordinal target
class values of 4, 3, and 4, respectively, were analyzed and compared based on accuracy, recall, precision,
and F-measure evaluation metrics. For each metric, the most successful results are highlighted in bold. In
Table 2, the abbreviations H-valve, H-pump, and H-acc represent the fault types for valve condition, internal
pump leakage, and hydraulic accumulator in the hydraulic system’s condition datasets, respectively. Upon
thorough analysis of the obtained results, it is evident that the ordinal classification algorithm achieved superior
performance compared to the traditional classification algorithm across all performance metrics in the different
PdM datasets. It experimentally confirmed that considering the order of class labels in the PdM domain can
result in the construction of superior models compared to the nominal classification.
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Table 2. Comparison of the results of the nominal and ordinal classification algorithms [4] on the PdM datasets in
terms of accuracy (%), precision, and recall.

Dataset
Accuracy (%) Precision Recall

Nominal Ordinal Nominal Ordinal Nominal Ordinal
C-MAPSS (3-class) 86.84 88.19 0.8690 0.8830 0.8680 0.8820
C-MAPSS (4-class) 82.21 83.30 0.8230 0.8350 0.8220 0.8330
C-MAPSS (5-class) 78.02 79.82 0.7810 0.8010 0.7800 0.7980
AI4I 2020 (3-class) 69.97 73.84 0.7000 0.7490 0.6990 0.7380
AI4I 2020 (4-class) 64.70 65.15 0.6470 0.6710 0.6470 0.6510
AI4I 2020 (5-class) 59.93 61.40 0.5990 0.6310 0.5990 0.6140
H-valve (4-class) 80.58 85.19 0.8050 0.8660 0.8060 0.8520
H-pump (3-class) 85.51 92.39 0.8540 0.9260 0.8550 0.9240
H-acc (4-class) 87.42 88.92 0.8740 0.8930 0.8740 0.8890
Average 77.24 79.80 0.7724 0.8061 0.7723 0.7979

Figure 3 displays the F-measure outcomes across all PdM datasets, including the average results derived
from these datasets. It highlights the superior performance of the OC algorithm compared to traditional
classification algorithms in the PdM domain, as evidenced by the improvement in F-measure when applied to
PdM datasets.
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Figure 3. The performance improvement provided by applying the OC algorithm [4] to the PdM datasets in terms of
F-measure.

4.2.2. The results of experiment 2
The main and most important goal is to show the superiority of the proposed novel algorithm, denoted as
OPMEB, in the PdM domain over OC results. For this experiment, we worked with three different versions of
the C-MAPSS, AI4I 2020, and hydraulic system’s condition datasets. The OC and OPMEB algorithms were
applied to PdM datasets to predict the health status of different machines. Table 3 provides a comparative
analysis and indicates that our proposed algorithm, OPMEB, consistently outperforms the OC algorithm across
all evaluation metrics for all PdM datasets, as evidenced by higher accuracy, precision, and recall metrics. The
consistent improvement in accuracy across all datasets is clearly demonstrated. For instance, in the case of the
4-class C-MAPSS dataset, OC achieved an accuracy of 83.30%, while the OPMEB method demonstrated an
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accuracy of 86.02%. In the AI4I 2020 (3-class) dataset, OPMEB significantly outperforms OC with an accuracy
of 80.09% compared to 73.84%. In the H-acc (4-class) dataset, OPMEB achieves a remarkable accuracy of
98.91%, far exceeding OC’s 88.92%. Across all datasets, the average accuracy improves from 79.80% (OC) to
84.78% (OPMEB). The superior precision achieved by OPMEB, averaging 0.8508 compared to OC’s 0.8061,
indicates that OPMEB is more effective in correctly identifying relevant instances without being misled by
irrelevant ones. This is particularly evident in complex datasets like AI4I 2020 (4-class), where OPMEB’s
precision is significantly higher. OPMEB’s higher recall, averaging 0.8478 versus OC’s 0.7979, demonstrates
its capability to capture a higher proportion of true positives. This is crucial in industrial applications where
missing a critical event could lead to significant consequences.

Table 3. Comparison of the results of the OC [4] and OPMEB (proposed) algorithms on the PdM datasets in terms of
accuracy (%), precision, and recall.

Dataset
Accuracy (%) Precision Recall

OC OPMEB OC OPMEB OC OPMEB
C-MAPSS (3-class) 88.19 89.26 0.8830 0.8933 0.8820 0.8926
C-MAPSS (4-class) 83.30 86.02 0.8350 0.8614 0.8330 0.8602
C-MAPSS (5-class) 79.82 81.46 0.8010 0.8159 0.7980 0.8146
AI4I 2020 (3-class) 73.84 80.09 0.7490 0.8034 0.7380 0.8009
AI4I 2020 (4-class) 65.15 73.94 0.6710 0.7519 0.6510 0.7394
AI4I 2020 (5-class) 61.40 69.72 0.6310 0.7044 0.6140 0.6972
H-valve (4-class) 85.19 88.38 0.8660 0.8852 0.8520 0.8838
H-pump (3-class) 92.39 95.21 0.9260 0.9522 0.9240 0.9521
H-acc (4-class) 88.92 98.91 0.8930 0.9891 0.8890 0.9891
Average 79.80 84.78 0.8061 0.8508 0.7979 0.8478

Furthermore, Figure 4 presents the F-measure values for all PdM datasets. This figure highlights the
performance comparison between the OC algorithm and the OPMEB method. It emphasizes the improved
efficiency and usefulness of the OPMEB technique, confirming its relevance and promising potential in the
domain of PdM when compared to the conventional ordinal classification approach. Therefore, it can be
inferred that the proposed approach has the potential to attain high F-measure values for ordinal PdM data
from different domains.

Lastly, it can be inferred that the OPMEB algorithm, as proposed, holds significant promise in attaining
enhanced accuracy, precision, recall, and F-measure values when applied to ordinal versions of PdM datasets.
Thus, it is evident that the OPMEB algorithm can successfully forecast the conditions of the machines by taking
into account the inherent order of class labels.

4.2.3. The results of experiment 3
The key objective of this experiment is to showcase the predictive efficacy of the OPMEB algorithm within
the PdM domain, contrasting it with other OBD algorithms such as OVA, OVF, and OVN, across various
PdM datasets. Three distinct OBD methodologies, alongside the OPMEB algorithm, were applied to datasets
encompassing the C-MAPSS, AI4I 2020, and hydraulic system conditions. As seen in Table 4, the outcomes
revealed that the OPMEB algorithm consistently achieved accuracy equal to or higher than the OVA, OVF,
and OVN approaches across all PdM datasets. For example, OPMEB achieved the highest accuracy across
all class configurations of C-MAPSS: 89.26% for 3-class, 86.02% for 4-class, and 81.46% for 5-class. Similarly,
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the OPMEB method exhibited the best prediction performance for AI4I 2020. In the H-valve and H-pump
datasets, OPMEB achieved the same accuracy as OVF but surpassed OVA and OVN with accuracies of 88.38%
and 95.21%, respectively. In summary, across all datasets, OPMEB achieved an average accuracy of 84.78%,
significantly higher than the average accuracies of OVA (81.74%), OVF (83.61%), and OVN (73.25%).
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Figure 4. Comparison of the OC [4] and OPMEB (proposed) algorithm results on the PdM datasets in terms of F-
measure.

Table 4. Comparison of the OVA [32], OVF [33], OVN [33] approaches, and the OPMEB algorithm results on PdM
datasets in terms of accuracy (%).

Dataset
Accuracy (%)

OVA OVF OVN OPMEB
C-MAPSS (3-class) 88.61 88.25 88.11 89.26
C-MAPSS (4-class) 83.27 84.26 83.49 86.02
C-MAPSS (5-class) 78.88 80.71 75.49 81.46
AI4I 2020 (3-class) 78.38 78.67 71.22 80.09
AI4I 2020 (4-class) 69.66 71.76 57.92 73.94
AI4I 2020 (5-class) 63.11 68.50 49.70 69.72
H-valve (4-class) 85.82 88.38 69.05 88.38
H-pump (3-class) 93.16 95.21 81.86 95.21
H-acc (4-class) 94.71 96.72 82.41 98.91
Average 81.74 83.61 73.25 84.78

5. Conclusion and future works
Over time, predictive maintenance (PdM) has gained significant attention as effective maintenance strategies
become crucial for ensuring continuous production, and extended machine lifespan. PdM, driven by machine
learning models and data analysis, has become a key player in improving equipment efficiency and reliability
while minimizing operational expenses. Its widespread adoption across industries has made PdM an essential
aspect of modern industrial practices, offering numerous competitive advantages, such as cost reduction in
maintenance, enhanced product quality, improved system efficiency, and reliability.
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This paper introduces a novel ordinal binary decomposition algorithm, OPMEB, and conducts compre-
hensive comparisons to assess its performance. The proposed OPMEB approach demonstrates its effectiveness
in the PdM domain as it builds a classification model that takes into account the ranking of the health status of
machines. The main purpose of this work was to showcase that the OPMEB algorithm exhibits higher efficiency
in the context of OC, particularly within the domain of PdM. To validate our approach, the OPMEB method
was applied to the C-MAPSS, AI4I 2020, and a real-world hydraulic system’s condition datasets, encompass-
ing different domains. The results were assessed based on four distinct evaluation metrics: accuracy, recall,
precision, and F-measure. On average, there is an enhancement in accuracy across all datasets, rising from
79.80% with the OC method to 84.78% with the OPMEB approach. Our findings consistently revealed that the
proposed method outperformed the OC algorithm across all evaluation metrics for all datasets, underscoring
its superiority in PdM applications. In addition, the OPMEB method was compared to other ordinal binary
decomposition approaches in the literature, such as OneVsAll (OVA), OneVsFollowers (OVF) and OneVsNext
(OVN) to evaluate its performance comprehensively. The OPMEB method attains an average accuracy of
84.78% across all datasets, markedly surpassing the average accuracies of OVA (81.74%), OVF (83.61%), and
OVN (73.25%). Once again, the results demonstrated the superiority of the OPMEB algorithm, surpassing the
other approaches. As a result, this comparison highlights the effectiveness of our proposed approach, leading
to the conclusion that the OPMEB approach has an important potential for achieving higher success rates in
PdM applications.

The principal findings of this study can be briefly summarized as follows. The ordinal classification
algorithm consistently outperformed the nominal classification algorithm across all PdM datasets. The proposed
novel algorithm, OPMEB, demonstrated significant superiority over the traditional OC approach across three
different PdM datasets, as evidenced by all evaluation metrics. Notably, OPMEB surpassed the traditional
OC algorithm by an impressive average margin of 5.98% in terms of accuracy, underscoring its advancement in
PdM tasks. Moreover, in specific instances such as the H-acc dataset, this margin for accuracy increased, with
OPMEB’s improvement reaching almost 10%. OPMEB showcased its effectiveness by achieving higher accuracy
compared to other OBD algorithms, namely OVA, OVF, and OVN, across various PdM datasets. Although the
accuracy values were equal in a few instances, upon evaluating all remaining results and looking at the average
performance, it becomes evident that OPMEB outperforms its counterparts. While our method was specifically
applied to the PdM domain, the OPMEB method is applicable to various other real-world OC problems. As
such, we anticipate that our proposed technique will make valuable contributions to different business domains
in future research studies. Thanks to the advantages of the proposed method such as ease of implementation,
scalability, and compatibility, it can be integrated and operated with existing industrial systems. It can be used
to give rise to groundbreaking solutions and practical applications in the field of the industrial technologies such
as digital twin, internet of things, virtual/augmented reality.

In future work, we can improve the OPMEB algorithm by trying out different base learner algorithms
and conducting parameter tuning for these learners. This exploration may yield improved prediction accuracy
within the PdM domain.
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