Turkish Journal of Electrical Engineering and Computer

@

TUBITAK Sciences
Volume 32 | Number 4 Article 2
7-26-2024

Efficient Deep Neural Network Compression for Environmental
Sound Classification on Microcontroller Units

SHAN CHEN
Na MENG
HAOYUAN LI

WEIWEI FANG

Follow this and additional works at: https://journals.tubitak.gov.tr/elektrik

Cf Part of the Computer Engineering Commons, Computer Sciences Commons, and the Electrical and

Computer Engineering Commons

Recommended Citation

CHEN, SHAN; MENG, Na; LI, HAOYUAN; and FANG, WEIWEI (2024) "Efficient Deep Neural Network

Compression for Environmental Sound Classification on Microcontroller Units," Turkish Journal of
Electrical Engineering and Computer Sciences: Vol. 32: No. 4, Article 2. https://doi.org/10.55730/

1300-0632.4084

Available at: https://journals.tubitak.gov.tr/elektrik/vol32/iss4/2

This work is licensed under a Creative Commons Attribution 4.0 International License.

This Research Article is brought to you for free and open access by TUBITAK Academic Journals. It has been
accepted for inclusion in Turkish Journal of Electrical Engineering and Computer Sciences by an authorized editor
of TUBITAK Academic Journals. For more information, please contact pinar.dundar@tubitak.gov.tr.

https://journals.tubitak.gov.tr/
https://journals.tubitak.gov.tr/
https://journals.tubitak.gov.tr/elektrik
https://journals.tubitak.gov.tr/elektrik
https://journals.tubitak.gov.tr/elektrik/vol32
https://journals.tubitak.gov.tr/elektrik/vol32/iss4
https://journals.tubitak.gov.tr/elektrik/vol32/iss4/2
https://journals.tubitak.gov.tr/elektrik?utm_source=journals.tubitak.gov.tr%2Felektrik%2Fvol32%2Fiss4%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=journals.tubitak.gov.tr%2Felektrik%2Fvol32%2Fiss4%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=journals.tubitak.gov.tr%2Felektrik%2Fvol32%2Fiss4%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=journals.tubitak.gov.tr%2Felektrik%2Fvol32%2Fiss4%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=journals.tubitak.gov.tr%2Felektrik%2Fvol32%2Fiss4%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.55730/1300-0632.4084
https://doi.org/10.55730/1300-0632.4084
https://journals.tubitak.gov.tr/elektrik/vol32/iss4/2?utm_source=journals.tubitak.gov.tr%2Felektrik%2Fvol32%2Fiss4%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
mailto:pinar.dundar@tubitak.gov.tr

Turkish Journal of Electrical Engineering & Computer Sciences Turk J Elec Eng & Comp Sci
(2024) 32: 501 — 515

© TUBITAK

T U B | TAK Research Article doi:10.55730/1300-0632.4084

http://journals.tubitak.gov.tr/elektrik/

Efficient deep neural network compression for environmental sound classification
on microcontroller units

Shan CHEN!®, Na MENG!®, Haoyuan LI'(®, Weiwei FANG!2*
1School of Computer and Information Technology, Beijing Jiaotong University, Beijing, China
2Hubei Engineering Research Center for Intelligent Detection and Identification of Complex Parts, Hubei, China

Received: 20.01.2024 . Accepted/Published Online: 07.06.2024 . Final Version: 26.07.2024

Abstract: Environmental sound classification (ESC) is one of the important research topics within the nonspeech
audio classification field. While deep neural networks (DNNs) have achieved significant advances in ESC recently, their
high computational and memory demands render them highly unsuitable for direct deployment on resource-constrained
Internet of Things (IoT) devices based on microcontroller units (MCUs). To address this challenge, we propose a novel
DNN compression framework specifically designed for such devices. On the one hand, we leverage pruning techniques
to significantly compress the large number of model parameters in DNNs. To reduce the accuracy loss that follows
pruning, we propose a knowledge distillation scheme based on feature information from multiple intermediate layers.
On the other hand, we design a two-stage quantization-aware knowledge distillation scheme to mitigate the accuracy
degradation of mandatory quantization required by MCU hardware. We evaluate our framework on benchmark ESC
datasets (UrbanSound8K, ESC-50) using the STM32F746ZG device. The experimental results demonstrate that our

framework can achieve compression rates up to 97% while maintaining competitive inference performance compared to

the uncompressed baseline.

Key words: Environmental sound classification, deep neural networks, microcontroller units, knowledge distillation

1. Introduction
In everyday environments, people are surrounded by various sounds, such as air conditioners, car horns, and
running water. These natural or artificial sounds can generally be categorized as environmental sounds [1]. In
real life, applications related to environmental sound classification (ESC) are everywhere. For example, through
data from outdoor sensor systems, sounds from different species can be identified to help with biodiversity
assessment [1]. Smart home facilities can effectively collect and analyze the environmental sounds from home
monitoring, providing real-time feedback on emergencies for the elderly [2]. Besides, there are also noise detection
systems [3]. In nonspeech audio classification tasks, ESC is one of the hottest research topics [4]. With the rapid
development of deep learning technology, deep neural networks (DNNs) [5] have greatly improved the accuracy
of ESC tasks, and the application of DNNs in ESC tasks has attracted widespread attention [6, 7].

However, DNNs are computationally and memory-intensive [5], which poses a major challenge for ToT
applications based on microcontroller units (MCUs) [8]. Unlike traditional computing devices, MCUs are small
computers without an operating system or dynamic random-access memory (DRAM), and they have extremely

limited resources in terms of computing, memory, and storage. An illustrative comparison of different computing

*Correspondence: fangww@bjtu.edu.cn

501

[GO) This work is licensed under a Creative Commons Attribution 4.0 International License.

https://orcid.org/0009-0009-9219-1898
https://orcid.org/0000-0002-1573-9786
https://orcid.org/0009-0003-2782-7745
https://orcid.org/0000-0002-6407-7467

CHEN et al./Turk J Elec Eng & Comp Sci

devices is shown in Figure 1. For example, the STM32F746ZG device is an ARM Cortex-M7 MCU with a CPU
clock frequency of 216 MHz, 1 MB of storage, and 320 KB of memory. The deployment of the classic DNN model
ResNet-50 requires 102 MB of storage space. After INT8 quantization, it can be reduced to 26 MB, which can
be applied to computing hardware such as GPUs and CPUs, but it is still impossible to deploy on MCUs. Tiny
machine learning (TinyML), as a new computing paradigm [9], has emerged to run machine learning inference
on ultralow-power and severe resource-constrained microcontroller units and IoT devices. To address the issue
of resource limitations, aggressive compression of the currently overparameterized DNN models is necessary
[8, 10].

Cloud Al Edge Al TinyML
Type NVIDIA V100 Jetson Nano STM32F7462G
Mem 1668 ——» 40 20, 3oks
Storage TB~pB _1000x 5 gagp _64000% 1MB
Power 250 W 5W 03W

Figure 1. Comparison of typical computing devices with different computational resources.

To address the challenge of deploying DNNs on MCUs for ESC tasks, compression based solutions have
been proposed. Kumari et al. [11] proposed EdgeL?, a compact model obtained by pruning the L3-Net model
to reduce redundant parameters. The theoretical compression ratio is very high, but this approach leads to
sparse parameter matrices, which require dedicated hardware and software support [5]. Cerutti et al. [10] used
the parameters of the VGGish model trained on the large sound dataset AudioSet, and designed a compact
model structure called Micro-VGGish based on heuristic methods. Then, they proposed a knowledge distillation
approach to improve the accuracy of small model. However, this work did not provide a general framework
for obtaining lightweight models. Mohaimenuzzaman et al. [12] designed a DNN model ACDNet based on the
characteristics of ESC data first, and then compressed it to obtain Micro-ACDNet by pruning and knowledge
distillation. However, this work directly deploys the quantized model, which inevitably results in accuracy loss.

To tackle these problems, we propose a new DNN compression framework for running ESC tasks on MCUs
in this paper. This framework mainly studies how to use knowledge distillation techniques to compensate for the
inference accuracy loss of DNN models caused by aggressive pruning and mandatory quantization. In general,

the main contributions of this work are summarized as follows:

o Considering the impact of aggressive pruning to the DNN model on inference accuracy, we propose
a pruning-oriented knowledge distillation (PoKD) scheme for the pruned student network. We add
auxiliary classifiers to the intermediate layers of both teacher and student networks, and combine attention
mechanism to fuse output information from multiple intermediate layers of the teacher network, so as to

achieve a more comprehensive knowledge transfer between teacher and student.

¢ Considering the impact of mandatory quantization to the DNN model on inference accuracy, we pro-
pose a two-state quantization-aware knowledge distillation (QaKD) scheme for the quantized network.
This scheme takes into account the differences in scale between models, and effectively minimizes the

quantization-induced accuracy loss through progressive training optimization.

502

CHEN et al./Turk J Elec Eng & Comp Sci

e We conduct extensive experiments on the STM32F746ZG MCU using two benchmark datasets, including
UrbanSound8K [13] and ESC-50 [14]. The results show that the proposed framework can attain remarkably
high compression ratio and improved inference speed with modest accuracy loss, and outperform existing

works at the same compression level.

The rest of this paper is organized as follows. Section 2 overviews the related work. Section 3 introduces
the proposed framework, especially the two knowledge distillation schemes. Section 4 presents the experimental

results as well as our analysis. Finally, Section 5 concludes the paper.

2. Related work

In recent years, numerous studies have been proposed to address how to compress and accelerate DNNs on
resource-limited computing devices [15]. The relevant techniques include model pruning, knowledge distillation,
quantization and low-rank approximation [5]. Considering the space limitation, here we only introduce typical
studies from the first three techniques that are particularly relevant to our study, and interested readers can

refer to review articles such as [5] for more information.

2.1. Model pruning

Model pruning is a technique for reducing the size of DNN model by eliminating unimportant and redundant
network weights. It can be divided into two categories: unstructured pruning [15, 16] and structured pruning
[17, 18]. Unstructured pruning can prune any single weight in DNNs, resulting in sparse weight matrices with
high sparsity. It requires dedicated hardware and software support at runtime [17]. Structured pruning removes
entire filters or channels, resulting in nonsparse compression. Thus, it overcomes the limitations of unstructured
pruning, and has become a hot research topic in recent years. However, one of the key challenges in existing
channel pruning solutions is how to determine the optimal layer sparsity. To address this problem, Duggal et al.
[19] proposed cluster pruning (CUP), which prunes filters by first clustering them into groups using similarity
metrics calculated from incoming and outgoing weight connections, then removing the redundant ones. Note
that CUP only requires a single hyperparameter to determine the appropriate number of pruned filters from
each layer according to their sensitivity to pruning, In this paper, we propose to use CUP as the first step of

DNN compression to obtain a compact model that satisfies hardware resource constraints.

2.2. Knowledge distillation
Knowledge distillation was first proposed by Hinton et al. [20], using the output probabilities of a large and

complex DNN (teacher network) to transfer knowledge to a small but less accurate DNN (student network).
However, representing knowledge in such a highly abstract form neglects the abundant information present
within intermediate layers. Recent studies [21-24] have attempted to leverage intermediate representations to
capture the enriched knowledge learned by the teacher. Romero et al. [21] utilized not only the outputs but
also intermediate-level hints from the teacher’s hidden layers to supervise student training. Zagoruyko et al.
[22] leveraged channel attention to steer the student to mimic the spatial attention maps learned by the teacher.
Wang et al. [23] proposed MHKD to match the intermediate features between the student and teacher by adding
auxiliary classifiers at the intermediate layers. Yang et al. [24] performed hierarchical knowledge distillation
to all auxiliary classifiers by taking advantage of self-supervised augmented knowledge. However, such manual,

one-to-one layer associations between teacher and student may lead to semantic mismatch and performance

503

CHEN et al./Turk J Elec Eng & Comp Sci

degradation [25-27]. To address this issue, ALP-KD [26] proposed to distill knowledge from all intermediate
layers of the teacher rather than a specific layer to supervise every student layer. Inspired by these works, we

propose the PoKD scheme to redeem the accuracy of pruned network.

2.3. Quantization

Quantization refers to approximating 32-bit finite-range floating point data with data types of fewer bits, so
as to achieve the goals of reducing storage space and accelerating model inference [28]. Quantization methods
can be divided into low-bit quantization (1 bit [29, 30], 2 bits [31], 4 bits [32, 33]) and normal quantization
(8 bits [34]) according to the total number of quantization bits. Courbariaux et al. [30] proposed to train
the DNN with binary weights in the forward propagation and replacing multiplication operations with simple
add-subtract operations. Choi et al. [31] used 2 bits to store weight parameters by introducing a new zero
state, achieving a good trade-off between model size and inference accuracy. However, such binary or ternary
quantization suffers from nonnegligible accuracy loss, especially for models with a large number of parameters.
In fact, existing research has shown that using 8-bit integers (INT8) to quantize weights can achieve relatively
low accuracy loss [34]. Therefore, INT8 quantization has been mandatorily required for DNN deployment on
resource-limited devices such as MCUs, and widely supported by deep learning frameworks such as TensorFlow
Lite Micro [35] and NVIDIA TensorRT. The QaKD scheme proposed in this paper is to improve the inference

accuracy of quantized model through knowledge distillation.

3. Proposed method

I—X—Model Too Large——————————

Severe
(1)) @) Accuracy Y
Feature_ Model - Pruning Loss Q _DJ]D_
Extraction 5586 Training X :D
Audio i “MCL‘{ Inference
Waveform F('ature Result
ap
Teacher Student No Floating
Network Network Point Support
4 X
PoKD
Severe
©)] Accurac
Quantization g §) Loss Y
MQua x
Teacher Student
Network () Network Successful
QaKD | Deployment

Figure 2. An overview of the proposed DNN compression framework.

504

CHEN et al./Turk J Elec Eng & Comp Sci

3.1. Overview

The proposed DNN compression framework is shown in Figure 2. Specifically, the process of environmental
sound classification on the MCU can be divided into six steps in general. In step 1, the input audio waveforms
are transformed into log-scaled Mel spectrograms [10, 12]. In step 2, these spectrograms are used to train
the original DNN model Mo,;. However, Mp,; cannot be directly deployed due to resource constraints of
MCU. We decide to use pruning (step 3) and quantization (step 5) to solve this problem. In step 3, we apply
the CUP algorithm proposed in [19] to prune redundant parameters from Mp,; to obtain a pruned model
Mp,., . Considering the accuracy loss induced by aggressive pruning, we propose the PoKD scheme to transfer
knowledge from Mo,; to Mp,, in step 4, resulting in the improved model Mp,xp. After quantizing Mp,xp
(FP32) into Mgy, (INT8) in step 5, we propose the QaKD scheme to transfer knowledge from Mo,; to Mguyq
in step 6, resulting in the final model Mg,k p that is deployed on the MCU. Note that PoKD is performed to
provide a pretrained model Mg,,, other than a randomly initialized one for further distillation in QaKD, which
is beneficial for the final model’s accuracy, convergence, and generalization [27]. In the following subsections,

we will elaborate on the design of our knowledge distillation schemes, namely PoKD and QaKD, in detail.

3.2. PoKD
The design of our PoKD scheme is shown in Figure 3, in which Mo,; and Mp,, are the teacher network ¢ and
the student network s, respectively. Generally, we attach a total of N auxiliary classifiers into intermediate
layers of Mo,; and Mp,., , respectively, at the same depths. In modern DNNs, the convolutional layers are
typically stacked hierarchically in stages to extract increasingly abstract representations of the input data along
the depth dimension. Therefore, we choose to attach an auxiliary classifier after each main stage. The auxiliary
classifier is used to learn and distill hierarchical knowledge provided by multiscale intermediate feature maps.
To this end, it is designed to contain a convolutional layer, followed by a batch normalization (BN) layer and
a ReLU activation function, and finally a fully connected layer. With these added auxiliary classifiers, each
student layer of Mp,, can learn informative knowledge contained in multiple teacher layers of Mp,;, rather
than a fixed layer, for better supervision. Besides, the attention mechanism is integrated to make the student
layer have better associate with the most semantic-related teacher layers. Note that these auxiliary classifiers
are designed to help transfer knowledge and will be removed during inference.

Given a dataset {x,y} over a set of classes K, x is the input data and y is the corresponding one-hot
hard label vector denoting the ground-truth class. For each training sample x, the neural network outputs the

predictive class probability distribution as p(x,T), in which the output prediction for class i is

exp (z;/T)
S exp(z/T)

where z; and z; are the logits of neural network, and T' is the temperature to soften p;(x,T) [20]. Then, the

pi(x,T) = Softmax (z;,T) =

(1)

crossentropy (CE) loss, which measures the difference between the predicted and ground-truth probabilities, is
defined as

Lege(p,y) = CE(p(x,1),y). (2)

505

CHEN et al./Turk J Elec Eng & Comp Sci

Teacher Network Moy

Sound
Feature

Map 0

:\ L:u'al = I_KL + LCE + L

Student Network Mpy,

"Data Label

| E—

Figure 3. The design of PoKD scheme.

The Kullback—Leibler (KL) divergence loss, which measures the distance between the student and teacher

probability distributions, is defined as

LKL(paq) =T°KL (p(va)Hq(Xv T))) (3)

where T? is used to retain the gradient contributions unchanged [20].

In PoKD, the overall loss for training the teacher network ¢ includes the CE losses for the logits of both
original network and all auxiliary classifiers. The first loss is to learn general classification capability by data
fitting, while the second loss is to generate extra intermediate information for student supervision. Denote the

logit for the j-th auxiliary classifier as h; (x,T), then the overall loss for training ¢ is formulated as

N
Ligtar = Lor(®',y) +) Ler(h),y). (4)

j=1
In PoKD, the overall loss for training the student network s includes not only the CE loss and the KL
divergence loss well defined in vanilla knowledge distillation [20], but also a hint loss that forces each student
layer to learn from multiple teacher layers [21]. Here, we introduce the attention mechanism to stimulate positive
guidance and suppress negative impact induced by layer mismatch. Specifically, the j-th auxiliary classifier in
s obtains hint knowledge from the first j auxiliary classifiers in ¢, and the attention value for the pair (i,j) is

calculated as

exp(h!)
/\z‘,j Y tj P (5)
i—1 exp(hj - hj)

506

CHEN et al./Turk J Elec Eng & Comp Sci

Based on this attention, the teacher ¢ provides a fused output h;l to supervise the training of the j-th

auxiliary classifier in s as

J
hf = Z Aijht. (6)
i=1
We can obtain the hint loss for the j-th auxiliary classifier in s as

lgint(j) = Lir(h3, h?) + Lee(hi,y). (7)
Finally, we can obtain the overall loss for training s as

N

Lipar = L (p*, ") + Lep(P*,y) + Luint = Lrr(p*, p) + Lep(P,y) + > Lrind(4)- (8)
=1

3.3. QaKD

Due to severe resource constraints, 32-bit floating-point (FP32) parameters of DNN models often need to be
quantized to 8-bit integer (INTS8) parameters during deployment on MCUs [8]. Actually, INT8 quantization
has become a well supported function by the deep learning framework for MCUs, such as CMSIS-NN and
TensorFlow Lite Micro [8, 9]. Because Mp,xp retains very few parameters as compared to the original model
Moy; , directly quantizing it will also incur substantial accuracy loss, similar to pruning. One intuition is that
knowledge distillation can be employed to compensate for the accuracy degradation of the quantized model
Moua [10]. However, Mo,; may not be a good choice as the teacher, since it has been revealed in [25] that
the size (capacity) gap between teacher and student networks is a key to distillation efficacy and student

performance. Therefore, we propose a two-stage knowledge distillation scheme QaKD, which is shown in Figure

4.
Specifically, we introduce a new network Mo,;q, which is quantized into INT8 directly from Mo,;, as

the teacher assistant in QaKD. Note that Mo,;q lies in between Mo,; and Mg, in terms of size and capacity.
We apply the proposed PoKD scheme to perform knowledge distillation between these two teacher-student
pairs. Firstly, Morig acts as the student to distill knowledge from its teacher Mp,;. Then, Moo acts as
the teacher to supervise its student Mgy, , which was directly quantized from Mpoxp. In fact, we only need
to train Morig and Mgy, once using the loss function Lj ,,, defined in PoKD, respectively. Note that when
these two-stage knowledge distillation is completed, we can obtain the final model Mg,k p, and deploy it onto

the MCU using the deep learning framework such as TensorFlow Lite Micro [35].

4. Performance evaluation
4.1. Experimental setup
We conduct our experiments to evaluate the proposed framework based on the following settings.

Datasets: The proposed framework is evaluated on two widely used ESC benchmark datasets, namely
UrbanSournd8K and ESC-50.

507

CHEN et al./Turk J Elec Eng & Comp Sci

Teacher Network
MOri
(FP32) iii '
@Quantization
{ Weights (FP32) Weights (INTS))]
22| DD] 2]
716 22| LA .
h i Loss in Stage 1
4 T
\ otal !
Sound T ’
M.,
Feature orQ m—»»m—» 4T
Mo o ONTS) =
Assistant Network | Loss inPZStagGZ
i ™ }\ Ltolal i

Student Network

Figure 4. The design of QaKD scheme.

UrbanSound8K [13] is a collection of 8732 labeled sound clips of different sampling rates and up to 4 s
in length, for use in research on automatic urban environmental sound classification. The dataset includes 10
classes, such as air conditioner, car horn, and dog bark. Compared to ESC-50, UrbanSound8K has a larger
dataset size and the sound clips have different lengths.

ESC-50 [14] is a collection of 2000 environmental recordings, also widely used as a benchmark for
environmental sound classification. The audio recordings in the dataset are 5 s long, sampled at 16 kHz and
44.1 kHz, and are evenly distributed across 50 balanced, nonoverlapping classes (40 audio samples per class).
Compared to UrbanSound8K, ESC-50 covers more sound classes and all audio recordings have the same length.

DNN Models: Unlike image classification tasks, due to the relatively simpler features of sound data, we
use shallower models from popular DNNs [4] to test the proposed framework, including VGG-11 and ResNet-18.

The VGG-11 model consists of 8 convolutional layers and 3 fully connected layers, with a batch nor-
malization layer and a ReLLU activation function after each convolutional layer. In the model training stage,
auxiliary classifiers are added after the 1st, 2nd, 4th, and 6th convolutional layers of the network.

The ResNet-18 model consists of 17 convolutional layers and one fully connected layer. The first
convolutional layer is used for preprocessing the input data. The remaining 16 convolutional layers are organized
into four convolutional blocks, where each block consists of two residual blocks, in which each block has two
convolutional layers with the same number of filters. The network has shortcut connections to skip blocks of
convolutional layers, so as to avoid vanishing and exploding gradients. In the model training stage, auxiliary
classifiers are added after the 1st, 2nd, and 3rd convolutional blocks of the network.

Hardware: The model was trained on a GPU-powered deep learning platform, using an NVIDIA GeForce
RTX 2080 Ti GPU. The deep learning framework PyTorch was utilized for training DNN models. For model
deployment, the target MCU device is STM32F746ZG. The STM32F746ZG is a high-performance MCU based
on an ARM Cortex-M7 core running at up to 216 MHz with 1 MB of flash memory and 320 KB of SRAM.

With ONNX as the intermediate representation, the trained neural network is converted to TensorFlow format,

508

CHEN et al./Turk J Elec Eng & Comp Sci

and deployed on the MCU using TensorFlow Lite Micro. This tool is a port of TensorFlow Lite, designed to
run machine learning models on DSPs, microcontrollers, and other devices with limited memory [35].

Hyperparameter settings: All model training was performed using the adaptive moment estimation
(ADAM) optimizer. The batch size, learning rate, and weight decay factor were set to 64, 0.001, and 0.0005,
respectively. The number of training iterations was set to 100, 50,5,50, corresponding to the phase of the
original model training, the pruned model training, and the two stage training of QaKD, respectively.

Baselines: To further demonstrate its effectiveness and generalizability, the proposed framework is
compared with two relevant solutions, namely Micro-VGGish [10] and Micro-ACDNet [12], which have both
been reported to be deployed on the real MCU.

Micro-VGGish is a compressed model derived from the public feature extractor VGGish, trained on the
YouTube-8M dataset. It achieves compression by reducing parameters layer-by-layer in a manual manner. To
enhance its performance, particularly accuracy, a two-step knowledge distillation scheme (TKD) is proposed.

This model has been evaluated on the UrbanSound8K dataset.
Micro-ACDNet is compressed from the ACDNet model, which is specially designed based on the char-

acteristics of environmental sound. Similar to our framework, the model compression is based on structured
pruning, vanilla knowledge distillation [20] and quantization. This model has been evaluated on the ESC-50

dataset.

4.2. Experimental results

We conducted multiple sets of experiments step-by-step to progressively validate the efficacy and efficiency
of the proposed framework. We first evaluated the proposed PoKD and QaKD distillation schemes, then
investigated the actual performance of the compressed models on our MCU, and finally made comparisons with
Micro-VGGish and Micro-ACDNet respectively.

4.2.1. Results of knowledge distillation

Pruning: First, we conducted experiments on the CUP [19] pruning approach to observe the impact of
compression ratio on model accuracy. As can be observed from Figure 5, in the ESC task, compression ratios
below 85% can even slightly improve the model accuracy. Our conjecture is that removing channels of low
importance has the potential to partially reduce overfitting of the model [18]. However, when the compression
ratio increases to 97% or more, it can be found that the accuracy loss of both models significantly increases,
rangin from 3% to 8%. Moreover, ResNet-18 is generally more robust against model pruning than VGG-11,
due to the introduction of residual blocks and skip connections, as well as more layers to extract richer feature
information. Based on the results in Figure 5 and the practical resource constraints of MCU, we decided to select
the pruned model with a compression ratio of 97% as Mp,,, for subsequent knowledge distillation experiments.

PoKD: Table 1 shows the inference accuracy of the original model Mo,;, the pruned model Mp,.,, , and
the models after distillation using different methods with Mgo,; as the teacher and Mp,, as the student. We
can observe that aggressive pruning (i.e. with a compression ratio of 97%) indeed severely degrades the inference
accuracy (approximately from 3% to 5.5%). Meanwhile, knowledge distillation can effectively compensate for
such accuracy loss to some extent. Besides, we can observe that MHKD, ALP-KD, and PoKD have achieved
much better performance than the other comparative methods. This indicates that leveraging auxiliary classifiers
during distillation facilitates the generation of more discriminative feature representations. Moreover, PoKD

significantly outperforms MHKD and ALP-KD, verifying that the integrated attention mechanism in PoKD is

509

CHEN et al./Turk J Elec Eng & Comp Sci

more effective and efficient in the supervision, compared to the one-to-one layer association in MHKD [23] and
the all-to-one layer association in ALP-KD [26].

2r 2L
< of S ot
@)
a2t a-2f
g7 g
< <

-6} |—— VGG-11 6} |—*—VGG11

—e— ResNet-18 —o— ResNet-18
0.72 0.80 0.88 0.96 0.72 0.80 0.88 0.96

Compression Ratio Compression Ratio

(a) UrbanSournd8K (b) ESC-50

Figure 5. The impact of model pruning on inference accuracy.

Table 1. Comparison of PoOKD with other knowledge distillation schemes.

Accuracy (%
Dataset Method VGG-11 %{egNet-ls
Mo 96.31 95.18
Model variant Mpyy 92.70 ({ 3.61) 92.17 (J 3.01)
Mpokp 96.58 (1 0.27) 95.12 (| 0.06)
UrbanSound8K Vanilla KD [20] 93.82 ({ 2.49) 93.90 (] 1.28)
o FitNet [21] 93.93 (] 2.38) 93.97 (| 1.21)
Distillation scheme ey o) 95.18 (} 1.13) 94.00 (| 1.18)
ALP-KD [26] 95.43 (| 0.88) 94.08 (] 1.1)
Mori 81.75 75.25
Model variant Mpyy 76.25 (] 5.5) 72.25 (] 3)
Mpokp 80.55 (1 1.2) 75.12 (] 0.13)
ESC-50 Vanilla KD [20] 77.78 (} 3.97) 73.01 (] 2.24)
o FitNet [21 77.94 (1 3.81) 73.85 (] 1.4
Distillation scheme MHKD[[zg]] 78.52 E¢ 3.23§ 7432 (1 0.93))
ALP-KD [26] 78.93 (| 2.82) 74.57 (| 0.68)

QaKD: Table 2 shows the effectiveness of different distillation methods in improving the accuracy of the
quantized model. The accuracy results of Mg, indicate that INT8 quantization results in significant accuracy
degradation for the small pruned model (approximately from 1.7% to 5.2%) in ESC tasks, as compared to
Mporp . However, directly using Mo,; as a teacher to supervise the training of Mg, has limited impact on
accuracy improvement (approximately from 0.1% to 1.3%). The reason is that the two models have different

sizes and capacities. It is obvious that using QoKD can significantly improve the final distillation gain in
accuracy with the help of the teacher assistant.

510

CHEN et al./Turk J Elec Eng & Comp Sci

Table 2. Comparison of QaKD with other knowledge distillation schemes.

Accuracy (%)

Dataset Method VOOIT ResNoi-18
MpokD 96.58 95.12

UrbanSound8K Mqua 91.39 (J 5.19) 92.56 (| 2.56)
DirectKD 92.60 ({ 3.98) 93.00 ({ 2.12)
Moexp 9495 (J 1.63) 94.18 (4 0.94)
MporD 80.55 75.12

ESC-50 Mqua 78.86 (J 1.69) 70.10 (| 5.02)
DirectKD 78.70 ({ 1.85) 71.38 (| 3.74)
Moaxp 80.03 (J 0.52) 73.76 ({ 1.36)

4.2.2. Results of MCU deployment
We deployed the final lightweight model Mg,xp onto the STM32F746ZG MCU, using the TensorFlow Lite

Micro tool. Table 3 shows the key performance results. With the framework proposed in this paper, we can
achieve excellent performance with a parameter size of less than 256 KB and an accuracy loss of only 1% to
1.72% compared to the original model Mp,;, under a high compression ratio of 97% to 99%. Meanwhile, the
average inference time of the models is approximately 200-300 ms, which reaches an acceptable level of inference

latency in practical ESC applications [8, 12].

Table 3. Compressed model performance on the MCU.

Dataset Model Compression ratio (%) Accuracy (%) Parameter (K) Latency (ms)
VGG-11 97.78 94.95 (] 1.36) 208.60 300.52

UrbanSound8K-— p . Net-18 98.63 94.18 (| 1.00) 186.12 256.78

£SC-50 VGG-11 97.20 80.03 (1 1.72) 206.12 296.64
ResNet-18 98.91 73.76 ({ 1.49) 150.78 206.32

4.2.3. Comparisons with state-of-the-art solutions

Comparison with Micro-VGGish: For a fair comparison, VGGish is used as the target model for com-
pression in this set of experiments. Due to the limitations in PyTorch’s quantization function, which does not
support certain operations within the VGGish model’s architecture, we focused our performance comparison on
the effects of compression and distillation.

Table 4 shows the comparison results on model pruning, in which CUP-31k and CUP-27k represent the
compression of model parameters to 31 K and 27 K by the CUP pruning scheme, respectively. We can observe
that both manual pruning in Micro-VGGish and CUP-based pruning lead to significant accuracy loss when
compressing VGGish from 72.1 M to 30.6 K parameters. However, CUP can retain a relatively higher inference
accuracy, even when we further compress VGGish to a size of 27 K parameters. These results suggest that
model pruning needs to be carefully designed to avoid damaging the model’s feature extraction capability and
reducing its inference accuracy. Our choice of the CUP algorithm provides a good foundation for the application
of knowledge distillation for accuracy improvement. We further investigated the pruning details layer by layer,
and the results are shown in Figure 6. In this figure, the number of filters is counted for the convolution

layer (Conv) and the number of neurons is counted for the fully connected layer (FC). These results show that

511

CHEN et al./Turk J Elec Eng & Comp Sci

Table 4. Performance comparison with Micro-VGGish on model pruning.

Method Accuracy (%) Parameter (K) FLOPs (M)
VGGish 74.46 72100 3190
Micro-VGGish 63.83 (J 10.63) 30.60 5.87
CUP-31K 68.86 (4 5.6) 30.60 13.28
CUP-27K 67.89 (1 6.57) 27.14 10.88

manual pruning reduces the model parameters mainly by a certain proportion, while CUP prunes redundant
parts according to specific needs. Moreover, as CUP preserves more filters in the convolutional layers, it requires
more FLOPs than Micro-VGGish, as reported in Table 4.

4500
4000t [] VGGish S

2 3500t [Z777] Micro-VGGish
o 30001 m CUP

S
w
o
€ mom
o 12d.
% 100}
80}
Z 60}
40-HB
20}
0 N : 7
&

[l

> 4 O ™ e &

N7 QY QT Q U Q

S SSS CEE
DNN Layers

'N

Figure 6. Comparison of network parameters of each layer.

Table 5 shows the accuracy results of different combinations of pruning and distillation approaches. We
can make the following two observations. First, our PoOKD scheme is more effective than the TKD scheme to
improve the performance of Micro-VGGish, with an accuracy improvement of 1.48%. Second, with the same size
of parameters, the pruned model obtained by CUP actually provides a better foundation than Micro-VGGish
in learning from their common teacher VGGish with PoKD. These results fully demonstrate the effectiveness

and efficiency of our selection of CUP pruning and our design of PoKD scheme.

Table 5. Performance comparison with Micro-VGGish on knowledge distillation.

Compression method Accuracy (%) Parameter (K)
VGGish 74.46 72100
Micro-VGGish + TKD 71.66 30.60
Micro-VGGish + PoKD 73.14 30.60
CUP-31K + PoKD 73.87 30.60

512

CHEN et al./Turk J Elec Eng & Comp Sci

Comparison with Micro-ACDNet: For a fair comparison, ACDNet is used as the target model
for compression in this set of experiments. We compared the performance of Micro-ACD and our proposed
framework on MCUs, as shown in Table 6. It is obvious that our framework fully outperforms Micro-ACD in
terms of accuracy, parameter size, computational cost, and inference latency. The reasons are 2-fold. On the
one hand, in the design we chose CUP, a more superior pruning method, to remove redundant parameters as
much as possible and avoid unnecessary computational cost. On the other hand, we adopted a two-stage QaKD
knowledge distillation to minimize the impact of quantization on accuracy, while Micro-ACDNet is directly

deployed on the MCU after quantization, which greatly affects its accuracy.

Table 6. Performance comparison with Micro-ACDNet.

Compression method — Accuracy (%) Parameters (K) FLOPs (M) Latency (ms)
Micro-ACDNet 81.50 130 14.8 189.99
Our framework 83.46 120 12.6 178.04

5. Conclusion
In this paper, we propose a new compression framework to address the difficulty of deploying DNN models for
ESC tasks on MCUs. On the one hand, we propose a pruning-oriented knowledge distillation (PoKD) scheme to
address the accuracy loss caused by aggressive pruning of redundant network parameters. On the other hand,
we propose a quantization-aware knowledge distillation (QaKD) scheme to address the accuracy loss caused
by mandatory quantization for model deployment on MCUs. Through extensive experiments on classical DNN
models and benchmark datasets, our framework has achieved a compression ratio of over 97%, with an accuracy
loss of less than 2%. As compared with existing solutions, the inference accuracy is improved by 1% to 2% at
the same compression level.

For future work, we will continue to investigate additional datasets, MCUs, and models related to ESC
[36]. Additionally, we aim to explore other potential model compression techniques for deploying DNNs on
MCUs. Our goal is also to implement the entire chain on an MCU-based IoT device, which includes sound

signal acquisition, ESC task processing, and real-time result display [4].

Acknowledgment /disclaimer/conflict of interest
This work has received funding from the National Science Foundation of China (NSFC) under grant 62172031,
the Beijing Municipal Natural Science Foundation under grant 1.191019, and the Open Projects funded by

Hubei Engineering Research Center for Intelligent Detection and Identification of Complex Parts, under grant

IDICP-KF-2024-15.
The authors declare that they have no conflict of interest.

Informed consent
The experiments were not conducted with humans.

513

[1]

[16]

[17]

514

CHEN et al./Turk J Elec Eng & Comp Sci

References

Nanni L, Maguolo G, Brahnam S, Paci M. An ensemble of convolutional neural networks for audio classification.
Applied Sciences 2021; 11 (13): 5796. https://doi.org/10.3390/app11135796

Demir F, Turkoglu M, Aslan M, Sengur A. A new pyramidal concatenated CNN approach for environmental sound
classification. Applied Acoustics 2020; 170: 107520. https://doi.org/10.1016/j.apacoust.2020.107520

Davis N, Suresh K. Environmental sound classification using deep convolutional neural networks and data aug-
mentation. In: 2018 IEEE Recent Advances in Intelligent Computational Systems (RAICS); Thiruvananthapuram,
India; 2018. pp. 41-45. https://doi.org/10.1109/raics.2018.8635051

Nordby JO. Environmental sound classification on microcontrollers using convolutional neural networks. Master,

Norwegian University of Life Sciences, As, Norway, 2019.

Menghani G. Efficient deep learning: a survey on making deep learning models smaller, faster, and better. ACM
Computing Surveys 2023; 55 (12): 1-37. https://doi.org/10.1145/3578938

Sharma J, Granmo OC, Goodwin M. Environment sound classification using multiple feature channels and attention
based deep convolutional neural network. In: Conference of the International Speech Communication Association;
Shanghai, China; 2020. pp. 1186-1190. https://doi.org/10.21437 /interspeech.2020-1303

Abdoli S, Cardinal P, Koerich AL. End-to-end environmental sound classification using a 1D convolutional neural
network. Expert Systems with Applications 2019; 136: 252-263. https://doi.org/10.1016/j.eswa.2019.06.040

Lin J, Chen WM, Lin Y, Cohn J, Gan C et al. Mcunet: tiny deep learning on IoT devices. Advances in Neural
Information Processing Systems 2020; 33: 11711-11722.

Doyu H, Morabito R, Héller J. Bringing machine learning to the deepest loT edge with TinyML as-a-service. IEEE
IoT Newsletter 2020; 11: 1-3.

Cerutti G, Prasad R, Brutti A, Farella E. Compact recurrent neural networks for acoustic event detection on
low-energy low-complexity platforms. IEEE Journal of Selected Topics in Signal Processing 2020; 14 (4): 654-664.
https://doi.org/10.1109/jstsp.2020.2969775

Kumari S, Roy D, Cartwright M, Bello JP, Arora A. EdgeL3: compressing L3-Net for mote-scale urban noise
monitoring. In: 2019 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW);
Rio de Janeiro, Brazil; 2019. pp. 877-884. https://doi.org/10.1109/ipdpsw.2019.00145

Mohaimenuzzaman M, Bergmeir C, West I, Meyer B. Environmental sound classification on the edge: a pipeline
for deep acoustic networks on extremely resource-constrained devices. Pattern Recognition 2023; 133: 109025.
https://doi.org/10.1016/j.patcog.2022.109025

Salamon J, Jacoby C, Bello JP. A dataset and taxonomy for urban sound research. In: 22nd ACM international
conference on Multimedia; Orlando, FL, USA; 2014. pp. 1041-1044. https://doi.org/10.1145/2647868.2655045

Piczak KJ. ESC: Dataset for environmental sound classification. In: 23rd ACM International Conference on
Multimedia; Brisbane, Australia; 2015. pp. 1015-1018. https://doi.org/10.1145/2733373.2806390

Cheng J, Wang P, Li G, Hu Q, Lu H. Recent advances in efficient computation of deep convolu-
tional neural networks. Frontiers of Information Technology & Electronic Engineering 2018; 19 (1): 64-77.
https://doi.org/10.1631/fitee.1700789

Louizos C, Welling M, Kingma DP. Learning sparse neural networks through Lo regularization. arXiv preprint
2017; arXiv:1712.01312. https://doi.org/10.48550/arXiv.1712.01312

Liu N, Ma X, Xu Z, Wang Y, Tang J et al. AutoCompress: an automatic DNN structured pruning framework
for ultra-high compression rates. In: 2020 AAAT Conference on Artificial Intelligence; New York, USA; 2020. pp.
4876-4883. https://doi.org/10.1609/aaai.v34i04.5924

Liu M, Fang W, Ma X, Xu W, Xiong N et al. Channel pruning guided by spatial and channel attention for DNNs in
intelligent edge computing. Applied Soft Computing 2021; 110: 107636. https://doi.org/10.1016/j.as0c.2021.107636

[19]

[20]

[21]

[22]

[25]

[26]

[30]

31]

[32]

CHEN et al./Turk J Elec Eng & Comp Sci

Duggal R, Xiao C, Vuduc R, Chau DH, Sun J. Cup: cluster pruning for compressing deep neural net-
works. In: 2021 IEEE International Conference on Big Data (Big Data); Orlando, FL, USA; 2021; 5102-5106.
https://doi.org/10.1109/bigdata52589.2021.9671980

Hinton G, Vinyals O, Dean J. Distilling the knowledge in a neural network. arXiv preprint 2015; arXiv:1503.02531.
https://doi.org/10.48550/arXiv.1503.02531

Romero A, Ballas N, Kahou SE, Chassang A, Gatta C et al. Fitnets: hints for thin deep nets. arXiv preprint 2014;
arXiv:1412.6550. https://doi.org/10.48550/arXiv.1412.6550

Zagoruyko S, Komodakis N. Paying more attention to attention: improving the performance of convolutional neural
networks via attention transfer. arXiv preprint 2016; arXiv:1612.03928. https://doi.org/10.48550/arXiv.1612.03928

Wang H, Lohit S, Jones M, Fu Y. Multi-head knowledge distillation for model compression. arXiv preprint 2020;
arXiv:2012.02911. https://doi.org/10.48550/arXiv.2012.02911

Yang C, An Z, Cai L, Xu Y. Hierarchical self-supervised augmented knowledge distillation. In: 30th In-
ternational Joint Conference on Artificial Intelligence (IJCAI); Montreal, Canada; 2021. pp. 1217-1223.
https://doi.org/10.24963 /ijcai.2021/168

Mirzadeh SI, Farajtabar M, Li A, Levine N, Matsukawa A et al. Improved knowledge distillation via
teacher assistant. In: 2020 AAAI Conference on Artificial Intelligence; New York, USA; 2021. pp. 5191-5198.
https://doi.org/10.1609/aaai.v34i04.5963

Passban P, Wu Y, Rezagholizadeh M, Liu Q. ALP-KD: attention-based layer projection for knowledge dis-
tillation. In: 2021 AAAI Conference on Artificial Intelligence; Palo Alto, CA, USA; 2021. pp. 13657-13665.
https://doi.org/10.1609/aaai.v35i15.17610

Turc I, Chang MW, Lee K, Toutanova K. Well-read students learn better: on the importance of pre-training compact
models. arXiv preprint 2019; arXiv:1908.08962. https://doi.org/10.48550/arXiv.1908.08962

Gholami A, Kim S, Dong Z, Yao Z, Mahoney MW et al. A survey of quantization methods for efficient neural
network inference. arXiv preprint 2021; arXiv:2103.13630. https://doi.org/10.48550/arXiv.2103.13630

Rastegari M, Ordonez V, Redmon J, Farhadi A. Xnor-net: imagenet classification using binary convolutional neural
networks. In: Leibe B, Matas J, Sebe N, Welling M (editors). Computer Vision - ECCV 2016. ECCV 2016. Lecture
Notes in Computer Science, vol 9908. Cham, Switzerland: Springer, 2016, pp. 525-542. https://doi.org/10.1007/978-
3-319-46493-0_ 32

Courbariaux M, Bengio Y, David J P. BinaryConnect: Training deep neural networks with binary weights during
propagations. Advances in Neural Information Processing Systems 2015; 28: 1-9.

Choi J, Venkataramani S, Srinivasan VV, Gopalakrishnan K, Wang Z et al. Accurate and efficient 2-bit quantized
neural networks. In: 2019 Conference on Machine Learning and Systems; Stanford, CA; USA; 2019; 348-359.

Choukroun Y, Kravchik E, Yang F, Kisilev P. Low-bit quantization of neural networks for efficient inference. In:
2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW); Seoul, Korea (South); 2019.
pp- 3009-3018. https://doi.org/10.1109/iccvw.2019.00363

Banner R, Nahshan Y, Soudry D. Post training 4-bit quantization of convolutional networks for rapid-deployment.
Advances in Neural Information Processing Systems 2019; 32: 1-9.

Liang T, Glossner J, Wang L, Shi S, Zhang X. Pruning and quantization for deep neural network acceleration: a
survey. Neurocomputing 2021; 461: 370-403. https://doi.org/10.1016/j.neucom.2021.07.045

David R, Duke J, Jain A, Reddi Janapa V, Jeffries V et al. TensorFlow lite micro: embedded machine learning for
TinyML systems. In: 2021 Conference on Machine Learning and Systems; Virtual Site; 2021. pp. 800-811.

Meedeniya D, Ariyarathne I, Bandara M, Jayasundara R, Perera C. A survey on deep learning based forest environ-
ment sound classification at the edge. ACM Computing Surveys 2023; 56 (3): 1-36. https://doi.org/10.1145/3618104

515

	Efficient Deep Neural Network Compression for Environmental Sound Classification on Microcontroller Units
	Recommended Citation

	Introduction
	Related work
	Model pruning
	Knowledge distillation
	Quantization

	Proposed method
	Overview
	PoKD
	QaKD

	Performance evaluation
	Experimental setup
	Experimental results
	Results of knowledge distillation
	Results of MCU deployment
	Comparisons with state-of-the-art solutions

	Conclusion

