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Abstract: The Advanced Encryption Standard (AES) is one of the most commonly used and analyzed encryption
algorithms. In this work, we present new combinations of some prominent attacks on AES, achieving new records in
data requirements among attacks, utilizing only 24 and 216 chosen plaintexts (CP) for 6-round and 7-round AES-
192/256, respectively. One of our attacks is a combination of a meet-in-the-middle (MiTM) attack with a square attack
mounted on 6-round AES-192/256 while another attack combines an MiTM attack and an integral attack, utilizing key
space partitioning technique, on 7-round AES-192/256. Moreover, we illustrate that impossible differential (ID) attacks
can be viewed as the dual of MiTM attacks in certain aspects which enables us to recover the correct key using the
meet-in-the-middle (MiTM) technique instead of sieving through all potential wrong keys in our ID attack. Furthermore,
we introduce the constant guessing technique in the inner rounds which significantly reduces the number of key bytes to
be searched. The time and memory complexities of our attacks remain marginal.

Key words: Block cipher, Advanced Encryption Standard, meet-in-the-middle attack, square attack, cryptanalysis,
encryption

1. Introduction
AES, as defined by the National Institute of Standards and Technology (NIST) [1], stands as a prominent block
cipher extensively deployed for ensuring confidentiality in various cryptographic protocols. These protocols
include, but are not limited to, wireless security, file and database encryptions, Transport Layer Security (TLS),
GSM-5G, WiFi Protected Access (WPA), and the Signal protocol integrated into ubiquitous applications such
as WhatsApp. Therefore, any analysis of AES within specific parameters, particularly scenarios involving
limited data, assumes a critical role. Such analyses play a vital role in enhancing our understanding of the
security implications associated with commonly employed ciphers, facilitating a comprehensive evaluation of
their security against attacks using a practical amount of data.

AES stands as one of the most extensively cryptanalyzed ciphers, with numerous attack techniques
mounted on its reduced rounds across distinct key lengths. This substantial body of work significantly con-
tributes to the cryptanalysis of block ciphers. Noteworthy analyses encompass Meet-in-The-Middle (MiTM)
attacks, such as those by Demirci and Selçuk [2], Dunkelman et al. [3, 4], Wang and Zhu [5], Derbez et al. [6],
Li et al. [7], Gilbert and Minier [8], square attacks [9], biclique attacks [10, 11], yoyo attacks [12, 13], truncated
boomerang attacks [14], zero difference attacks [15], algebraic attacks [16], mixture differential attacks [17],
mixture integral attacks [18], and impossible differential (ID) attacks [19–32]. Additionally, the key schedule of
∗Correspondence: orhunkara@iyte.edu.tr
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AES has been subjected to intensive cryptanalysis [4, 33]. ID attacks, initially discovered by [34, 35], exploit
impossible inner differences and usually require too much data to sieve all the wrong keys in the encryption and
decryption directions.

The feasibility of the best attacks on block ciphers is often limited due to their substantial data require-
ments. This is attributed to the inherent challenge that if the data complexity of an attack is practically low,
there usually exists the potential for decreasing the time complexity by increasing the data complexity. A
typical illustration is found in the case of the Data Encryption Standard (DES) cipher. Both the differential
attack [36] and the linear attack [37] are much faster than the exhaustive search. Nevertheless, the brute-force
attack remains the most practical means of recovering a DES key, as these attacks require several terabytes of
data. Consequently, the significance of low-data attacks becomes particularly vital when evaluating the secu-
rity level of a cipher. Similar security analyses are conducted on AES to understand the security implications
of reduced rounds when only a practical amount of data is available. These investigations are particularly
significant since they serve as a benchmark against exhaustive search methods, offering insights into how far
AES’s security deviates from the expected level based on its key length because brute force attacks fall into the
category of low-data complexity attacks. However, their time complexity can be impractically high. Therefore,
a crucial aspect of analyzing reduced rounds of AES involves studying the minimum data requirements, with
considerations of time and memory complexities as secondary issues [9, 12, 38–43].

Table 1. Low data attacks on AES with 6 and 7 rounds. D, T, and M stands for data (in CP), time, and memory (in
byte) complexities, respectively.

Variant D T/M Round Reference
All 226 280 / 235 6 [38]
AES-192 218 2180/278 6 [44]
AES-256 218 2186 / 243 6 [44]
AES-192 16 2146/2153 6 Section 6
AES-256 16 2163/2169 6 Section 6
AES-192 226 2153/232 7 [40]
AES-192/256 226 2146.3/240 7 [40]
AES-192 216 2171/2154 7 Section 7
AES-256 216 2173/2170 7 Section 7

The challenge of determining the minimum data requirements for attacks on 4 and 5 rounds of AES is
nearly resolved. Bouillaguet et al. proposed an attack with a time complexity of 2104 on 4-round AES, utilizing
only 2 chosen plaintexts (CP). Their attack remains within practical time limits even when using 4 CP, requiring
only 232 AES encryptions [39]. For attacks on 5-round AES, the minimum data requirement is established at
8 CP, with a time complexity of 264 [45].

It is apparent that identifying the lowest data complexity among attacks on AES with more than 5 rounds
presents a significant challenge, unlike in the cases of 4 and 5 rounds. The square attack, requiring 232 chosen
plaintexts for 6-round AES, maintained its record for nearly two decades [46].

Despite subsequent improvements, including the technique for partial summing in the square attack
[9] and advanced MiTM attacks [5, 6], achieving superior time complexities, none have surpassed the data
complexity established by the square attack in [46].
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Table 2. The best attacks on 6-round AES and 7-round AES. They require 233 and 297 data, respectively. D, T, and
M stand for data (in CP), time, and memory (in byte) complexities, respectively. *: Complexity is given as the number
of additions in FFT.

Variant D T M Round Reference
All 233 244 237 6 [44]
All 6 · 232 246 6 · 236 6 [9]
All 233 246.4∗ 231 6 [47]
All 297 299 298 7 [6]
AES-128 2106 2110 290 7 [26]

Significant improvements have been made in Meet-in-the-Middle (MiTM) techniques applied to AES
since the pioneering Demirci-Selçuk attack [2]. Notably, after 18 years, Bar-On et al. made significant strides
by breaking the record, achieving 227.5 CP using the mixed MiTM technique [40]. Further refinement resulted
in a reduced data complexity of 226 CP in [38]. It is essential to emphasize that, despite setting the record
for minimum data complexity, this particular attack did not hold the title for the fastest method against 6-
round AES. A recent study marked a significant improvement in this record, achieving 218 chosen plaintexts
for attacks on 6-round AES with a very high time complexity [44]. As of now, the minimum data requirement
for a 7-round AES stands at 226 CP [40].

1.1. Our contributions
In this work, we investigate low-data attacks on both 6-round and 7-round AES and significantly enhance the
lowest data requirements. We employ a novel combination of Meet-in-the-Middle (MiTM) and square attacks
on 6-round AES, requiring only 16 CP. Our attacks succeed with 192-bit and 256-bit key lengths. Additionally,
we apply the key partitioning technique from [48] in our MiTM attack and use identically active sets to improve
the lowest data complexity for 7-round AES. This time, we achieve 216 CP for both AES-256 and AES-192.
Table 1 provides details of the low-data attacks on 6-round and 7-round AES.

In our differential MiTM attacks, we employ a single structure and fix a few active bytes, leaving
the remaining bytes not only passive but also constant. Thus, we utilize the constant guessing technique,
significantly reducing the search space. Furthermore, all the bytes do not have to be active for an active column
in this case. Essentially, we treat our differentially active bytes as integrally active as well, rendering them like
permutations, while the other bytes remain constant. As a result, as shown in Table 1, we achieve a significant
improvement in the lowest data complexity.

The paper is organized as follows. We give a brief decryption of AES in Section 2. We introduce our basic
attack in Section 3 and the constant guessing technique used in our attacks in Section 4. An improvement of the
basic attack is given in Section 5. We present a combination of MiTM attack and square attack to achieve the
minimum data in Section 6. The extension of this attack through the key partitioning technique is introduced
in Section 7. Finally, we conclude the paper with Section 8.

2. A short definition of AES
AES is the FIPS 197 standard [1]. We give a short definition of AES. A detailed decryption along with test
vectors can be found in [1, 41]. It is a block cipher with 128-bit block length. There are three options for the
lengths of the key: k = 128, 192 or k = 256 bits. These lengths correspond to r = 10, 12 and r = 14 rounds,
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respectively. It is common to depict 16 bytes of an inner state of AES by a matrix of 4× 4 dimensions. There
are four operations of AES in one round (see Figure 1):

SubBytes (SB ): It consists of 16 8× 8 S-box operations. It is a substitution of each byte through a lookup
table.

ShiftRows (SR): The SR operation is a cyclic rotation of bytes. The i -th row is rotated i− 1 byte to the
left for i = 2, 3 and i = 4 .

MixColumns (MC ): It is a matrix multiplication of each column by an MDS matrix over the extension
Galois field GF (256) . Each column of the input state is multiplied by this 4×4 MDS matrix and it is substituted
with the output.

AddRoundKey (ARK ): XORs the j -th byte of the output state of the i -th round with the j -th byte of
the i -th subkey.

𝑴𝑪𝒊 𝑹𝑲𝒊

Figure 1. Operations of AES in one round

The first subkey RK0 is considered the whitening key and it is added to the plaintext prior to the
encryption. The last round lacks MC operation. We denote the inverse operations as SB−1 , SR−1 , and
MC−1 , which are the inverses of SB , SR , and MC , respectively.

We introduce the key schedule of AES-192 briefly since we only exploit it in our attacks. Let RK0 be
the whitening key. The recursive relation between columns of the subkeys of AES-192 is given as

RK{k} =

{
RK{k − 6} ⊕ ϕ(RK{k − 1})⊕ r{k div 6}, if (k mod 6) = 0,
RK{k − 6} ⊕RK{k − 1}, else; (1)

where RK{4j + i − 1} is the i -th column of the j -th subkey, ϕ is an S-box-based function on columns and
r{k}s are round constants.
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2.1. Notation
Let P , C , K , RKi , and ∆S denote a plaintext, a ciphertext, a main key, the ith round key, and the difference
of a pair for S , respectively. For instance, ∆P is the plaintext differences. We indicate both the output of a
round operation and the round number with a subindex. For instance, ∆SRi stands for the output difference
of a pair of data of the SR operation in the ith round. We comply with the same indexing for the inverse
functions SB−1

i , MC−1
i , ∆SB−1

i , and ∆MC−1
i . If a specific input or output of these functions must be

pointed out, we use MCi(X) , SBi(X) , or MC−1
i (X) .

The byte numbers are ordered in the 4× 4 matrix as in Figure 2. Thus, bytes with indices 0, 4, 8, 12 are
located in the first column. We denote the byte positions of a state in [·] . That is, T [α1, . . . , αℓ] denotes the
(α1, . . . , αℓ) -th positions of the state T , respectively. For instance, MC2[1, 7] denotes the second and the 8 -th
bytes of the output of the MC operation in the second round in the ordering depicted in Figure 2. ∆MC−1

2 [2, 5]

means the third and the fifth bytes of a given input difference of the MC operation in the second round.

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Figure 2. Byte numbers of a state.

3. Basic attack on 6-round AES
Our primary attack is an impossible differential (ID) attack on AES. Our approach differs from a conventional
ID attack on AES in two key aspects. We exploit a unique ID characteristic and eliminate the restriction that
all bytes of an active MC operation must be active when the subsequent SB operations are in use.

The majority of ID attacks on AES in the literature exploit one of the ID characteristics within the family
of 4-round characteristics defined by Grassi et al. in [49]. If, in any 4-round characteristic of AES, the sum of
active columns after the SR and SR−1 operations in the encryption and decryption directions, respectively, is
not greater than 4, it defines an ID characteristic [49]. This characteristic is referred to as a conventional ID
characteristic of AES [44].

We do not exploit conventional ID characteristics. The contradiction in our characteristic occurs during
the SR operation of the fourth round, as depicted in Figure 3. SR4[0] is active in the encryption direction,
whereas it is passive in the decryption direction. This characteristic is key-dependent, relying on the subkeys
in both the encryption and decryption directions. Any key candidate that leads to this contradiction is deemed
incorrect and, consequently, sieved.
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Recovering the key through our basic attack follows the classical steps of a standard ID attack, having
two parts. Firstly, we determine the ciphertext pairs for each guess of the round keys that result in passive
bytes in SR4[0] on the decryption side. Later, we utilize the corresponding plaintext pairs on the encryption
side, leading to active bytes in SR4[0] during the encryption process.

The dataset consists of 28 CP. In each plaintext, the first byte, P [0] , takes all possible values, while the
other bytes remain constant. Formally, the dataset is defined as:

D = {Pi : Pi[0] = i for i = 0, . . . , 255; Pj [z] = Pk[z] ∀j, k = 0, . . . , 255 for z ̸= 0}.

The corresponding ciphertexts are denoted as Ci = EK(Pi) . The total number of pairs is approximately 215 ,
specifically (Pi, Pj) for i ̸= j . It is important to note that we only use one structure of such a set.

3.1. Preparing tables in decryption side

Constructing the table is a routine procedure in a classical ID attack, involving guess-and-determine and early
abort techniques. Further details can be found in [23]. Thus, we briefly explain how to prepare our table
which contains each subkey guess in the decryption direction and the corresponding ciphertext pairs leading to
∆MC−1

4 [0] = 0 .
First of all, let us guess the whole round key RK6 . We can decrypt each pair (Ci, Cj) for one round

and then guess MC−1
5 (RK5)[0, 7, 13] for AES-256. Let us remark that we can compute the first two columns

of RK5 , RK5{0, 1} , from RK6 by means of the key schedule for AES-192. Subsequently, we simply compute
MC−1(RK5)[0, 13] . Therefore, it is enough to guess only MC−1(RK5)[7] for AES-192.

Compute ∆SB−1
5 [0, 4, 12] . The difference for a pair will be ∆MC4[0, 4, 12] since the round key RK4 does

not change the difference. Then we can compute ∆MC4[8] from the linear equation ∆MC−1
4 [0] = 0 since we

want ∆SR4[0] = 0 . On the other hand, ∆MC4[8] = ∆SB−1
5 [8] , but we know ∆SB5[8] . The probability that

there is a transition for the input/output differences ∆SB−1
5 [8] → ∆SB5[8] through the difference distribution

table of SB of AES is around 1/2 and there are most likely 2 solutions. Therefore, we can determine two values
of MC−1

5 (RK5)[10] for roughly half of the pairs, as depicted in Figure 3.

The probability that ∆MC−1
4 [0] = 0 is 2−8 . Hence, we expect approximately 27 = 128 pairs out of

215 pairs for each subkey guess in the decryption side. We have 2160 and 2136 key candidates for RK5

and MC−1(RK5)[0, 7, 10, 13] in AES-256 and AES-192, respectively. Let us store each key candidate with its
roughly 128 ciphertext pairs resulting in the equality ∆SR4[0] = 0 . The complexities of preparing these tables
are 2 · 214 · 2152 = 2167 and 2 · 214 · 2136 = 2151 two-round decryptions of AES-256 and AES-192, respectively.

4. Constant guesses and partially active MC

We guess constant bytes in the encryption direction to check if ∆SR4[0] ̸= 0 for each plaintext pairs. This will
enable us both to decrease the number of bytes we must guess and to overcome the passive bytes of MC2 . All
the bytes of an active MC operation are expected to be active in a typical ID attack when there are subsequent
active SB operations, as the differences need to be evaluated throughout SB . It is important to note that
the decryption part of our ID attack is standard, with four of the MC−1 operations being active in the fifth
round (see Section 3). Therefore, all bytes must be active, resulting in guessing the entire RK6 . However, a
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distinction arises in the encryption direction, as in the second round, where all four MC operations are active,
but only one byte in each MC is active (see Figure 3).

Decryption direction

𝑆𝐵 𝑆𝑅 𝑀𝐶 𝑅𝐾  

𝑆𝐵 𝑆𝑅 𝑀𝐶 𝑅𝐾  

𝑆𝐵 𝑆𝑅 𝑀𝐶 𝑅𝐾  

𝑆𝐵 𝑆𝑅 𝑅𝐾  

𝑅𝐾  

𝑅𝐾  

Contradiction

:passive byte

:active byte

:probably active byte

:active byte with guessed key

:guessed key for MC check

𝑀𝐶ିଵ

𝑀𝐶ିଵ

𝑆𝑅ିଵ

𝑆𝑅ିଵ

𝑆𝐵ିଵ

𝑆𝐵ିଵ

𝑅𝐾  

Encryption direction

:determined key for MC check

:constant byte

Figure 3. In our basic attack, 28 CP whose first bytes take all value and the other bytes are constant, are utilized along
with their corresponding ciphertexts. The white boxes represent constant bytes. They do not change with the plaintext.
We carefully determine internal state bytes and subkey bytes to be guessed for recovering ∆SR4[0] , the difference in the
first byte of the state in round four after the SR operation, in both encryption and decryption directions. A contradiction
arises if it is passive in one direction and active in the other direction.

The passive bytes in the plaintext pairs are also constant. That is, the value in a passive byte do
not change across any plaintext. The constant bytes of a plaintext remain constant throughout the oper-
ation of AES up to the second round. For any pair P1, P2 of plaintexts taken in one structure, we have
∆SR2[1, 2, 3, 4, 5, 6, 8, 9, 11, 12, 14, 15] = 0 in a conventional ID attack. However, we use only one structure.
Therefore, ∆SR2[1, 2, 3, 4, 5, 6, 8, 9, 11, 12, 14, 15] and any differences in all the other passive bytes in the en-
cryption direction are zero for any plaintext pairs. This implies that all the passive bytes take constant values.
Our objective is to identify these constant values rather than subkey bytes. We explain how to exploit this
property and introduce the complexities for the basic attack in this section.

The passive bytes of MC2 are present even when we need to run the SB3 operation. We must recover
∆MC3[0] to check if a pair leads to ID characteristic and we compute this difference by guessing the constant
secret values. In fact we are supposed to check if ∆SR4[0] ̸= 0 for the miss-in-the-middle. This condition is
equivalent to ∆MC3[0] ̸= 0 .

We guess only two subkey bytes: RK0[0] and MC−1
1 (RK1)[0] . All the other guesses are constant state

bytes. First of all, we guess three bytes: SR1[4, 8, 12]⊕MC−1
1 (RK1)[4, 8, 12] , which remains constant for any

plaintext used. It is possible to recover SR2[0, 7, 10, 13] by these 2+3=5 byte guesses. These represent the
active bytes before MC2 (see Figure 3). Observe that the following four bytes , C1, C2, C3 , and C4 , are constant
and does not change with any plaintext.
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C1 = 3SR2[4]⊕ SR2[8]⊕ SR2[12]⊕MC−1(RK2)[0],

C2 = SR2[1]⊕ 2SR2[5]⊕ 3SR2[9]⊕MC−1(RK2)[5],

C3 = SR2[2]⊕ SR2[6]⊕ 3SR2[14]⊕MC−1(RK2)[10], and

C4 = 3SR2[3]⊕ SR2[11]⊕ 2SR2[15]⊕MC−1(RK2)[15].

Therefore, let us guess four constant bytes; C1, C2, C3 , and C4 . Then, we can compute SR3[0] = SB(2 ·SR2[0]⊕
C1) . Similarly, SR3[4, 8, 12] can be computed through C2, C3 , and C4 . Indeed, SR3[4] = SB(SR2[13] ⊕ C2) ,
SR3[8] = SB(2 · SR2[10] ⊕ C3) , and SR3[12] = SB(SR2[13] ⊕ C4) . After recovering SR3[0, 4, 8, 12] , we can
check whether ∆MC3[0] = MC(∆SR3[0, 4, 8, 12]) is nonzero. Our total guesses are 2+3+4=9 bytes.

The remaining part of the attack is standard. For each guess in the encryption direction and for each
guess in the decryption direction if we have a pair of ID characteristic, we eliminate the guesses. We already
have a table for the decryption direction. As the last step of the attack, we check if all of the 272 secret
candidates in the encryption side lead to the impossible characteristic for each round key among 2160 keys
(2144 keys for AES-192) of the decryption side in the table and delete the round key from the table. We have
128 pairs on average for each key in the table lead to the impossible characteristic in the decryption side. The
corresponding plaintexts of each pair produce an impossible path with probability 1 − 2−8 for any guessed
72-bit secret value. If all the 272 guesses of the secret information in the encryption side are eliminated, we
delete the 160-bit (144-bit for AES-192) round key candidate from the table. The expected numbers of wrong

keys left are 272+160(1 − 2−8)2
15 ≈ 2232e−128 ≈ 248 and 272+144(1 − 2−8)2

15 ≈ 232 for AES-256 and AES-192,
respectively, where e is the Euler number. The remaining round keys are eliminated by exhaustive search, which
costs 2482256−128−32 = 2144 and 2322192−128−64−16 = 280 encryptions for AES-256 and AES-192, respectively.

The data complexity is only 256 chosen plaintexts. The memory complexities are 2168 and 2152 bytes
for AES-256 and AES-192, respectively. It’s noteworthy that storing only the first bytes of the corresponding
plaintext pairs for the ciphertext pairs leading to the ID characteristic for a guessed round key in RK6 and
MC−1(RK5) is sufficient. The second step dominates the time complexity. Therefore, the time complexities
are 2 · 272 · 2160 = 2233 and 2 · 272 · 2144 = 2217 2-round encryptions of AES-256 and AES-192, respectively.
Hence, this attack has limited effectiveness.

5. Improvement and the duality of the attack
We treat our ID attack in Section 3 as an MiTM attack in this section. It is possible to collide the correct
72-bit constant guess in the encryption direction and the 160-bit subkey in the decryption direction through
the MiTM technique [3, 6]. In a conventional ID attack, the wrong keys are sieved one by one by identifying
the ID characteristic for the corresponding plaintext/ciphertext pairs. Unlike all the other ID attacks, we do
not eliminate the wrong keys one by one.

We have constructed a table with 2160 and 2144 rows for AES-256 and AES-192 respectively in the
first phase of our ID attack in Section 3. This was the process in the decryption side and we do not have
any improvement in this phase. Recall that each row of our table represents a guessed subkey RK for
(RK6,MC−1(RK5)[0, 7, 10, 13]) and contains the first bytes of the plaintext pairs whose ciphertext pairs have
a passive byte in SR4[0] when decrypting through this RK . These pairs (Pi, Pj) are enumerated and ordered
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by treating each pair as a number i ·28+j within a row. Subsequently, the table is sorted in lexicographic order
during its construction. Additionally, another table lists the round keys that do not decrypt any ciphertext
pairs with a zero difference at SR4 . We anticipate having 248 and 232 such round keys for AES-256 and
AES-192, respectively. This second list is used when no collision is found in the first list, indicating that the
correct subkey RK is not present in the first list. Subsequently, we can search for it in the second list, which
is considerably smaller.

The identification of the correct 72-bit secret value and its corresponding round key on the decryption
side can be recovered within the sorted table without the need for sieving through incorrect keys. We search
for the collision in the table for each 72-bit secret value. The computation of ∆SR4 is conducted for every
pair (Pi, Pj) in the encryption direction through the 72-bit guess of constant bytes, and i · 28 + j is appended
to a list if ∆SR4 = 0 . Upon completion of the list, a lexicographical sorting process is executed, followed by
a verification step within the table of the first phase of the attack. If a match is found, the associated row
number designates the correct round key for (RK6,MC−1(RK5)[0, 7, 10, 13]) . The time complexity associated
with searching the sorted table is determined as 272 · 160 ≈ 280 . In the absence of a match between the list and
the table, signifying a 72-bit secret value where, for any pair (Pi, Pj) , ∆SR4 ̸= 0 , the correct round key for
(RK6,MC−1(RK5)[0, 7, 10, 13]) is absent from the first table. Subsequently, an exhaustive search is undertaken
on the second table, incurring a computational cost of 248+256−160 = 2144 and 232+192−144 = 280 encryptions
for AES-256 and AES-192, respectively. The attack for AES-192 is described in detail in Algorithm 1. The case
for AES-256 is similar. The only difference is making search on MC−1(RK5)[0, 13] rather than determining it
through the key schedule.

The duality arises from the observation that any pair of plaintexts, leading to passive bytes in ∆SR4[0]

through a 72-bit constant value guess, can also form an ID characteristic if their corresponding ciphertexts result
in an active byte in ∆MC−1

4 [0] through a 160-bit round key guess. Consequently, any 72-bit constant value
guess for encryption and a 160-bit round key guess for decryption, which result in passive bytes in ∆SR4[0] ,
will be considered a candidate for the correct key. In summary, for the correct key pair, if the condition for the
output difference of the ID characteristic in the decryption direction is satisfied for a given input/output pair,
then the condition in the encryption direction is not satisfied, and vice versa. This condition does not work
in two directions in general for an arbitrary ID attack. Then, the set of pairs satisfying the output difference
in the decryption direction for an ID characteristic will be a subset of the set that does not satisfy the input
difference for a correct guess of the subkeys. To address this, we should initially create the set for a specific
subkey candidate in the encryption direction and then search for a subset of this set in the table. This task
poses a greater difficulty in finding a match.

To be precise, let (∆X,∆Y ) be an ID characteristic. We have two lists of subkeys: one is the list of
subkeys in the encryption direction, denoted as LE , and the other is the list of subkeys in the decryption side,
denoted as LD . The list LE contains vectors V(RKe) whose i -th coordinates are 1 if the i -th plaintext pair
produces the difference ∆X through encryption by RKe , and 0 otherwise, for subkeys RKe in the encryption
direction. Similarly, the list LD contains vectors V(RKd) whose i -th coordinates are 1 if the i -th ciphertext
pair produces the difference ∆Y through decryption by RKd , and 0 otherwise, for a subkey RKd in the
decryption direction.
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Algorithm 1 MiTM attack which is dual of the ID attack in Section 3 on 6-round AES-192 with 28 CP
Input: Plaintext and ciphertext pairs (Pk, Ck) for k = 0, . . . , 28 − 1
The table, T , for ∆SR4[0, 4] , is empty for initialization
The table R is empty for initialization
for each guess of RK6 do

Compute MC−1(RK5)[0, 13]) from RK6 using key schedule
for each guess of MC−1(RK5)[7, 10] do

Load MC−1(RK5)[0, 13]) in the t -th row of the table T where t is the guessed subkey value
for j from 1 to 28 − 1 do

for i from 0 to j − 1 do
Compute MC−1

5 [0, 7, 10, 13] for Ci and Cj using RK6

Compute ∆MC−1
4 [0, 4, 8, 12] using MC−1

5 [0, 7, 10, 13] and MC−1(RK5)[0, 7, 10, 13]) for Ci and Cj

Compute SR4[0, 4] for Ci and Cj as SR4[0, 4]i and SR4[0, 4]j respectively
if SR4[0, 4]i = SR4[0, 4]j then

Load the value αi,j = 256i+ j in the t -th row of the table T where t is the guessed subkey value
end if

end for
end for
if ∃ no αi,j then

Add RK6 and MC−1(RK5)[0, 7, 10, 13] to R
end if
Sort T with respect to αi,j in lexicographic order keeping its row numbers

end for
end for
for each guess of RK0[0] and MC−1(RK1)[0] do

for each guess of SB1[5, 10, 15]⊕MC−1(RK1)[5, 10, 15] do
for each guess of C1 , C2 , C3 , and C4 do

for each guess of RK3[0] do
Initialize the list L as empty set
for j from 1 to 28 − 1 do

for i from 0 to j − 1 do
Compute SR2[0, 7, 10, 13] for (Pi, Pj) using RK0[0] , MC−1(RK1)[0] , and SB1[5, 10, 15] ⊕
MC−1(RK1)[5, 10, 15]
Compute SR3[0, 4, 8, 12] for Pi and Pj using SR2[0, 7, 10, 13] , Cℓ for ℓ = 1, 2, 3, 4
Compute MC3[0] using SR3[0, 4, 8, 12] for Pi and Pj

Compute SR4[0] for Pi and Pj using MC3[0] and RK3[0] as SR4[0, 4]i and SR4[0, 4]j respectively
if SR4[0, 4]i ̸= SR4[0, 4]j as the duality condition then

Load the value βi,j = 256i+ j in the t -th row of the table L where t is the guessed subkey value
end if

end for
end for
if L is equal to one of the rows of T then

Print the row number of T as a candidate for the correct subkey RK6 and MC−1(RK5)[7, 10]
else

Make exhaustive search on R for RK6 and MC−1(RK5)[0, 7, 10, 13]
end if

end for
end for

end for
end for
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The miss-in-the-middle attack corresponds to finding a unique V(RKe0) ∈ LE and V(RKd0) ∈ LD such
that V(RKe0) · V(RKd0) = 0 , where the multiplication is a bitwise AND-operation. Therefore, we should
provide enough number of data. This is a new interpretation of the generic ID attack. Then, the correct pair of
subkeys will be (e0, d0) . Recovering e0 and d0 by an algorithm whose complexity is less than |LE | · |LD| is a
research problem where |LE | is the dimension of the list, that is, the product of its row and column numbers.
Observe that V(RKd0

) is the complementation of V(RKe0) for the meet-in-the-middle case, and hence we have
V(RKe0) · V(RKd0

) = 0 as a special case for the MiTM attacks. Then, it is possible to recover e0 and d0

in the sorted lists with a complexity of max{|LE |, |LD|} in this case. We also exploit that V(RKe0) is the
complementation of V(RKd0) in our attack.

The predominant factor influencing the overall time complexity is the preparation of the ordered table.
Conversely, we can enhance the efficiency of table preparation by a factor of 28 through the sequential decryption
of 28 ciphertexts, as opposed to decrypting 215 pairs for each round key guess. Consequently, the complexity
becomes 2159 and 2143 for two-round decryptions in the cases of AES-256 and AES-192, respectively. It is
important to note that there is no improvement in memory complexity.

6. A meet in the middle attack with minimum data
In this section, we present an MiTM attack using only 16 CP, where their i -th bytes are equal for i = 1, . . . , 15 .
Similar to the attack described in Section 5, we guess 160-bit subkeys (128+32) for AES-256 and 144-bit subkeys
(128+16) for AES-192 from round keys RK6 and RK5 , respectively, on the decryption side. This is done to
recover the difference in the first column of the fourth round after the SR operation, specifically SR4[0, 4, 8, 12] .
Our focus lies solely on the differences in two bytes, namely SR4[0, 4] .

Let us remark that the pair (Ci, Ck) does not provide additional information compared to using (Ci, Cj)

and (Cj , Ck) . Therefore, we utilize only 16 − 1 = 15 differences among these 16 ciphertexts, specifically the
differences (Ci, Ci+1) for i = 1, . . . , 15 . We recover the difference in SR4[0, 4] for each guess and store them in a
table sorted according to the differences. Each row consists of 2×15 = 30 bytes for AES-256 and 2×15+2 = 32

bytes for AES-192. Additional two bytes are the determined bytes of RK5 from RK6 through the key schedule
for AES-192. Consequently, we need 20 × 30 × 2160 ≈ 2169 and 18 × 32 × 2144 = 2153 bytes of memory for
AES-256 and AES-192, respectively. We need to load the row numbers since we sort the table.

Firstly, we guess two subkey bytes in the encryption direction; namely RK0[0] and MC−1(RK1)[0] .
Then, we guess three constant bytes, SB1[5, 10, 15]⊕MC−1(RK1)[5, 10, 15] , to compute MC1[0, 4, 8, 12] . We
further guess four constant bytes in the second round: C1 = 3SR2[4] ⊕ SR2[8] ⊕ SR2[12] ⊕ MC−1(RK2)[0] ,
C2 = SR2[1] ⊕ 2SR2[5] ⊕ 3SR2[9] ⊕ MC−1(RK2)[5] , C3 = SR2[2] ⊕ SR2[6] ⊕ 3SR2[14] ⊕ MC−1(RK2)[10] ,
and C4 = 3SR2[3] ⊕ SR2[11] ⊕ 2SR2[15] ⊕ MC−1(RK2)[15] as defined in Section 4. Then, we can compute
MC3[0] . Similarly, we can guess four more constant bytes in the second round and compute MC3[5] . These
four constant bytes are:

B1 = SR2[4]⊕ SR2[8]⊕ 2SR2[12]⊕MC−1(RK2)[12],

B2 = 2SR2[5]⊕ 3SR2[5]⊕ SR2[9]⊕MC−1(RK2)[1],

B3 = SR2[2]⊕ 3SR2[6]⊕ SR2[14]⊕MC−1(RK2)[6], and

B4 = SR2[3]⊕ 2SR2[11]⊕ 3SR2[15]⊕MC−1(RK2)[11].
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Once MC3[0, 5] is recovered, we can compute SR4[0, 4] = SB(MC3[0, 5] ⊕ RK3[0, 5]) by further guessing the
subkey bytes RK3[0, 5] . In summary, the number of bits to be guessed is 16+24+32+32+16 = 120 . Then, we
compute ∆SR4[0, 4] for the 15 pairs (Pi, Pi+1) and check if a set of these pairs is in the list for a specific 120-bit
guessed value. We have less than 2120 · log2(2165) ≈ 2128 table look-ups. The details of the attack for AES-192
is given in Algorithm 2. The approach for AES-256 is similar, with the sole difference being the guess for
MC−1(RK5)[0, 13]) rather than its derivation through the key schedule. The dominant part is 16 · 2160 = 2164

and 16 · 2144 = 2148 2-round decryptions for AES-256 and AES-192, respectively. After searching the table, we
expect to deduce 224 and 240 subkey candidates in the table for AES-256 and AES-192, respectively, since the
probability that a wrong guess pair in both encryption and decryption directions produces all the 15 coinciding
differences in SR4[0, 4] is roughly 2−16·15 = 2−240 . The remaining part of the key can be recovered by the
exhaustive search in much less complexity since these workloads are 224 ·2192−144 = 272 and 240 ·2256−160 = 2136

for AES-192 and AES-256, respectively.

7. Extension of the attack on 7-round AES through integral analysis
In this section, we introduce an extension of the attack on 6-round AES in Section 6 for one more round by
utilizing the key space partitioning technique introduced in [48] for integral attacks. Consider a structure of
the plaintext set where P [5, 10, 15] takes all 224 values, while the rest, including P [0] , are held constant. We
can first make a guess for RK0[5] ⊕ RK0[10] and RK0[5] ⊕ RK0[15] , then select 28 plaintexts from the 224

possibilities, such that P [5] ⊕ RK0[5] = P [10] ⊕ RK0[10] = P [15] ⊕ RK0[15]. This set of plaintexts is called
the identically active set. Then, the inputs of the first column of the initial MC operation are in the form
[c, α, α, α] , where c is a constant, and α takes all 28 values. After the MC operation, the first column will
have the form [β1, c, c, β2] at the end of the first round, where β1 and β2 are permutations (see [48] for details).
In other words, the second and third bytes will be constant.

We can improve the attack described in Section 6 by one more round for each guess of RK0[5]⊕RK0[10]

and RK0[5]⊕RK0[15] , utilizing the related 28 plaintexts. This time, we have two active bytes in two different
columns before MC2 . Therefore, we need to guess 2 subkey bytes (RK1[0] and RK1[12]) in the first round,
two equivalent subkey bytes (MC−1

2 (RK2)[0, 15]), and 6-byte constants (MC−1
2 [4, 8, 12, 3, 7, 11]) in the second

round, along with 4-byte constants in the third round in the encryption direction to recover MC4[0] (see Section
6). These four constant bytes are:

F1 = 3SR3[4]⊕ SR3[8]⊕MC−1(RK3)[0],

F2 = SR3[1]⊕ 2SR3[5]⊕MC−1(RK3)[5],

F3 = SR3[2]⊕ 3SR3[14]⊕MC−1(RK3)[10], and

F4 = SR3[11]⊕ 2SR3[15]⊕MC−1(RK3)[15].

Moreover, if we guess RK4[0] , we can compute SR5[0] . In total, we are required to make guesses for 15
bytes. The details of the attack are provided in Algorithm 3 for AES-192. The attack for AES-256 follows a
similar approach, differing only in the exclusion of key schedule utilization. The attack is depicted in Figure 4.
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Algorithm 2 MiTM attack with constant guessing in Section 6 on 6-round AES-192 with 16 CP
Input: Plaintext and ciphertext pairs (Pk, Ck) for k = 1, . . . , 16
The table, T , for ∆SR4[0, 4] , is empty for initialization
for each guess of RK6 do

Compute MC−1(RK5)[0, 13]) from RK6 using key schedule
for each guess of MC−1(RK5)[7, 10] do

Load MC−1(RK5)[0, 13]) in the j th row of the table T where j is the guessed subkey value
for each ciphertext pair (Ci, Ci+1) do

Compute MC−1
5 [0, 7, 10, 13] for Ci and Ci+1 using RK6

Compute ∆MC−1
4 [0, 4, 8, 12] using MC−1

5 [0, 7, 10, 13] and MC−1(RK5)[0, 7, 10, 13])
Deduce ∆SR4[0, 4] and load it with Pi as ∆SR4[0, 4]i in the j th row of the table T where j is the guessed
subkey value

end for
Sort T with respect to ∆SR4[0, 4]i in lexicographic order keeping its row numbers

end for
end for
for each guess of RK0[0] and MC−1(RK1)[0] do

for each guess of SB1[5, 10, 15]⊕MC−1(RK1)[5, 10, 15] do
for each guess of C1 , C2 , C3 , and C4 do

for each guess of B1 , B2 , B3 , and B4 do
for each guess of RK3[0, 5] do

Initialize the list L as empty set
for each plaintext pair (Pi, Pi+1) do

Compute SR2[0, 7, 10, 13] for (Pi, Pi+1) using RK0[0] , MC−1(RK1)[0] , and SB1[5, 10, 15] ⊕
MC−1(RK1)[5, 10, 15]
Compute SR3[0, 4, 8, 12] and SR3[1, 5, 9, 13] for Pi and Pi+1 using SR2[0, 7, 10, 13] , Cℓ , and Bℓ for
ℓ = 1, 2, 3, 4
Compute MC3[0] using SR3[0, 4, 8, 12] for Pi and Pi+1

Compute MC3[5] using SR3[1, 5, 9, 13] for Pi and Pi+1

Compute SR4[0, 4] for Pi and Pi+1 using MC3[0, 5] and RK3[0, 5]
Compute ∆SR4[0, 4] using SR4[0, 4] for Pi and Pi+1 ; and add it as ∆SR4[0, 4]i to the list L

end for
if L is equal to one of the rows of T then

Print the row number of T as a candidate for the correct subkey RK6 and MC−1(RK5)[7, 10]
end if

end for
end for

end for
end for

end for
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Figure 4. 7-round meet in the middle attack.

The process in the decryption side is almost the same as in Section 6 for each guess of RK0[5]⊕RK0[10]

and RK0[5]⊕RK0[15] . It is enough to use 63 differences since the probability that all the 63 differences coincides
from encryption and decryption directions is 2−8·63 = 2−504 . Thus, the time complexity is 64 · 2160 = 2166 and
64 ·2144 = 2150 2-round decryptions for AES-256 and AES-192, respectively, for each guess in the whitening key.
We compute the differences for 2120 secret parameters in the encryption direction and then 2120 table look-ups.
Thus, the complexity in the decryption side is dominant and repeated 216 times since we have 216 guesses
for RK0[5] ⊕ RK0[10] and RK0[5] ⊕ RK0[15] . Therefore, the time complexities are 2182 and 2166 two-round
decryptions for AES-256 and AES-192, respectively. The data complexity is 224 CP, which is the minimum
among all the attacks on 7-round AES. We use 63 differences instead of 15 as in the previous section, with each
difference representing one byte instead of two. Specifically, the memory complexity is twice that of the attack
in Section 6, as the data is doubled, and we can reuse the memory for each guess of RK0[5] ⊕ RK0[10] and
RK0[5]⊕RK0[15] .

We can improve the data complexity further. Consider one structure of the plaintext set where P [10, 15]

takes all the 216 values and the remaining bytes are all kept constant. We can first make a guess for
RK0[10]⊕RK0[15] and select 28 plaintexts among 216 of them such that P [10]⊕RK0[10] = P [15]⊕RK0[15].

Then, the inputs of the first column of the first MC operation are of the form [c, c, α, α] where c stands
for a constant and α takes all the 28 values. After the MC operation, the first column will be of the form
[c, β1, β2, β3] where βi s are also permutations [48]. That is, the first byte will be constant for all 28 plaintexts.
Therefore, we must guess 3 subkey bytes in the second round; 3 equivalent subkey bytes and 9-byte constants
(MC−1

2 [1, 9, 13, 2, 6, 14, 3, 11, 15]) in the third round; and 4-byte constants in the fourth round in the encryption
direction to recover MC4[0] . These four constants are 2SR3[0]⊕MC−1(RK3)[0] , SR3[13]⊕MC−1(RK3)[5] ,
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Algorithm 3 Integral-MiTM attack with constant guessing in Section 7 on 7-round AES-192 with 224 CP
Input: Plaintext and ciphertext pairs (Pk, Ck) for k = 1, . . . , 224

for each guess of RK0[5]⊕RK0[10] and RK0[5]⊕RK0[15] do
Select 64 plaintexts Pi satisfying Pi[5]⊕Pi[10] = RK0[5]⊕RK0[10] and Pi[5]⊕Pi[15] = RK0[5]⊕RK0[15]
for i = 1, . . . , 64
The table, T , for ∆SR5[0, 4] , is empty for initialization
for each guess of RK7 do

Compute MC−1(RK6[0, 13]) from RK7 using key schedule
for each guess of MC−1(RK6[7, 10] do

Load MC−1(RK6[0, 13]) in the j th row of the table T where j is the guessed subkey value
for each ciphertext pair (Ci, Ci+1) for i = 1, . . . , 63 do

Compute MC−1
6 [0, 7, 10, 13] for Ci and Ci+1 using RK7

Compute ∆MC−1
5 [0, 4, 8, 12] using MC−1

6 [0, 7, 10, 13] and MC−1(RK6[0, 7, 10, 13])
Deduce ∆SR5[0, 4] and load it with Pi as ∆SR5[0, 4]i in the j th row of the table T where j is
the guessed subkey value

end for
Sort T with respect to ∆SR5[0, 4]i in lexicographic order keeping its row numbers

end for
end for
for each subkey guess of RK1[0] , RK1[12] , and MC−1

2 (RK2)[0, 15] do
for each constant guess of MC−1

2 [4, 8, 12, 3, 7, 11] do
for each constant guess of F1 , F2 , F3 , and F4 do

for each guess of RK4[0] do
Initialize the list L as empty set
for each plaintext pair (Pi, Pi+1) do

Compute SB3[0, 4, 8, 12] using RK1[0] and MC−1
2 [4, 8, 12]

Compute SB3[3, 7, 11, 15] using RK1[12] and MC−1
2 [3, 7, 11]

Compute SB4[0, 5, 10, 15] using SB3[0, 4, 8, 12] , SB3[3, 7, 11, 15] , and Fℓ for ℓ = 1, 2, 3, 4 .
Compute MC4[0] using SB4[0, 5, 10, 15]
Compute SR5[0] using MC4[0] and RK4[0]
Deduce the difference ∆SR5[0]i for Pi and Pi+1

Add ∆SR4[0, 4]i to the list L
end for
if L is equal to one of the rows of T then

Print the row number of T as a candidate for the correct subkey RK7 and MC−1(RK6[7, 10])
end if

end for
end for

end for
end for

end for
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2SR3[10]⊕MC−1(RK3)[10] , and SR3[7]⊕MC−1(RK3)[15] . In summary, adding RK4[0] in our guesses, we
need to guess 152 + 8 = 160 bits to recover SR5[0] . This time, it is enough to use 63 differences and the time
complexity of preparing the table in the decryption side is 64 · 2160 = 2166 2-round decryptions for AES-256
for each guess of RK0[10]⊕RK0[15] . We compute the differences for 2160 secret parameters in the encryption
direction and then 2160 table look-ups. Hence, the dominant part is 2166+8 = 2174 2-round decryptions for
AES-256, which is slightly below the cost of 2173 encryptions. On the other hand, the dominant part of the
time complexity for AES-192 is 2168 table look-ups which consists of approximately 2175 vector comparisons.
This is equivalent to around 2171 encryptions. The data complexity is only 216 CP. The memory complexity
does not change.

8. Conclusion
We have studied the low data attacks on 6-round and 7-round AES and achieved new records. We have shown
that only 16 CP is enough to recover the key faster than the exhaustive search for 6-round AES-192 and AES-
256. We also have mounted an attack using 216 CP on 7-round AES-256 and AES-192. We have achieved these
low data complexities by utilizing constant guessing techniques and combining the MiTM attacks with square
and integral attacks. The constant guessing technique can be utilized to improve the attacks based on pairs of
inputs through passive words such as ID attacks, differential attacks, truncated differential attacks, boomerang
attacks etc. When these attacks are mounted on word-oriented square type algorithms, it is possible to extend
them to further rounds through the constant guessing technique to achieve the best complexity records.

A new SPN construction technique with a new linear transformation layer method providing ”second
degree diffusion” is embodied on a new cipher called DIZY [50]. The SPNs having such diffusion layers are not
word-oriented and hence the constant guessing technique will probably not work on such ciphers.

We think that our attacks do not work for the full round and hence do not threaten the security of
AES. Moreover, mounting a square-ID attack on 6-round AES-128 minimizing data is left as open question.
The perfectly fast diffusion property of the linear layer of AES, consisting of the SR and the MC operations,
hinders the extension of our attacks to 8 or more rounds with the existing data amounts. As one corollary of
this fast diffusion, we conjecture that there is no attack faster than the brute force on AES-128 with more than
5 rounds if there are only 16 blocks of plaintexts or ciphertexts available.
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