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Abstract: Breast cancer is the most prevalent and crucial cancer type that should be diagnosed early to reduce mortality.
Therefore, mammography is essential for early diagnosis owing to high-resolution imaging and appropriate visualization.
However, the major problem of mammography screening is the high false positive recall rate for breast cancer diagnosis.
High false positive recall rates psychologically affect patients, leading to anxiety, depression, and stress. Moreover, false-
positive recalls increase costs and create an unnecessary expert workload. Thus, this study proposes a deep learning-
based breast cancer diagnosis model to reduce false positive and false negative rates. The proposed model has two
steps: unsupervised feature extraction with Variational Autoencoder (VAE) and classification with CNN using extracted
features by VAE. The proposed model is trained and evaluated on in-house anonymized and public mammography
datasets. The proposed model provides efficient processing of multiview mammography by maintaining higher accuracy,
efficiency, consistency, and faster than transfer learning-based models even on the imbalanced test set of the in-house
dataset with obtaining 0.99 AUC, 95.05% accuracy, 97.85% precision, 95.05% recall, and 96.43% F1 score and an AUC of
0.98 on INbreast dataset. Furthermore, the proposed model significantly reduces the false positive recall rate, decreasing
it from 6.13% to 2.61% compared to expert diagnosis while achieving an accuracy of 97.03% and AUC of 0.99. Overall,
the proposed deep learning-based model enhances breast cancer diagnosis and reduces the false positive recall rate by
obtaining high accuracy.

Key words: Breast cancer, computer-aided diagnosis, deep learning, mammography classification, false positive recall
rate

1. Introduction
According to the World Health Organization (WHO), breast cancer is the most prevalent cancer type seen
worldwide. An early diagnosis of breast cancer and its treatment is crucial for preventing breast cancer and
reducing mortality 1. Currently, several screening technologies are used for the diagnosis of breast cancer,
∗Correspondence: makaragoz@cumhuriyet.edu.tr

This work is licensed under a Creative Commons Attribution 4.0 International License.

1World Health Organization (2023). Breast cancer [online]. Website https://www.who.int/news-room/fact-sheets/detail
[accessed 12 July 2023].
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including mammography, computed tomography technology (CT), photoacoustic imaging, nuclear magnetic
resonance imaging (MRI), microwave imaging, and other technologies. Routine mammography screening
technology is the most reliable and effective screening for early diagnosis thanks to its high-resolution imaging
and proper visualization of abnormalities [1, 2].

On the other hand, many breast cancer diagnoses with mammography result in high false positive rates.
The outcomes are mostly benign when additional imaging or biopsy is recommended for certain diagnoses.
Nevertheless, interpreting mammograms can be a complex and an error-prone task, with at least 25% of
detectable cancers going unnoticed [2–7]. In general, a large number of mammograms, that is to say, 10%-
15% of them require additional clarification with additional screening such as ultrasound. After that, only
10%-20% of additional imaging is recommended to refer to biopsy for certain diagnosis. Finally, only 20%-40%
of biopsy operations end up with a cancer diagnosis [8, 9]. The false-positive recall rate is so high that most
women will face at least one false-positive recall in 10 years of the annual screening period [10, 11]. Researchers
have also focused on false-positive effects in several studies [8, 11, 12]. According to those studies, the psychology
of women negatively affects the result of false positive recall, which leads to distress, anxiety, depression, etc.
Moreover, a high rate of false positive recalls may also have a negative impact on the cost-effectiveness of
mammography screening. The cost of false-positive recalls reached almost 4 billion dollars annually in the USA,
reported by [13] in 2016. As a result, reducing the false positive recall rate in screening mammography is crucial
for mitigating adverse effects.

Mammography images are usually read and interpreted by expert radiologists. However, radiologists’
performances can vary subjectively due to different factors such as their experience, workloads, and complexity
or quality of mammography screening cases. Moreover, the reading process of mammograms is an extremely
labor-intensive process for radiologists due to the increased number of mammography imaging. Computer-
aided detection (CAD) has been utilized for mammography screening to assist radiologists for two decades.
However, studies reported that CAD does not sufficiently improve diagnostic performance [14–16]. Furthermore,
traditional CAD programs require hand-crafted feature extraction and have a high false positive recall rate
[17]. In recent years, deep learning-based CADs, particularly in Convolutional neural networks (CNN) [18–21],
have emerged with encouraging results to enhance the performance of CADs owing to their end-to-end feature
extraction mechanisms and learning ability for complex problems. Several deep learning studies have recently
been developed for analyzing mammography images [22–26].

Deep learning has been a significant gain in reducing false positive recalls by obtaining high performance.
Wu et al. [9] reported that their proposed end-to-end deep learning-based diagnosis model could achieve
more accurate results than radiologists’ decisions. Clancy et al. [10] employ a pretraining strategy for
several deep learning models to distinguish false positive recall in mammography screening. Mayo et al. [17]
compare the AI-based CAD algorithm with the conventional CAD algorithm. They report that AI-based
CAD reduces false-positive rates by a significant reduction of 69%. Advanced pretraining techniques have a
considerable improvement in determining recalled-benign mammography images. Bozkurt et al. [27] incorporate
a handcrafted, deep, and fusion-based feature extraction framework (HANDEFU), allowing users to build
models interactively for COVID-19 from chest X-ray images. The study of the proposed framework achieves
superior performance with a 99.36% accuracy using the LBP+SVM model among various models. Kyono et al.
[28] introduce MAMMO as a clinical decision support system with multi-task learning for the diagnosis with
mammography images and patients’ personal information. MAMMO provides automatic triaging of patients
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to save scarce clinical resources and improve the diagnosis performance of radiologists. Aboutalib et al. [29]
propose deep learning-based breast cancer diagnosis to reduce unnecessary recalls (recalled-benign). Kim et
al. [30] develop an AI-based model for breast cancer diagnosis with mammography images. According to the
study, the AI-based model performs notably better than radiologists with AUROC of 0.94–0.97 and reduces
false positive recalls. Adedigba et al. [31] offer a discriminative fine-tuning and mixed-precision training
model on public mammogram datasets. They also use data augmentation for rapid convergence and improved
performance. Their proposed model obtains the highest accuracy of 0.998 owing to fine-tuning and data
augmentation strategies. Maqsood et al. [32] present a transferable texture convolutional neural network
(TTCNN) based on convolutional neural network models that are InceptionResNet-V2, Inception-V3, VGG-16,
VGG-19, GoogLeNet, ResNet-18, ResNet-50, and ResNet-101. The proposed model employs public DDSM,
INbreast, and MIAS datasets, reaching an average accuracy of 97.49%. Hamidinekoo et al. [33] offer a deep
learning-based CAD model to enhance breast cancer identification results by leveraging the relationship between
mammography and breast histopathology images. Thus, they aim to create a mapping of features/phenotypes
between mammographic abnormalities and their histopathological representation. Ragap et al. [34] utilize
a multi-DCNN model for classifying breast cancer lesions in mammograms. They apply four experiments to
improve classification performance, including end-to-end fine tuning, deep feature extraction, fusion of features
extracted by DCNNs, and using PCA to reduce the computational cost of the DCNN model on public CBIS-
DDSM and MIAS datasets. Their proposed fusion model outperforms state-of-the-art models by reducing
computational cost. Al-Mansour et al. [35] present a comprehensive analysis for multi-label classification based
on two-view mammography images, including density, lesion types, and lesion states. Their proposed ConvNeXt-
based CAD enables a thorough assessment of the patient’s condition and the preparation of a detailed patient
report by offering radiologists an in-depth analysis of mammograms. In summary, the studies in the literature
show that deep learning models can offer promising results by distinguishing unnecessary recalls and improving
radiologists’ performance with high accuracy, efficiency, and consistency.

Although deep learning-based models have demonstrated remarkable attention, deep learning models face
limited and imbalanced dataset problems in mammography identification. Deep learning models require large
datasets to learn the numerous parameters involved effectively. Training deep learning models on a limited
dataset can lead to an over-fitting problem, where the model performs well on the training data but struggles to
generalize to new examples. On the other hand, training on an imbalanced dataset can result in an under-fitting
problem, as the model may not sufficiently capture the patterns of the minority class, leading to the mislabeling
of diverse data. Only a few publicly available datasets exist in a small size, such as INbreast [36], MIAS [37],
Digital Database for Screening Mammography (DDSM) [38], CBIS-DDSM [39], BCDR [40], and WBCD [41].
Collecting and publishing publicly available large-scale data practically is challenging in the short term due to
concerns about patient privacy, the need for expert interpretation, and the laborious, exhausting, and costly
process. Previous studies applied various strategies, such as using transfer learning models, data augmentation,
and multi-task learning, to mitigate over-fitting and under-fitting problems in deep networks. Even though
these strategies address insufficient dataset problems, developing new and robust deep learning strategies is
essential to resolve these problems.

In recent years, self-supervised learning models (SSL) have gathered remarkable attention to deal with
insufficient dataset problems in computer vision tasks. SSL provides a powerful solution to the lack of datasets
and allows the usage of unlabeled datasets owing to the pretext task step. Thus, SSL models extract features
from unlabeled datasets in an unsupervised manner during the pretext task step. Then, the pretrained model
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is implemented in the main task step via end-to-end fine-tuning or feature extraction [42]. Nevertheless,
mammogram classification with deep learning still faces imbalanced and limited annotated dataset problems,
and there is a lack of self-supervised model study in mammography. Additionally, conducting deep learning
model research on clinical datasets is crucial to contribute reliability and relevance in healthcare and clinical
applications. From this perspective, this study aims to develop a new self-supervised learning model to assess
both clinical applications and public datasets in mammography. The proposed model offers two stages for breast
cancer diagnosis using multiview mammography screening to diagnose and reduce the false positive recall rate
and maintain high performance. The first stage ensures the usage of a large number of negative samples in an
unsupervised manner for feature extraction with a Variational Autoencoder (VAE) as a pretext task. Thus,
we aim to develop a robust deep learning model by allowing the usage of a large number of mammography
samples in the first stage. The second stage is classification by conducting a lightweight Convolutional neural
network that exploits extracted features (latent space of VAE) by the pretrained encoder of VAE. Thanks
to utilizing low dimensional latent space and implementing lightweight classifier models, the proposed deep
learning model provides a solution to prevent over-fitting problems on a limited mammogram dataset. In
summary, the proposed model aims to develop a robust deep model and reduce the false positive and false
negative recall rates for breast cancer diagnosis with two networks, which are pretext network for training VAE
for feature extraction and classifier network using latent space of four image modalities extracted by the encoder.
The proposed model compares with commonly used CNN models, which are Resnet50V2 [43], ResNet101 [43],
DenseNet121 [44], and EfficientNetB1 [45]. We use an in-house mammography screening dataset to evaluate the
proposed model. Furthermore, we retrospectively compare the performance of the proposed model with expert
decisions. The main contributions of this study can be stated as follows:

• We propose a self-supervised learning-based breast cancer diagnosis model that enables the usage of
multiview mammograms to reduce false positive and false negative rates. The proposed model provides
high accuracy, efficiency, and consistency even on an imbalanced test set.

• The main problem with training deep learning-based breast cancer diagnosis models with mammography
is the scarcity of positive samples. The proposed model allows the usage of a large number of samples in
an unsupervised manner in the pretext task step. Then, the pretrained encoder extracts deep features for
classification. Thus, the proposed model performs better than the conventional transfer learning models
owing to the two-stage mechanism.

• The proposed model incorporates the utilization of multiview mammography images. Utilizing multiview
mammograms yielded improved classification performance compared to single-view-based models.

• The proposed model is assessed on the public INbreast dataset and shows competitive performance with
previous studies by demonstrating a high AUC of 0.98.

• The reduced false positive rate is crucial for decreasing costs and minimizing psychological effects on
patients. The proposed model reduces the false positive recall rate from 6.13% to 2.61% compared to
expert diagnosis.

This paper is organized as follows. Section 2 describes the proposed deep learning model for mammogra-
phy classification. Section 3 gives information about study cohorts, datasets, and experimental setups. Section
4 presents the results of the proposed model and transfer learning-based models for each test dataset in detail.
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Section 5 discusses the limitations of the proposed model and its future direction. Finally, Section 6 briefly
concludes this paper.

2. The proposed deep learning model

We proposed a new self-supervised learning-based CAD model via Variational Autoencoder (VAE) in the pretext
task step and a Convolutional Neural Network (CNN) in the classification step for breast cancer diagnosis.
The proposed deep model has two stages that provide usage of all images with pretext task network in an
unsupervised manner and classification network by using extracted latent features by the pretrained encoder of
VAE. The proposed model is given in Figure 1.

Figure 1. The multiview-based proposed model for classification of mammogram images.

2.1. Feature extraction with Variational Autoencoder as a pretext task
The first stage of the proposed model is feature extraction and dimensional reduction through VAE during the
reconstruction of mammography images in the pretext task. Variational Autoencoder (VAE) was introduced
by Kingma and Welling [46] as an unsupervised generative network. VAE differs from traditional autoencoders
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by regularized latent space and calculation loss. VAE conducts dimensionality reduction by mapping high-
dimensional input data to a lower-dimensional latent space. The regularized latent space of VAE generates more
meaningful features for generative processes compared with other generative networks [47]. This reduction can
facilitate more efficient processing and representation of datasets. Therefore, we choose VAE as a pretext task
network to extract deep features and conduct dimensionality reduction from mammography images. Then, we
aim to use the extracted latent representation in the classification step. VAE is composed of Bayesian inference-
based probabilistic encoder and decoder networks. In addition, VAE contains latent space (z ) that represents a
distribution of input (x) encoded with a probabilistic encoder network by calculating an approximated posterior
distribution pθ (z|x) . Latent space is described by mean (µ), standard deviations (σ) and random variable
ε ∼ N (0, 1) , providing an efficient input data compression and is calculated as follows:

zi = (µi + σi · ε) ∼ qϕ(z|x) (1)

Decoder network gets latent space (z ) as input by maximizing the marginal log-likelihood pθ (x′|z) . VAE
used reconstruction loss (Lrec ) and by minimizing Kullback–Leibler divergence (LKL ) loss for calculation of
reconstruction error between x (input) and x′ (output) that is calculated as follows:

Lrec = −Eqφ(z|x)[log pθ(x′|z)] (2)

LKL = DKL(qφ (z|x) ||pθ(x′|z) (3)

L = Lrec + LKL (4)

The encoder network of VAE is built up by three 2D convolution layers with 3x3 kernel size and ReLU
activation, each followed by a max pooling layer of 2x2. Furthermore, the last max pooling layer of the encoder
network is followed by a flattened layer, which is then fed into three fully connected layers with sizes of 800,
640, and 640, respectively, to yield the mean (µ) and log variance (σ) vectors. Then, a lambda layer computes
the final latent vector (z) using (µ) and (σ) vectors. We used a grid search to determine latent space sizes
among various sizes of 64, 128, 256, 512, 640, and 1024. Based on the outcomes of several experiments, it
was observed that a small latent size is insufficient for reconstructing high-quality images. In contrast, a larger
latent space size allows for more faithful reconstructions. To balance the need for faithful reconstructions with
considerations of computational complexity and the risk of over-fitting, we selected a latent space size of 640
for aligning with the proper image size, ensuring that it is appropriately scaled to handle the complexity of the
input images. Thus, the encoder network attempts to efficiently map high-dimensional mammograms of size
(640x800) onto a low-dimensional latent vector of size 640. On the other hand, the decoder network aims to
reconstruct the image to its original size through the latent space(z). Therefore, the decoder gets the latent
vector (z) as an input and then is fed into a fully connected layer and a reshape layer to convert the 1D output
to a 4D tensor. Thus, the fully connected layer and reshape layer help transform the latent vector into a
format compatible with the decoder. Additionally, L1 = 1e − 5 and L2 = 1e − 4 regularization are applied
to the fully connected layers in both the encoder and decoder, contributing to the model’s generalization and
mitigating over-fitting concerns. The decoder networks consist of three 2D transposed convolutional layers with
3x3 kernel size and ReLU activation, each following three up-sampling layers of 2x2. The last layer of the
decoder network provides ultimate output via a 2D transposed convolutional layer with a 3x3 kernel size and
sigmoid activation to reconstruct an image of size (640x800). While ReLU activation is used in the encoder
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layers and decoder layers (excluding the last reconstruction layer) for its computational efficiency and ability
to address gradient-related issues, sigmoid is utilized only in the output layer of the decoder for its suitability
in generating probabilities and aligning with loss function of VAE. Furthermore, we used a small kernel size in
each convolution layer and pooling layer for enhanced localized features, preservation of fine details particularly
in small lesions, improved generalization ability, and reduced over-fitting risk. VAE is trained with a large
number of healthy mammography images (86,894) with a fixed size (640x800) belonging to BIRADS 1-2 classes
in an unsupervised manner. Thus, the proposed model provides a solution for using large imbalanced datasets
to extract diverse and further information during reconstruction.

2.2. Breast cancer classification with convolutional network
The second stage is the classification of mammograms as a patient or healthy for breast cancer diagnosis,
using latent space (z ) with mean (µ) and standard deviations (σ ) vectors. We utilized the CNN model in the
classification step because CNNs are well-recognized models and enable the capture of robust, discriminative, and
local features thanks to the convolutional mechanisms. The classification network is generated as a lightweight
model to prevent over-fitting on a small number of training mammography datasets, containing solely a 1D
convolutional layer, a global average pooling layer, and a fully connected layer. The 1D convolutional layer
employs a kernel size of 3 and ReLU activation. Subsequently, the global average pooling layer enhances
effective feature extraction and dimensionality reduction, creating a meaningful representation fed into the
fully connected layer for classification. Consequently, the final classification layer is constructed with a specified
number of class sizes (2 for patient and healthy classification) and utilizes softmax activation. The computational
complexity of the proposed models for each network is presented in Table 1. The multiview-based proposed
model offers low complexity and rapid processing with a depth of 3, 389.20k FLOPs (Floating-point Operations),
338 parameters, and 0.354 s execution time of training per epoch.

The classification network gets low dimensional latent space extracted by a pretrained encoder of VAE
in the first stage. Firstly, the encoder of VAE gets each imaging modality separately and extracts a latent
vector with (640,3) size. Then, each latent space of four image modalities is staked vertically as a final input
vector with (640,12) size for classification. This experimental design includes image-based positive samples in
the patient class for training and testing. In some real-case scenarios, patients may have only one breast or
may not have positive findings in all four images (RCC, RML, LCC, LML). If all four images of a patient are
not available, the encoded spaces are padded by using copy augmentation via other images of the same patient.
The classifier gets latent spaces of four image modalities (RCC, RML, LCC, LML) together as an input vector
for patient-based classification in training and testing. In summary, our purpose is to build a robust model that
can leverage a large dataset in an unsupervised manner during the pretext task step. Then, the latent spaces
of multiview mammograms are utilized as input in the classification step.

3. Experimental study
3.1. Study cohorts and datasets
The anonymized data were collected from the field screening conducted by cancer early detection, scanning,
and education centers (KETEM) of the Turkish Ministry of Health in Kayseri Province on “women older than
40 years old between the years 2015-2018. Out of 25,432 mammography screenings, 1611 were referred for
additional imaging or biopsy. The unresolved or missing cases were excluded from the dataset, resulting in a
total of 23,258 samples.
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Table 1. The computational complexity of the proposed models is evaluated by including the number of depths, FLOPs,
trainable parameters, and execution time (second) of training per epoch.

Network subnetwork depth FLOPs(G) parameters execution time
(second)

Pretext task network
encoder of VAE 10 0.163 52.22M
decoder of VAE 9 0.147 41.03M
VAE (total) 19 0.311 93.25M 28985.912

Classification network CNN 3 0.000389
(389.20k) 338 0.354

In this study, we used 92,938 mammography images belonging to 23,258 women from the in-house dataset.
The information on the in-house dataset is given in Table 2. The Breast Imaging Reporting and Data System
(BIRADS) offers a standardized framework for organizing and reporting breast imaging findings. This structure
ensures clarity and consistency in communication among healthcare professionals. BIRADS employs assessment
categories, ranging from 0 to 6, each with defined criteria, to convey the likelihood of malignancy associated with
specific imaging findings. This categorization facilitates a uniform and systematic interpretation and reporting
of breast imaging. 1531 women were referred to additional imaging or biopsy for further examination. Only 111
of 1531 women had suspicious lesions, of which 73 were diagnosed with BIRADS 4 and BIRADS 5, most likely
targeted as malignant. The mammography images have four views for each patient: right/left with craniocaudal
(RCC/LCC) and right/left mediolateral oblique (RMLO/LMLO), as shown in Figure 2.

The annotated BIRADS 0-3-4-5 cases were included in the patient class. Thus, 206 biopsy-proven lesions
on mammograms (belonging to 111 women) were labeled as a patient, 92,732 mammography images belonging
to BIRADS 1-2, and benign calls from the cases referred to further examination were labeled as healthy. All
samples of BIRADS 1-2 (86,894) were utilized for training the pretext task network. The difference between the
healthy and patient dataset sizes is large, which can lead to over-fitting problems on deep models. Therefore,
we used a balanced and relatively small dataset to train the classifier network. The classifier network was
tested on four datasets to observe model robustness, including a different number of healthy samples (Table 3).
The balanced test dataset has been split into 80% for training and 20% for testing. Other test datasets used
a pretrained model with a balanced dataset to evaluate different test datasets. The unbalanced test dataset
contains a sample size of the healthy class that is 25 times larger than that of the patient class. The proposed
model was tested on patients who had undergone the biopsy test dataset to compare the model and physician
performance. The human expert comparison test dataset has 20% of all healthy samples (∼ 19, 000) to reflect
a realistic scenario and measure model robustness.

The proposed model was evaluated on the public INbreast dataset to assess its effectiveness against
previous studies. Meanwhile, BI-RADS 1 and 2 in the INbreast dataset were included as the benign class, and
BI-RADS 4, 5, and 6 were targeted as malignant. We applied contrast-limited adaptive histogram equalization
(CLAHE) to mammograms emphasizing the improvement of local contrast and the visibility of details in both
bright and dark regions. The train set and test set were split into 80% and 20% for each class in the classification
process. The number of images for each train and test dataset is presented in Table 3.
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Figure 2. The multiview mammogram example of the in-house dataset.

Table 2. The information about the in-house dataset.

Category Subcategory Subcategory Number of patients Number of images
Healthy BIRADS 1-2 21,727 86,894
Referred 1531 6044

Biopsy-proven 111 206
BIRADS 0 34 64
BIRADS 3 4 6
BIRADS 4 34 62
BIRADS 5 39 74

Total 23,258 92,938

Table 3. The information about train and test dataset for each healthy (BIRADS 1-2 and recalled-healthy from the
cases referred to biopsy) and patient (BIRADS 0-3-4-5 biopsy-proven) classes.

Dataset Classes Number of women Number of images

Train dataset Healthy 61 242
Patient 89 166

Balanced test dataset Healthy 17 60
Patient 20 40

Unbalanced test dataset Healthy 505 2001
Patient 20 40

Undergone biopsy test dataset Healthy 1420 5485
Patient 20 40

Human expert comparison test dataset Healthy 4742 18,753
Patient 20 40

INbreast train dataset benign 39 80
malignant 70 228

INbreast test dataset benign 10 20
malignant 26 60
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3.2. Experimental setup

The proposed deep models were built by Keras Library. GeForce RTX 2080 Ti GPU with Tensorflow-gpu
library was used for training and testing. We consider several key points to set hyperparameters for VAE
and classification models, such as model complexity and preventing over-fitting and vanishing gradients. We
utilized small batch sizes and L1 − L2 regularization over latent layers of VAE to avoid over-fitting and
achieve faster convergence and better generalization. Therefore, we implemented VAE with the following initial
hyperparameters settings to train: batch size = 16,L1 = 1e−5 , L2 = 1e−4 , optimizer = RMSprop with learning
rate = 0.001 for minimizing Kullback–Leibler divergence (LKL ) loss, and epochs=100. RMSprop optimizer was
utilized to minimize VAE loss because of the adaptive learning rate mechanism and its effectiveness in handling
sparse gradients. Furthermore, to optimize the learning process, we dynamically adjusted the learning rate of the
VAE using cyclic learning rate (CLR). The CLR was configured with a maximum learning rate of 0.0001, 0.25
step size per epoch, and triangular mode. The large healthy samples of the in-house dataset split into training
and validation sets in ranges of 75 and 25 for the VAE model, respectively. Finally, the best-performing model
attained through VAE training and monitoring via validation loss was saved and utilized for feature extraction.
The pretrained encoder of VAE, trained on the in-house dataset, is utilized for latent feature extraction in
classification on both in-house and public dataset experiments. On the other hand, the classifier network was
set up with a batch size of 16, the Adam optimizer with a learning rate of 0.001, β1 = 0.9, β2 = 0.999, and
a momentum of 0.99 for minimizing sparse categorical cross-entropy loss. The classifier model was trained
with 10,000 epochs. Adam optimizer is implemented in the classifier model for adaptive optimization, faster
convergence, and efficient training, especially in scenarios where the gradients of different parameters have
varying scales. Furthermore, 5-fold cross-validation was implemented during training of the classifier model for
robust model evaluation, hyperparameter tuning, and mitigating the impact of data variability on performance
metrics. According to the minimum validation loss, the best-performing model of the classifier during training
is utilized to evaluate mammography samples. Accuracy, Recall, Precision, and F1 evaluation metrics were
used to evaluate the classifier models with a weighted average. Furthermore, the mean area under the curve
(AUC) is calculated to evaluate the classifier’s overall performance and generalization across multiple datasets
or experimental conditions.

4. Results
In this study, we used a balanced dataset to train the proposed model. Then, the pretrained model training
on the balanced dataset evaluates different imbalanced test datasets. The information on the dataset is
given in Table 3, and the results on the balanced dataset are presented in Table 4. Additionally, the ROC
curve and confusion matrix results are given in Figure 3 for the proposed models and Figure 4 for the
transfer learning models. Firstly, the classifier was trained by considering a single whole image’s latent space
with (640,3) size, called a single-view-based model. The second proposed classifier model was trained by
staked latent spaces of four image modalities with (640,12) size for classification, called a multiview-based
model. We compared both proposed models with transfer learning models, which are Resnet50V2, ResNet101,
DenseNet121, and EfficientNetB1. The single-view-based proposed model surpasses transfer learning models
on balanced test datasets. The results of the single-view-based proposed model achieved an AUC score of
0.99, an accuracy of 93.00%, and an f1 score of 93.16%. On the other hand, the multiview-based proposed
model indicates a higher sensitivity (true positive rate) for the patient class compared to the single-view-based
model, with only a small number of healthy cases being misclassified as patients. The single- and multiview-
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based models outperformed state-of-the-art transfer learning models by nearly doubling the performance on
the balanced dataset. Additionally, the proposed models facilitate a fast training process with 0.354 s/epoch
for classification (see Table 4). According to the confusion matrix results in Figure 3, the proposed models
accurately identify patient and healthy mammogram samples. On the other hand, transfer learning models
demonstrate difficulty in correctly determining the patient and healthy classes, indicating a notable biased
tendency to classify mammograms as healthy (see Figure 4). Thus, the proposed models provide a promising
solution by enhancing performance in accurately classifying mammograms, addressing the over-fitting in deep
learning models, achieving fast training execution times due to the feature extraction mechanism in the pretext
step, and using a lightweight classifier model via the extracted latent space.

Figure 3. The ROC curve and confusion matrix results of single-view-based and multiview-based models for balanced
and unbalanced test datasets.
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Table 4. The accuracy, precision, recall, f1 with a weighted average, the mean of AUC results, and the execution time
(second) of training per epoch on the balanced test dataset.

Model AUC accuracy precision recall f1 execution time
(second)

Resnet50V2 0.51 59.00 53.60 59.20 50.20 122.607
ResNet101 0.48 55.00 43.60 54.80 45.20 157.776
DenseNet121 0.39 58.00 45.40 58.20 45.80 139.386
EfficientNetB1 0.40 55.00 47.80 55.00 47.40 122.474
The single-view based proposed model 0.99 93.00 93.32 93.00 93.16 0.555
The multiview based proposed model 0.93 89.19 90.99 89.19 90.08 0.354

The results of models on the unbalanced test dataset are given in Table 5. The purpose of the involved
unbalanced test dataset is to assess the robustness of the proposed model on an imbalanced test dataset. The
sample size of the healthy class is 25 times larger than the sample size of the patient class in the imbalanced test
dataset. One of the critical benefits of deep models is accurately identifying patients, which means avoiding false
negatives (failing to classify a true patient as positive). The other important benefit is avoiding false positive
recall rate, which involves not labeling healthy individuals as patients to reduce adverse effects such as anxiety,
depression, cost-effect, etc. Ultimately, it is crucial to strike a balance between two critical factors. According
to the confusion matrix results in Figure 3, both proposed models exhibit high sensitivity for patient samples,
correctly identifying all of them. On the other hand, the multiview-based proposed model has a small number of
false positive samples, with only 26 healthy cases in 505 cases being misclassified as patients on the unbalanced
dataset. Furthermore, the multiview-based proposed model exhibits significantly higher AUC scores of 0.987
for patients and 0.997 for healthy instances than the transfer learning models. In addition, the confusion matrix
results of transfer learning models are given in Figure 4. Although the precision, recall, f1, and accuracy values of
transfer learning models are relatively high on an unbalanced dataset due to the large number of healthy samples
calculated with a weighted average, the AUC values are almost half the proposed method on the unbalanced
dataset. Furthermore, while the transfer learning models accurately classified most healthy samples, they
misclassified most patient samples as the results of the balanced dataset. The transfer learning models might
not be as effective as the proposed model in overall performance, especially in capturing the true discriminator
between healthy and patient classes because of failure in patient identification. Overall, the multiview-based
proposed model significantly improves performance for the patient class compared to transfer learning models
and a single-view-based model when the test dataset becomes increasingly unbalanced. We execute Grad-CAM
(Gradient-weighted Class Activation Mapping) [48] to compare the results of single-view and multiview-based
proposed models. Thus, we aim to provide visual explanations for the decision-making process of the models
by highlighting the regions in the mammogram image that contribute the most to a particular class decision.
The example results of Grad-CAM for single- and multiview-based models are presented in Figure 5. The
proposed model focuses on lesions and masses in mammograms for making model decisions during training (see
Figure 5). While the single-view-based model leverages only significant patterns in a single mammogram, the
multiview-based model provides a stronger, more effective, and robust solution by utilizing powerful patterns
from multiple mammography views.
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Table 5. The accuracy, precision, recall, f1 with a weighted average and the mean of AUC results on the unbalanced
test dataset.

Model AUC accuracy precision recall f1
Resnet50V2 0.50 92.31 96.14 92.35 94.22
ResNet101 0.50 93.68 96.12 93.24 95.16
DenseNet121 0.40 91.08 96.10 91.24 93.16
EfficientNetB1 0.51 86.48 96.12 86.47 91.24
The single-view-based proposed model 0.84 66.73 98.15 66.73 79.45
The multiview-based proposed model 0.99 95.05 97.85 95.05 96.43

We applied patients who had undergone a biopsy test dataset to evaluate all referred samples and compare
the performance of the proposed models and physicians. The results of the multiview-based proposed model
on patients who have undergone a biopsy test dataset and human expert comparison test dataset are given
in Table 6. The proposed model accurately identifies all patient cases in the patient class and reduces the
false positive recall rate in the healthy class. Additionally, the ROC curve and confusion matrix results of the
multiview-based proposed model are given in Figure 6 for patients who have undergone the biopsy test dataset
and human expert comparison test dataset. According to the confusion matrix results in Figure 6, the proposed
multiview-based model has incorrectly classified 131 cases out of all cases referred to as patients. On the other
hand, the physicians referred to all 1420 cases as suspicious, which suggests a higher rate of false positives (i.e.
actually healthy cases targeted as patients) compared with the proposed model. Moreover, the proposed model
has a lower false positive rate for identifying healthy cases as patients than physicians. As a result, the proposed
model achieved an accuracy of 90.86%, AUC of 0.97, and f1 of 94.14% on the undergone biopsy test dataset.

Table 6. The accuracy, precision, recall, f1 with a weighted average, and the mean of AUC results for the multiview-
based proposed model on patients who have undergone biopsy test dataset and human expert comparison test dataset.
5-fold cross-validation is implemented for the proposed model.

Dataset AUC accuracy precision recall f1
Undergone biopsy test set 0.97 ± 0.002 90.86 ± 0.008 98.75 ± 0.000 90.86 ± 0.008 94.14 ± 0.005
Human expert comparison test set 0.99 ± 0.000 97.03 ± 0.003 99.63 ± 0.000 97.03 ± 0.003 98.17 ± 0.002

The proposed model utilized a stratified test dataset with 20% sampling of the groups to reflect a realistic
scenario that could reflect the real-life scenario and measure the robustness of the model. Table 6 and Figure
6 illustrate the results of the proposed models on the multiview-based proposed model. The proposed model
shows high robustness on the human expert comparison test dataset with an accuracy of 97.03%, AUC of 0.99
(according to ROC curve ∼99% AUC for each class), and f1 of 98.17%. The proposed model was able to classify
all patients accurately, and it also demonstrated a low false positive recall rate by identifying only 124 out of
4742 healthy cases as patients. On the other hand, a total of 1531 women out of 23,258 were recommended
by physicians to undergo further examination with a biopsy. However, biopsy results showed that only 111 of
these women were actually patients, and the majority of the referred women (1420) were found to be healthy.
Thus, the proposed model was ensured to decrease the false positive recall rate to 2.61%. In contrast, the
expert diagnosis had a false positive recall rate of 6.13% according to the confusion matrix for all samples of
the in-house dataset (without being split into train and test) given in Figure 6. As a result, the proposed model
improved the accuracy of patient diagnosis with a promising result and reduced false positive recalls, minimizing
unnecessary biopsies and adverse effects such as financial burden and psychological stress.
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Figure 4. The confusion matrix results of transfer learning-based models for balanced test dataset and unbalanced
test dataset.
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Figure 5. The results of Grad-CAM for single- and multiview-based models. The key and meaningful patterns in
mammograms are marked using jet colormap, which plays a significant role in the model’s decision-making process
during classification.
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Figure 6. The ROC curve and confusion matrix results of the proposed model (multiview-based model) for patients
who have undergone biopsy test dataset, human expert comparison test dataset, and physician diagnosis for 20% of all
samples of the in-house dataset.
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We assessed the performance of the proposed model in benign and malignant classification using the public
INbreast dataset [36] for comparison with previous mammography studies. The proposed classification model
was operated with single-view and multiviews (RCC, LCC, RMLO, LMLO) for mammography images. The
proposed classification model was trained and tested on INbreast with extracted latent features by pretrained
VAE in the pretext task. The latent features were extracted by the pretrained VAE on the in-house dataset
and then fed into the classification model. Thus, we highlighted the transferability of the pretrained VAE
on the in-house dataset to the INbreast dataset. Table 7 shows a comparative analysis of results between
the proposed model and previous studies. According to the results, the multiview-based proposed model
demonstrates competitive results against previous studies, achieving a high AUC of 0.98. Consequently, the
proposed model shows high performance, generalization ability, and transferability of the encoded space between
different datasets making it a valuable contribution to the field of breast cancer diagnosis.

Table 7. Comparison of the proposed models with previous studies on INbreast dataset for benign and malignant
classification, considering accuracy, precision, recall, f1 with weighted average, and mean AUC.

dataset model AUC accuracy precision recall f1

INbreast

TSBN [49] - 85.53 - 84.00 75.06
CNN [50] 0.95 93.04 - 94.83 93.22
Three-stage PAA [51] 0.96 - - - -
ECA-Net50 [52] 0.96 92.9 - 92.8 -
The single-view based proposed model 0.96 92.50 92.87 92.50 92.62
The multiview-based proposed model. 0.98 91.67 93.59 91.67 91.96

5. Discussion
In this study, we comprehensively analyze the proposed model examining the complexity of the model and
regions’ effect on decision-making, evaluating various test sets, including private and public datasets, and
comparing their performance against state-of-the-art models and human experts. Our proposed model effectively
addresses challenges associated with imbalanced and insufficient mammogram datasets, providing high, fast,
and robust performance. However, it is noted that the limited number of positive samples (malignant, etc.)
in mammograms still poses a challenge in assessing the deep models. The proposed model requires further
training and testing on larger positive samples to address this limitation. Therefore, we will focus on developing
synthesized mammography images, particularly for malignant cases, as data augmentation in future studies.
Additionally, all mammogram views may not be available for patients. Therefore, image-to-image translation
models can improve the model accuracy in cases where specific views are missing. Moreover, image translation
tasks can potentially recognize and map corresponding structures and features across different mammogram
views. Synthetic image generation techniques in future mammography studies have the potential to contribute
significant benefits to overcome data limitations and enhance the overall efficacy of breast cancer detection
and diagnosis. While the VAE exhibits a powerful approach in the representation and dimensionally reduction
of images in a low latent space, Generative Adversarial Network (GAN)-based and diffusion models excel in
synthetic image generation tasks. Therefore, in future research, we intend to leverage GAN and diffusion-based
models for synthesizing mammography images, especially in cases where views are missing, incomplete, or
imbalanced.
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6. Conclusion
In this study, we propose an efficient and robust deep learning-based breast cancer diagnosis in two stages
by overcoming over-fitting and underrepresentation problems. Firstly, VAE extracts encoded feature spaces
by allowing the usage of large samples in an unsupervised manner, and then encoded spaces of four views
were used by the simple classifier model. Thus, the proposed model achieves lower complexity by employing a
low-dimensional encoded space vector (640,12) as input rather than utilizing high-dimensional mammography
images. The proposed model incorporates a lightweight classifier model with only 338 trainable parameters,
389.20k FLOPs, and 0.354 s execution time for training for mammogram classification. Overall, the proposed
model adopting a two-stage mechanism allows for the efficient processing of mammography data by maintaining
higher accuracy, rapidity, and robustness even on the imbalanced test set than transfer learning-based models.

On the other hand, the first step in breast cancer diagnosis is mammography screening, as it often
requires additional follow-up tests to arrive at a conclusive diagnosis. False positive recall occurs when a woman
is recommended for additional imaging or biopsy, but most of them subsequently turn out benign. The high false
positive recall rate is a significant concern, as it often leads to unnecessary follow-up tests, causing additional
healthcare costs, anxiety, and stress for the patient. In this study, we observed a significant improvement in
the proposed model in reducing the false positive recall rate for breast cancer diagnosis. The study shows that
the proposed model decreased the false positive recall rate to less than half of the false positive recall rate with
expert diagnosis. The reduced false positive recall rate would reduce costs and minimize psychological effects on
patients. The significance of our results is that the experiments were conducted retrospectively in real-life data.
This strongly encourages the idea that deep learning-based CAD and medical decision support systems might
be highly productive and effective for the health economy and public health in mammography-based breast
cancer screening. As a result, the proposed model has the potential to be a valuable tool in improving breast
cancer diagnosis and reducing the negative impact on patients.
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