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Abstract: Domain generalization (DG) techniques strive to attain the ability to generalize to an unfamiliar target
domain solely based on training data originating from the source domains. Despite the increasing attention given to
learning from multiple training domains through the application of various forms of invariance across those domains,
the enhancements observed in comparison to ERM are nearly insignificant under specified evaluation rules. In this
paper, we demonstrate that the disentanglement of spurious and invariant features is a challenging task in conventional
training since ERM simply minimizes the loss and does not exploit invariance among domains. To address this issue,
we introduce an effective method called specific domain training (SDT), which detects the spurious features and makes
them more discernible. By exploiting a masking strategy and weight averaging, it decreases their harmful effects. We
provide theoretical and experimental evidence to show the effectiveness of SDT for out-of-distribution generalization.
Notably, SDT achieves comparable results to SWAD, the state of the art in DomainBed benchmarks.
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1. Introduction
Machine learning algorithms typically assume that the training data and the test data originate from a shared
underlying distribution. This assumption poses a fundamental problem when data comes from different distri-
butions and domains during the training phase, as well as when encountering new, unseen distributions at test
time, i.e., out-of-distribution (OoD) data. Empirical risk minimization (ERM) [2] forces the model to exploit all
features, whether they are invariant or spurious, in order to reduce the training error. This can lead to errors
in new environments when spurious features vary notably.

Learning invariances across domains has been the primary approach in out-of-domain generalization.
Most of these works focus on detecting invariant features, such as domain adversarial neural networks [3],
correlation alignment (CORAL) [4], and maximum mean discrepancy (MMD) for domain generalization [5].
Invariant risk minimization is another line of research that involves learning intermediate features in such
a way that there is an invariant predictor across domains. Recently, newer approaches have been explored
to identify invariance across domain-level gradients rather than features. Fish [6] increases the interdomain
gradient products, Fishr aligns the covariances of gradients at the domain level, and AND mask [7] updates
weights when domain-level gradients have the same direction.

Domain generalization methods primarily focus on identifying invariant features, but they overlook a
crucial aspect: neural networks tend to learn simple features over complex ones, even if the predictive power is

lower [8, 9]. This phenomenon poses a challenge in detecting complex invariant features [10, 11]. In the domain
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generalization (DG) setting, it is assumed that each training domain contains both spurious and invariant
features. Spurious features exhibit high predictive power for a specific domain, but this predictivity diminishes
significantly when applied to samples from other domains. The prevalence of these spurious features in training
domains is a key factor contributing to the limited generalization to new test domains in existing DG methods.

To address this issue, specific domain training (SDT) pursues two objectives: firstly, it aids the model in
discerning spurious features. Unlike classical empirical risk minimization (ERM) and other DG methods that
sample from all training domains at each iteration, SDT employs specific domain sampling for some iterations.
This enables the model to identify predictive features unique to a specific domain, with corresponding weights
receiving increased emphasis. The dynamics of these weights during specific domain training help distinguish
between spurious weights (high gradients, significant changes when the training domain switches) and invariant
weights (low gradients, relatively constant through domain changes).

To achieve the second objective of suppressing spurious features, SDT employs two strategies: 1) a
masking strategy and 2) variance-aware stochastic weight averaging (SWA). While masking strategies have
been used in previous DG works [7, 12], SDT introduces a more advanced approach. It adjusts corresponding
weights based on agreement across domain-level gradients, preventing catastrophic failures observed in previous
methods for some out-of-distribution (OOD) tasks. The second strategy involves leveraging an ensemble method,
specifically SWA [13], in the DG setting to harness knowledge from different domains. While ensemble methods
are known to be beneficial in DG tasks, SDT’s variance-aware SWA uses information from training domains to
mitigate the impact of spurious features. It updates weights based on the agreement of domain-level gradients,

reducing the contribution of spurious weights with high domain-level gradient variances in the weight averaging
process.

We summarize our contributions as follows:

e We present a novel method named SDT designed specifically for distinguishing between model weights

related to spurious and invariant features.

e Our approach employs a masking strategy and variance-aware weight averaging technique to effectively

identify and prevent excessive updates to spurious weights.

e« We provide both theoretical principles and empirical findings to substantiate the effectiveness of our
hypothesis.

e Our empirical results, obtained from the DomainBed benchmark, validate our claims using real-world
datasets. Specifically, our method improves accuracy in PACS, VLCS, and Terralncognita by 0.3pp,
0.6pp, and 1.8pp, respectively, when compared to the previous state-of-the-art method [1].

2. Related work
Methods for deep domain generalization can typically be categorized into three groups: domain alignment,
metalearning, and data augmentation. Ensemble methods have also been shown to be effective in domain

generalization. Our approach is closely related to domain alignment and ensemble methods.

2.1. Domain alignment

Domain alignment stands out as the most intuitive method, extensively explored in the context of domain

adaptation (DA) problems. The objective is to learn latent representations that exhibit similar distributions
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across various domains [4-6, 14]. The work in [3] introduces domain adversarial neural networks (DANN), a
domain adaptation (DA) technique that leverages generative adversarial networks (GANs) [15]. DANN strives
to learn a feature representation that aligns across diverse training domains. The work in [5] utilizes GANs
and maximum mean discrepancy (MMD) [16] to align feature distributions across domains. The work in [17]
employs clustering methods to acquire domain-invariant features, even in scenarios where environments are not
explicitly specified. Both [4] and [18] align the feature covariance, focusing on matching second-order statistics
across various training domains within a certain representation layer. The work in [19] introduces invariant
risk minimization (IRM), a method that aims to learn an intermediary representation. This representation
ensures that the optimal classifiers for all domains, built upon this representation, are identical. The work in
[20] suggests an approximation to the invariant risk minimization (IRM) problem. This approximation involves

minimizing the variance of risk averages among different domains.

2.2. Gradient alignment

Gradient alignment is a recent line of work that focuses on aligning the gradients of the loss function concerning
the model’s weights 0 rather than aligning features among domains. This approach emphasizes two key aspects.
First, ensuring similarity in the distributions of gradients at the domain level is crucial for fostering shared
properties across domains in deep neural networks (DNNs). Second, gradients are considered to be more
expressive and richer compared to features, motivating their use in domain alignment strategies. In particular,
it has been demonstrated that gradients exhibit a better ability to cluster inputs that are semantically close
[21]. Several studies, including [22-25], have shown that neural networks (NNs) often learn superficial features
and prioritize low-level statistical patterns over capturing meaningful features and sophisticated abstractions.
Therefore, gradient alignment is considered a potential approach to partially mitigate the challenge of poor
out-of-domain performance in neural networks. The work in [26] proposes a method where representations
associated with higher gradients at each epoch are discarded, and the model is compelled to make predictions
using the remaining information. Notably, this approach does not leverage any knowledge about the partitions
of source domains. On the contrary, SDT encourages the model to advertently intensify the spurious gradients
and then avoid the weight updates corresponding to those spurious gradients. The authors in [6, 7, 27, 28] try
to find a shared minima among domains by tackling the domain-level gradients. Specifically, when we have
domain set E = {A, B}, IGA [27] minimizes || ga — gp ||3; Fishr matches gradient covariances in a domain-
level manner. AND-mask [7] updates the weights only when g4 and gp have the same direction. Our gradient
alignment is similar to this work with a difference that we compare the gradients of current training domain
with the average of gradients of the rest of training domains, which is a relaxed version of AND-mask. Fish [6]

increases ga.gp. In Section 4.3, we show that SDT also increases the gradient inner products.

2.3. Ensemble methods

Ensemble methods in deep learning have gained prominence for their effectiveness in improving model perfor-
mance, robustness, and generalization. Approaches such as model averaging, stacking, and snapshot ensembles
have demonstrated success in various applications. Notable studies include snapshot ensembles [43, 44], show-
casing the benefits of ensembling models at different training stages. Dropout ensembles [45, 46], leverage
dropout regularization for uncertainty estimation, contributing to enhanced model reliability. Bayesian en-

semble methods [47-49] provide a probabilistic framework for combining predictions while considering model
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uncertainties. Ensemble distillation methods [50-52] address the performance gap between large and small
models through ensemble-based techniques. Temporal ensembles [53] consider predictions over different time
windows or segments, particularly useful for time-series data. These techniques have been applied across do-
mains such as computer vision, natural language processing, and speech recognition, with ensemble methods
consistently proving valuable in addressing challenges and improving overall model performance. A significant
finding is outlined in [13], illustrating that the practice of averaging weights periodically throughout training,
whether with a fixed or varying learning rate, results in enhanced generalization compared to standard training
methods. Additionally, the study reveals that this procedure, known as stochastic weight averaging (SWA),
leads to the discovery of much flatter solutions than those obtained with SGD. In this paper, we modify the SWA
method such that the model weight averaging considers interdomain gradient variances for weight components,

so weights with higher interdomain gradient variances contribute less in SWA model at each iteration.

3. Methodology

Consider a training dataset Dy, containing k domains Dy, = {D;, Ds, ..., Dk}, where each domain k is defined
by a dataset Dy = {(z;,y;)};*, containing data drawn i.i.d from some probability distribution. Additionally,
there is a test dataset Dy with T domains {Dg41,..., Dky7}, where Dy N Dy, = (). The overarching goal
of domain generalization is to train a model with parameters € in such a way that it generalizes effectively to

previously unseen domains in the test dataset D;.. The objective is to achieve the following:
arggnin EDNDf,e]E(J;,y)ND [l((xa y); 9)]’ (1)

where [(x,y : ) is the loss of model 6 on (x,y).

ERM minimizes the average loss over Dy,., not considering the differences across the training domains:
Lerym(Dir;0) = Epap,, B y)~pl((2,y);0), (2)

The ERM objective solely focuses on minimizing the loss of the training dataset without taking into
account the invariances among different domains. To illustrate this, we present a simple linear example, adapted
from [6], to highlight ERM’s limited consideration of invariant features. Subsequently, we examine how weight

gradients corresponding to invariant and spurious features behave during separate training runs of ERM and
SDT.

3.1. ERM reluctance to invariant features: a linear case

Consider a binary classification task, where data (x,y) € B* x B and a data instance is « = [f1, fa, f3, f4] with
label y. Training and test datasets are sampled form {D;, Dy} and D3 distributions, respectively. A linear
model, Wz + b = y, where W € R*, b € R, is trained on the training dataset and tested on the test data.
Data setup for each domain is illustrated in Figure 1.

According to Figure 1, f1 is invariant feature, since correlation between f; and y is the same for all
domains. However, for features fo, f3 and f4, the correlation changes for each domain, so they are called
spurious features. For each domain, there exists a high predictive spurious feature, which has higher correlation
with y than invariant feature f;. For example, using only f2 attains 97% on D1. However, using only fi

gains 93% on D;.
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P(x1)= 0.5 P(x2) = 0.4 P(x3) = 0.5
D1 0 ‘o ‘0 ‘o ‘ ’1 ‘1 ‘o ‘o ‘ | ‘o ‘o 0 ‘
N 0 O O O O O O N O
D3 |0 ‘o ‘0 ’o ‘ ’| ‘o ‘0 ‘1 ‘ i ‘o Jo 0 J
M 2 1B R B u M 2 B
y=0 y=1 P(y=0)=0.7

Figure 1. There are 3 kinds of data as z1,z2, and z3, each shown in one column. The first column contains data
xz1 =[0,0,0,0] and y = 0 for all domains. In the second column, x2 changes for each domain, y is always 1. In the
third column, 3 = [1,0,0,0] and y = 1 for 30% of data of type 3 and y = 0 for 70% of this data type. Type 1, 2, and
3 contain 50%, 40%, and 10% of data for each domain.

The poor performance of ERM on test domain has been shown in Table 1. As illustrated in the table for
W parameters, ERM assigns higher weight for spurious features fo and f3, while comparatively assigning less

weight to the invariant feature.

Table 1. Performance comparison on the linear example.

Method Train acc. Test acc. \%W%
ERM 97% 57% [3.9,4.3,4.3,0.0]
SDT 93% 93% [3.4,3.0,3.0,—0.1]

3.2. Domain-specific training for disentangling spurious and invariant features

To address the pitfall of ERM in learning spurious features, we introduce a straightforward yet highly effective
method for distinguishing between spurious and invariant features. We then apply mechanisms to reinforce
the weights corresponding to invariant features while weakening the weights associated with spurious features
during each training iteration. In this approach, we train one specific domain intensively for several iterations
and then switch to the next domain, continuing this process until the end of training. Intuitively, when we
train on one domain for a number of iterations, the weights corresponding to the spurious features of that
domain become stronger (with an increase in absolute value). However, when we switch to the next domain,

the absolute value of these weights stops increasing and may even start to decrease.

To validate our approach, we apply specific domain training (SDT) to the previous linear example and
track the gradients of the corresponding weights as indicators of change for each weight at each training step.
As depicted in Figure 2, during SDT training, spurious features exhibit the largest gradients at each training
interval. For instance, during the interval [0,500], when training on D;, the gradient with respect to feature
f2, which is highly predictive for D7, exhibits the largest gradient value. During the second interval, when
training on Do, feature f3, which is spurious for D, has the largest gradient value. In contrast, in ERM

training, gradients for all weights change smoothly and are challenging to discriminate easily.
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Figure 2. Absolute gradient of loss w.r.t W = [w1, w2, ws] shown as g1, g2, g3.

3.3. The spurious and invariant features model
In this context, a set of definitions is introduced to formally establish the concepts of ”invariant” and "spurious”
features. These definitions serve as the foundation for presenting theoretical results.

Setup. The study focuses on binary classification, where (z,y) € X x {£1} are sampled from Dy, =
{D1, Dy, ..., Dg}. The objective is to train a classifier C': X — {£1}, where X represents the input space, to
predict a label y given an input x.

A feature is formally defined as a function that maps from the input space X to the real numbers. The
set of all features is denoted as F' = {f : X — R}. The features within the set F' are treated such that they
are shifted and scaled to have a zero mean and a unit variance, to ensure scale invariance in the upcoming
definitions.

Invariant features: We call a feature f an invariant feature across all D € Dy, , if it is correlated with
the true label such that

VD; € DtraE(x,y)NDi [yf(l’)] = p. (3)

We consider positive correlations here (p > 0).

Spurious features: For a given distribution D, we designate a feature f a spurious feature of D, if
it is correlated with the true label such that

E(m»y)'\’Ds [yf(x)] =p A VD; € Dt’l‘7E(I,y)NDi [yf(x)} <p- (4)

Standard training. Consider a classifier C' = (F,w,b) which includes a set of features F', weight vector
w and an scalar bias b. Training of the classifier involves minimizing a loss function through ERM. The goal
is to minimize the loss by modifying the correlation between the weighted combination of features and the
corresponding labels. We employ a straightforward loss function in our equation; however, it can be easily

extended to more practical loss functions, such as hinge or logistic loss.

L@(Z‘, y) = _]EDND”E(I,y)ND[y'(b + Z Wff(l‘»] (5>
feF

Theorem 1 Consider Dy = {D1, D2} and feature f is a spurious feature for Dy i.e. Eq yp,[y.f(2)] = p1
and B )~p,[y-f(x)] = p2, where p1 > pa and wy is corresponding weight for feature f in classifier c. Then

oL oL
|E(z,y)~DluD2[aT)f]t - E(w,y)~D1UD2[87wf]t+l| =0, (6)
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oL oL
Ewy~ni 53— = E@y~ns [z—" = p1 — po. 7
N e R BV oo A VAR (7)
Theorem 1 states that when we train the model using ERM, the gradient (?TLf remains constant at each

pP1tp2
2

step, with a value of — . In contrast, when applying SDT with one-step intervals, at each step, we switch
between domains Dy, Dy. Consequently, the gradient value oscillates between p; and ps. As a result, the gap

for spurious gradients in SDT is equal to |p; — p2|, while it remains zero for ERM at each training step.

3.4. SDT components to reduce the effects of spurious features

By exclusively training each domain for a certain number of steps, we allow the model to differentiate between
spurious and invariant weights. In this section, we introduce two methods: the masking strategy and stochastic
weight averaging (SWA), designed to prevent the excessive growth of weights associated with detected spurious

features.
Masking strategy: In the process of disentangling spurious and invariant weights through SDT, we

utilize the masking strategy to mitigate the influence of spurious features. Let us consider the current training
domain in SDT as s, and denote the rest of the domains as 5. At each training step, we calculate the mean loss
gradient with respect to the corresponding weight component j (note that this method is applied only to the

final linear classifier) for both the current domain s and the rest of the domains 5. These gradients are denoted
as [VLs]j and % Y e €35[VL.|;, respectively. A weight component j is considered invariant at iteration ¢
if the gradients [VLs]j and % > e €3[VL.]; have the same sign. Otherwise, it is categorized as a spurious
weight. For invariant weights, we update them with the gradient calculated for domain s, which is [VL,];. In
the case of spurious weights, some previous methods, like [7], do not update them at all, or the method in [12]
zeroes out the weight. However, these methods can be restrictive and may lead to weights receiving no further
gradients, causing the network to become stuck and perform poorly.

In our approach, we update the weight associated with the gradient [VL,]; in a direction that brings the
weight closer to zero, i.e. |®§+1| < |@§| This reduces the impact of spurious weight ©; on the classification.
Notably, although masking has shown limited effectiveness in previous works like [7] and [32] in real-world
datasets, it notably improves the performance of SDT in our empirical experiments. This improvement could
be attributed to the fact that SDT excels at distinguishing between invariant and spurious weights compared
to ERM; therefore, applying masking helps further prevent the growth of these spurious weights.

Variance aware stochastic weight averaging: The SWA method, as introduced in [13], is based
on averaging model weights 6 at some checkpoints throughout training. Empirical results presented in [1]
demonstrate that SWA can find flatter minima, leading to better generalization by approximating ensembles
of model weights along the SGD trajectory. It is well-established that finding flatter minima can guarantee
improved generalization performance, as noted in [33]. Consequently, SWA has proven to be beneficial in
domain generalization tasks.

In our model training, we also incorporate SWA to address the instability of training when each domain
is trained individually and to enhance generalization. Within the model weight space Q = wgy,w1,...,wnN,

where N represents the number of training steps, we initiate the sampling of weights at some initial step m
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and continue this process for subsequent steps. During each step ¢, if the loss exceeds a predefined threshold
7, the weight w; is not included in the SWA ensemble wgyq -

To align SWA with SDT and reduce the impact of spurious weights, we calculate the inter-domain gradient
variances for the current batch within each domain d, denoted as v = Vargep(VLg). In the model averaging

process, we leverage these normalized variances to compute the SWA model weights as follows:

19 + naswa
TaAt ®)

eswa =

where n is the number of models used for averaging so far. By doing normalized variances as SWA
coefficients, we encourage the SWA model to give more credit for the weight components, which have less
interdomain gradient variances and hence are more invariant across domains. Algorithm 1 illustrates SDT with
all of its components.

Algorithm 1 Domain-specific training

Inputs: Specific domain interval I, Model weight 8, SWA Model 0,,,, SWA acceptance ratio 7, Normalized
inter-domain gradient variance v.
n=>0
D.=D; \ \ D. is current domain
while not end of training do
for t=1to I do
sample batch d. ~ D,
9e = Ba, | %557
sample batch dz ~ D\ D,

ol(x,y);0
ge = Fel (aey) ]

for w €6 do
if Sign([9c]w) == Sign([gz]w) then
Update w = w — a[gc]w

else
Update w = w — aSign(w)|[gc]wl
end if
end for
if E.gl(x,y) <7 then
0. — y0tnbsuwa
swa — n+1
n=n+1
end if
end for
D, = next_domain()
end while

4. Experiments

We divide our experiments into three parts. First, we show the effectiveness of SDT in learning complex
invariant features by exploiting the synthetic dataset presented in [11]. Then, we compare SDT with other DG

methods on DomainBed benchmark. Finally, an ablation study is conducted to evaluate the effectiveness of
various components of SDT.
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4.1. Effectiveness of SDT in learning invariant complex features

The work in [11] proposes that neural networks have tendency to learn simple features rather than complex
features, although their predictive power may be weaker than complex ones. This phenomenon, which is named
simplicity bias, causes neural networks to learn simple spurious correlations and be reluctant to learn complex
features, which may be invariant among environments and learning them are necessary to have good out of
distribution generalization. In this section, we empirically show the effectiveness of SDT in learning complex
invariant features.

Toy dataset buliding blocks: We borrow the synthetic dataset introduced in [11] to build our train
and test domains. The dataset consists of three one-dimensional data blocks, each containing different patterns:
linear, noisy linear, and k-slabs, as illustrated in Figure 3. Within the linear block, positive examples are
uniformly distributed in the range [0.1,1], while negative examples are uniformly distributed in the range
[—1,—0.1]. In the noisy linear block, characterized by a noise parameter p € [0,1], a fraction 1 — p of points
follows the distribution described in the linear block mentioned earlier. Additionally, a fraction p of the points is
uniformly distributed in the range [—0.1,0.1]. In the k-slab blocks, positive and negative examples are dispersed
among k distinct regions, alternating between positive and negative instances. For linear block, a single linear
classifier can attain accuracy 1 and for noisy linear block, single linear classifier will get 1 — p/2 accuracy.
Finally, for k-slab data block, k—1 linear classifier is needed in order to attain accuracy 1. Hence, linear blocks
are the simplest features and k-slab blocks are more complex and as k increases, the complexity of the data

block increases as well.

Linear Noisy linear 5-slab
H

h s =
i ' i '
-1.0 -0.5 0.0 0.5 1.0 -1.0 4.5 0.0 0.5 1.0 1.0 0.5 0.0 0.5 1.0

D1 (training) D2 (training) D3 (test)
p=0.1 p=09

©

n
e
n

g g . : I
] g

£ £ g

H H H

s H

3_ 3_ 8_
2

8 2 2

o ? k

B h -

Linear coordinate Linear coordinate Linear coordinate

Figure 3. Top row: One-dimensional building blocks. Bottom row: Synthetic two dimensional domains: D; and
Dy are training domains and D3 is test domain. Noise level for noisy linear coordinate is 0.1 for D;, 0.5 for D2 and
0.9 for Ds.

Synthetic domains: Here, we have generated toy domains using synthetic data blocks, as illustrated
above. As depicted in Figure 3, we have designated D; and D, as training domains, while D3 serves as the

test domain. Each domain consists of two-dimensional data blocks. The first dimension within each domain
represents a simpler noisy linear feature, with varying noise levels across domains (spurious feature). The

second dimension encompasses a more complex 5-slab feature, which remains invariant across all domains.
With increasing noise levels in the linear feature, the predictive power of that feature diminishes. In such cases,
the model searches for other predictive features, likely more complex ones, to minimize the loss.

Results:We conducted a binary classification task on the synthetic domains described earlier. In an
ideal domain generalization scenario, we expect the model to exclusively learn the invariant feature (5-slab
feature). However, due to the simplicity bias, the ERM approach predominantly learns the simpler spurious

feature (linear feature). This bias is further exacerbated by the noise level differences between D; and Do
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(0.1 vs. 0.5) and the inherent simplicity of the linear feature compared to the 5-slab feature. As a result, the
contribution of D; is more pronounced in ERM training, leading to an overreliance on domain D; instead of
Ds.

In an ideal domain generalization task, all domains should contribute equally, as they share common
invariant features, and classification should be based on these shared features. In contrast, SDT, which involves
exclusive training of Dy for some iterations, provides the model with more opportunities to extract the 5-slab
feature. The high noise in the linear feature of Dy makes it less predictive, driving the model to rely more on
the 5-slab feature. Table 2 validates this hypothesis by presenting the validation accuracy for each domain and
the test accuracy for the test domain when using both ERM and SDT with a fully connected neural network
(FCN) as our model.

Table 2. Performance comparison on the synthetic dataset.

Method D1 validation acc. D2 validation acc. D3 test acc.
ERM 88% 73% 48%
SDT 7% 74% 63%

We hypothesize that specific domain training exploits more invariant features among domains, as demon-
strated by the experiments on the toy dataset. To empirically support this hypothesis, we compare the reliance
of SDT and ERM on input features using the same domain settings as in our toy dataset experiment. We cal-
culate the absolute loss gradient with respect to input features for both ERM and SDT. A higher absolute loss
gradient on any feature indicates a stronger correlation of the loss with that feature, signifying that the model
relies more on that feature. As depicted in Figure 4, ERM predominantly relies on the first spurious feature. In
contrast, SDT elicits the second invariant and complex feature. This difference arises because exclusive training
of domain Dy compels the model to extract more predictive features. Furthermore, since the first feature of
D5 is not sufficiently predictive, the model relies more on the second feature, which is more informative for

classification.
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Figure 4. Absolute gradient of loss w.r.t each of the input features of toy dataset. x; is the linear, noisy, and spurious
feature while z2 is 5-slab invariant feature. g1 and go are the gradient of loss w.r.t z1 and zs, respectively.

4.2. Comparison to other methods
In this section, we initially introduce the DomainBed benchmark, its datasets, and evaluation protocols.
Subsequently, we conduct a comparative analysis of our method with other DG approaches.

Benchmark datasets: We evaluate our method on five famous benchmarks on domain generalization

task and compare its results with other state-of-the-art methods in DG. PACS [34] comprises 9991 examples
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and 7 classes collected from 4 domains: art, cartoons, photos, and sketches. VLCS [35] includes four domains:
Caltech101, LabelMe, SUNQ9, and VOC2007, containing 10,729 images and 5 classes. OfficecHome [36] consists
of 4 domains: art, clipart, product, and real, encompassing 15,588 images and 65 classes. Terralncognita [37]
includes 24,788 images and 10 classes with 4 domains: L100, L38, 143, and L46. DomainNet [38] encompasses

six domains: clipart, infograph, painting, quickdraw, real, and sketch with 586,575 images and 345 classes.

Implementation details: For an equitable comparison among domain generalization (DG) methods, we
adhere to the training and evaluation guidelines outlined in [39]. This includes incorporating data augmentation,
conducting hyperparameter searches, and employing dataset splits. However, the evaluation protocol in [39]
is computationally intensive. It performs a random search comprising 20 trials across the hyperparameter
distribution for each algorithm and test environment. To optimize computational efficiency, we simplify the
search space of our approach, by setting some hyperparameters such as weight decay and dropout to a default
value 0. All performance metrics are evaluated through leave-one-domain-out cross-validation. Specifically, we
designate one domain as the target (test) domain, with the remaining domains serving as training domains.
In the DomainBed [39] framework, which standardizes experimental settings for DG algorithms, a hold-out
validation strategy is utilized for consistency in comparing with other DG methods. Nevertheless, in our
preliminary experiments, we have also employed 3- and 5-fold cross validation. Nonetheless, the outcomes did
not indicate a notable difference. Of the training domains, 80% are used for training, while the remaining 20%

are employed for validation and model selection.

In the context of weight initialization, we utilize the pretrained ResNet-50 [31] trained on ImageNet [40]
as the initial weight. Additionally, batch normalization statistics are frozen throughout the training process.
For optimization, we utilize the Adam optimizer with a learning rate of 5¢ — 5. Dropout probability and weight
decay is set to 0. For each training iteration, we build up mini-batches of size 32 of specific domain. Total
number of iterations differ for each dataset: It is set to 8000, 2000, 8000, 15000, 25000 for PACS, VLCS,
OfficeHome, Terralncognita, and DomainNet respectively. Averaging start iteration is selected based on the
convergence iterations of each dataset. Therefore, it is set to 1000 for PACS, VLCS, and OfficeHome and 10000
for Terralncognita and DomainNet. SWA acceptance threshold is searched in {0,0.1,0.2,0.3,0.4,0.5} in PACS
dataset and the searched value used in all other datasets. Finally, domain training interval is set to 100 for
first 1000 iterations, then increased to 200 until 4000 iterations, and 400 for the end of iterations.

Infrastructures: Each experiment is carried out using a standalone NVIDIA GeForce GTX 1080, along
with Python 3.10.9, PyTorch 1.12.1, Torchvision 0.8.2, and CUDA 12.1.

Results: For each domain, we conduct three model training sessions with random data splits and report
the average test results. The results presented in Table 3 are borrowed from SWAD [1] and [14]. In these tables,
the results for all other methods are obtained by training with a ResNet-50 backbone using the same training
and validation protocols as described above. DST demonstrates superior performance compared to SWAD in
PACS, VLCS, and Terralncognita by 0.5%, 0.5%, and 1.8%, respectively. For the remaining datasets, its
performance is slightly lower than SWAD by small margins.
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Table 3. Out-of-domain accuracies of domain-specific training (ours) with other DG methods on five benchmarks.

Dataset ERM [2] CORAL [4] SagNet [41] RSC [26] AND-mask [7] Sand-mask [32] Fishr [14] SWAD [1] SDT

PACS 85.5 86.2 86.3 85.2 84.4 84.6 85.5 88.1 88.6 £0.3
VLCS 77.5 78.8 77.8 77.1 78.1 77.4 77.8 79.1 79.6 £0.4
HomeOffice 66.5 68.7 68.1 65.5 65.6 65.8 67.8 70.6 70.2 £0.2
Terralnc 46.1 47.7 48.6 46.6 44.6 42.9 474 50.0 51.8 £0.6
DomainNet 40.9 41.5 40.3 38.9 37.2 32.1 41.7 46.5 45.4 £0.6
Avg. 63.3 64.5 64.2 62.7 62.0 60.6 64.0 66.9 67.1

PACS - Art 84.7 88.3 87.4 85.4 85.3 85.8 88.4 89.3 89.3 £0.4
PACS - Cartoon 80.8 80.0 80.7 79.7 79.2 79.2 78.7 83.4 83.2 £0.3
PACS - Photo 97.2 97.5 97.1 97.6 96.9 96.3 97.0 97.3 97.2 £0.2
PACS - Sketch 79.3 78.8 80.0 78.2 76.2 76.9 77.8 82.5 84.6 £0.4
VLCS - Caltech 97.7 98.3 97.9 97.9 97.8 98.5 98.9 98.8 97.6 £0.1
VLCS - LabelMe 64.3 66.1 64.5 62.5 64.3 63.6 64.0 63.3 63.3 £0.7
VLCS - Sun09 73.4 73.4 714 72.3 73.5 70.4 71.5 75.3 78.7 £0.5
VLCS - Voc2007 74.6 77.5 77.5 75.6 76.8 7.1 76.8 79.2 78.8 £0.6
OfficeHome - Art 61.3 65.3 63.4 60.7 59.5 60.3 62.4 66.1 65.2 £0.4
OfficeHome - Clipart 52.4 54.4 54.8 51.4 51.7 53.3 54.4 57.7 58.5 +£0.5
OfficeHome - Product 75.8 76.5 75.8 74.8 73.9 73.5 76.2 78.4 77.6 £0.1
OfficeHome - Photo 76.6 78.4 78.3 75.1 77.1 76.2 78.3 80.2 79.5 £0.3
Terralnc - L100 54.3 51.6 53.0 50.2 50.0 45.7 50.2 55.4 60.8 £0.2
Terralnc - L38 42.5 42.2 43.0 39.2 40.2 31.6 43.9 44.9 46.1 £0.7
Terralnc - L43 55.6 57.0 57.9 56.3 53.3 55.1 55.7 59.7 58.5 £0.3
Terralnc - 146 38.8 39.8 40.4 40.8 34.8 39.0 39.8 39.9 41.8 +0.3
DomainNet - Clip 63.0 59.2 57.7 55.0 52.3 43.8 58.2 66.0 64.5 £0.2
DomainNet - Info 21.2 19.7 19.0 18.3 16.6 14.8 20.2 22.4 22.3 £0.4
DomainNet - Paint 50.1 46.6 45.3 44.4 41.6 38.2 47.7 53.5 52.2 £0.1
DomainNet - Quick 13.9 13.4 12.7 12.2 11.3 9.0 12.7 16.1 14.2 +0.3
DomainNet - Real 63.7 59.8 58.1 55.7 55.8 47.0 60.3 65.8 63.9 £0.4
DomainNet - Sketch 52.0 50.1 48.8 47.8 45.4 39.9 50.8 55.5 55.3 £0.2

As presented in Table 3, our method outperforms SWAD in some domains by a magnificent margin. In
PACS dataset, for sketch domain, we get 2.1pp performance gain, in VLCS dataset, for Sun09 domain, we get
3.3pp increase in accuracy, and in Terralncognita, for L100 domain, we achieve 5.4pp performance gain. We
conjecture that for these test domains, our method avoids higher reliance on one training domain with spurious

features and elicit more invariant features among all training domains.

4.3. Ablation study

In this section, we do an ablation study on PACS dataset with the same protocols and implementation details
as DomainBed. Specifically, we investigate in-domain losses, domain level gradient variances and gradient
product. Then, we evaluate effectiveness of SDT components individually. Finally, we analyze SDT by varying
its hyperparameters.

In-domain losses: SDT does not decrease in-domain losses; however, it leads to an improvement in
out-of-domain loss. In Figure 5a, we present the validation losses obtained from training on the PACS dataset
using both ERM and SDT. In this dataset, Sketch serves as the test domain, while Art, Cartoon, and Photo
are the training domains. As depicted in Figure 5a, the average in-domain losses of SDT are higher than
those of ERM for all the domains. However, our method shows a drop in test loss. This suggests that SDT
is better at eliciting invariant features across domains. The underlying reason is that through specific domain
training, the model avoids overfitting to the training domains. Additionally, with the aid of the masking strategy
and variance-aware weight averaging, it attempts to learn more invariant features that generalize well across

domains.
Variances among domain gradients: As demonstrated in the linear example and the theoretical

evidence presented above, SDT outperforms standard training in the disentanglement of invariant and spurious
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features. We further investigate this phenomenon using the real-world PACS dataset. As shown in Figure 5b,
inter-domain gradient variances in SDT are notably higher compared to ERM. We hypothesize that when the
domain gradient variance for a weight component [6]; is larger, there is a higher likelihood that it represents
a spurious weight. This is because a higher variance suggests that the gradients across domains are dissimilar
either in direction or magnitude. In contrast, in ERM, domain gradient variances for weight components are
generally too small for all weights, making it challenging to distinguish between spurious and invariant weights.

Gradients inner product: In [6], the authors introduce an algorithm called Fish and provide both the-
oretical and experimental evidence demonstrating that Fish aligns with domain-level gradients. To summarize,
let us consider 0 as the current model weight and 6" as a copy of it. In each iteration, Fish samples mini-batches
from each training domain and sequentially updates 9" for each training domain. After completing one pass by
sampling from all training domains, it updates the original model weight 6 using the rule § = 6 + ¢(6 — 9/).
When both the training domain interval and the parameter € are set to 1, SDT behaves similarly to Fish.

We compare the interdomain gradient inner products (GIP) for both ERM and SDT. The GIP is
calculated as the sum of inner products between gradients from any two different training domains in the

classification layer, denoted as ijje ¢Gi-Gj, where ¢ and j represent distinct domains, and G; represents the

mean gradient for a specific domain 4. As illustrated in Figure 5¢, SDT consistently exhibits higher GIP values
compared to ERM throughout the training process. This observation provides further evidence that SDT,
like Fish, aligns with domain-level gradients, indicating its proficiency in extracting more invariant features

compared to ERM.
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Figure 5. Comparison of SDT and ERM in PACS dataset for: (a) in-domain losses, (b) domain gradient variances, and
(c) inner gradient products. Art, Cartoon, and Photo are the training domains and Sketch is the test domain. In (a),
in-domain loss is the average validation loss of training domains. In (b), variances are calculated for the classification
layer of the network. In (c), gradient inner product (GIP) is calculated by sum of inner products for any two training
domains in classification layer.

ERM vs SDT and components: In Table 4, we compare ERM and SDT with the variants by adding
the components discussed in previous sections, i.e. SWA and masking strategy for PACS dataset. We can observe
that SWA has a great impact in increasing the out-of-domain accuracy. Specifically, it increases the accruacy
abut 4.2%. Masking also increases the accuracy about 1.6% compared to pure SDT. However, applying both
masking and SWA has a negligible impact on the accuracy. One reason could be that both of the masking and
SWA try to decrease the spurious features effect, and in this case, SWA dominates masking effect as the results
in Table 4 validate this claim. Comparing ERM and pure SDT in Table 4 shows that pure SDT has 1.2% less
accuracy than ERM. This drop in accuracy is expected since by exclusively training one domain, model learns
the spurious features of that domain intensively. However, it helps the model detect the weights corresponding

to spurious features and exploiting masking and weight averaging avoids these weights to highly affect the
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accuracy. As shown in Table 4, masking has negative impact on accuracy of ERM method. The reason could
be that since in ERM interdomain gradient variances are small, masking is not effective in detecting spurious
weights. SWA is also highly effective in increasing the accuracy of ERM (2.2%), although its impact is still less
pronounced compared to its affect on SDT (4.2%).

Table 4. Comparison of out-of-domain accuracies of SDT and ERM with the component variants on PACS.

Model components Art Cartoon Photo Sketch  Avg.
SDT + SWA + masking 89.3+0.3 83.2+0.4 97.24+0.1 84.5+0.7 88.6
SDT + SWA 89.4+0.4 83.3+£0.6 97.2£0.1 84.1+0.6 88.5
SDT + masking 84.8£1.1 81.3+1.3 97.1£0.2 80.4+0.8 85.9
SDT (pure) 82.6+1.2 79.44+1.1 96.240.3 79.1+£1.4 84.3
ERM + SWA 89.2+0.4 83.1+£0.3 97.3+0.1 81.4+0.8 87.7
ERM + masking 84.1£0.3 80.3+£0.5 97.1£0.2 79.44+0.8 85.2
ERM 84.740.4 80.8+0.6 97.2+0.3 79.3+1.0 85.5

SDT intervals: First, we investigate the impact of domain training intervals on the out-of-domain accu-
racies of the PACS dataset. As depicted in Figure 6, we report the accuracies for intervals of 50, 100, 200, 300, 400.
Additionally, we conduct an experiment involving a mixture of intervals, where we initiate training with 100
iterations per domain at the outset and progressively extend the intervals as training proceeds. Our experiments
indicate that the mixture of intervals yields the highest accuracy. We hypothesize that, early in the training
process, as suggested in [42], the model tends to learn easier features before gradually tackling more complex
ones. Consequently, we commence with shorter intervals for each domain and incrementally extend them to
encourage the network to acquire more intricate features over time.

SWA acceptance threshold: We examine the influence of the SWA acceptance threshold on domain
generalization performance. In all our experiments, we assume that if at least half of the training domains meet
the threshold condition, the current model weights will be included in the final SWA model. We conduct training
with thresholds ranging from 0,0.05,0.1,0.15,0.2, and the results are displayed in Figure 6. A threshold of
0 means that the current model will be averaged into the SWA model without any threshold requirement for

mean loss.

5. Discussion and limitations

SDT slightly degrades performance for some domains. Compared to SWAD [1], some domain accuracies
exhibit a slight degradation in SDT, as shown in Table 3. In these cases, we hypothesize that the features in
the test domain are more correlated with a dominant training domain (a domain that contains more easily
learnable predictive features). Therefore, when SDT is applied, the dominant domain contributes less to the
training compared to ERM, resulting in a drop in test accuracy. However, we believe that this decrease in
accuracy is not due to SDT’s inability to learn invariant features. On the contrary, since SDT focuses on
learning more invariant features and because the spurious features of the test and dominant domains are highly
correlated, such degradation in performance can occur.

SDT needs more iterations to converge. Training each domain exclusively at each interval can
cause the model to diverge from the optimal minima in the loss landscape for some intervals, thereby requiring
more iterations for convergence. Conversely, SDT aims to explore more expansive regions in the loss landscape,
and by using the SWA method, it may discover flatter minima among these regions. However, the issue of

late convergence becomes more pronounced when dealing with larger datasets and a higher number of domains.
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For instance, in the DomainNet dataset, despite increasing the number of iterations from 15,000 to 25,000, the
performance, while higher than ERM, still falls short of SWAD [1], as shown in Table 3.
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Figure 6. Out-of-domain accuracy on PACS dataset with varying model hyperparameters.

6. Future scope and practical applications

SDT and other gradient-based techniques discussed in this paper fall under a category of methods aiming to
ensure consistency across domains concerning gradients with respect to #. One limitation of these gradient-
based methods is the per-domain batch averaging of gradients, which leads to the removal of more detailed
statistics. Notably, this averaging eliminates information related to pairwise interactions between gradients
from samples within the same domain. Coral [4], which implements covariance matching across domain feature
representations, demonstrates superior performance across various out-of-distribution (OOD) generalization
tasks. A potential strategy for future research involves applying covariance matching across domain gradients
instead of features. This approach will be explored in subsequent studies. As highlighted in [39], domain
generalization (DG) methods do not significantly enhance classical empirical risk minimization (ERM) since
they lack access to test data. Another avenue for research could involve implementing SDT in test time
adaptation (TTA) methods, where an online batch of test data is available, enabling adaptation before the
inference stage.

SDT and DG methods can be applied to medical imaging tasks, where models need to generalize across
images from different hospitals, medical devices, or populations to ensure robust diagnostic performance. In the
context of autonomous vehicles, DG methods help models adapt to diverse driving conditions, such as different
weather, lighting, and road scenarios, ensuring safe and reliable performance across various environments. In
finance, DG models can generalize across different markets, economic conditions, or financial instruments are
valuable. This is particularly important for tasks like stock price prediction and risk assessment. Models used
for environmental monitoring tasks, such as climate prediction or pollution detection, can benefit from domain

generalization to adapt to different geographical regions, seasons, and data sources.

7. Conclusion

In this paper, we delve into the disentanglement of spurious and invariant features when dealing with domain
generalization tasks involving multiple domains. We argue that standard training methods fall short in properly
extracting invariant features as they primarily focus on minimizing the loss and disregard the invariance among
domains. To address this issue, we introduce specific domain training (SDT), a novel approach that involves
training individual domains exclusively for specific intervals. During the initial stages of each training interval,
the model tends to learn simple spurious features associated with the current training domain. SDT effectively
identifies these spurious features, and through the application of masking strategies and variance-aware weight

averaging, helps the model in avoiding the learning of these unwanted features. We provide both theoretical and
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empirical evidence to highlight the effectiveness of SDT in detecting and suppressing spurious features within

the model. Notably, SDT achieves competitive results when compared to SWAD, the current state-of-the-art

method, on DomainBed benchmarks.
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