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Abstract: This paper presents a fast antenna phase optimization scheme to enable microwave power focusing for breast
cancer hyperthermia. The power focusing is achieved through the maximization of the deposited electric field on the
target malignant tumor tissue. To do so, a malignant breast tumor, the surrounding breast medium, and the skin of the
breast are modeled as a cylindrical structure composed of eccentric cylinders, and electric field distribution is computed
analytically in terms of cylindrical harmonics. This approach minimized the computational cost and simplified the breast
medium model. To ensure applicability across various breast types, the dielectric properties (DPs) of the main cylinder,
symbolizing healthy breast tissue, are averaged from pixel DPs of digital breast phantoms. The hyperthermia problem
is posed as maximizing the total electric field at the central point of the tumor which is simply represented as a vector
sum of complex quantities in terms of antenna phases. That is, one antenna phase is selected as a reference and the
remaining ones are adjusted accordingly. The approach is validated using a circular applicator with eight TMz polarized
line sources surrounding realistic digital breast phantoms. Testing involved eight scenarios using two distinct breast
media. In the optimal scenario, the peak temperature is achieved 1.3 mm away from the focus point.

Key words: Electromagnetics, microwave hyperthermia, antenna phase optimization, inverse problems, breast cancer
treatment

1. Introduction
Microwave hyperthermia (MH) is utilized either as a sole or complementary method in noninvasive breast cancer
treatment [1, 2]. As a sole treatment technique, it aims to selectively elevate the temperature of the malignant
tumor tissue above 42 ◦C to enable cell necrosis on the tumor while maintaining the normal temperature at
the surrounding healthy tissue [3, 4]. As a complementary method to chemotherapy, the application of MH
aims to minimize the hypoxic regions on the malignant tumor by heating the tumor tissue a few degrees, thus
increasing the effectiveness of the chemotherapy drugs [5].

For effective heating, the microwave power and thus the electric field must be concentrated on the
target. Numerous studies have analyzed microwave power focusing for breast cancer hyperthermia using varied
optimization algorithms and applicator configurations. Presented applicators are either equipped with arrays
or individual antennas. Excitation optimization is carried out for subarrays or each antenna, depending on the
hyperthermia applicator configuration. In [6], a breast cancer hyperthermia applicator equipped with linear
antenna arrays is presented. The phases of the arrays were handled as two separate subarrays in which one
array phase is selected as a reference, two array phases are selected as variables, and the remaining phase is
∗Correspondence: burakacar2006@hotmail.com
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represented as the sum of two variable array phases. Rather than using a traditional optimization function, a
relationship between focus location and the antenna phases was established through simulations using a fading
breast model. In [7], a two-step neural network optimization approach is presented for linear and circular
applicators. The network is trained for excitation phases and next it is trained for the excitation amplitudes.
This approach effectively optimizes excitation values for microwave energy focusing in the breast medium.
Despite proposing a time- and cost-effective method to generate a large amount of data, the training time
of the neural network increases with the number of antennas. Another study proposed optimizing both the
excitations of antennas and the location of the applicator for breast cancer hyperthermia [8]. The proposed
approach reduced the number of antennas while obtaining better metrics via the rotation of a linear system.
The optimization is performed by using particle swarm optimization (PSO) algorithm. In another study [9],
a two-step optimization scheme was proposed to focus microwave power in the breast medium through the
optimization of antenna excitations. Firstly, phases of four square-arranged antenna arrays around the breast
tissue were optimized using the trust-region algorithm. Secondly, subarray antenna amplitudes were optimized
to raise the tumor’s center temperature to 42◦C. In [10], a system of linear antenna arrays with 6 elements
stacked both in azimuth and elevation plane for breast cancer hyperthermia is presented. Having antenna arrays
with elements located on the elevation plane enabled 3D focusing. Antenna element excitations were optimized
using a PSO algorithm. Electric fields were calculated using Finite Element Modeling (FEM) software.

In other studies [11, 12], a breast cancer hyperthermia system with integrated thermoacoustic tomogra-
phy for microwave power monitoring is presented. The proposed microwave hyperthermia system applicator
consisted of a bowl-shaped breast encasing patch antennas to form a phased array. The antenna excitations
were optimized by maximizing the ratio of power intensity on the tumor to the intensity on the healthy tissue
through differential evolution. In [13], a concave microwave breast cancer hyperthermia applicator with inte-
grated leaky-wave antennas is proposed to aid chemotherapy treatment. This work experimentally analyzed
the temperature change of a realistic breast phantom at different depths by changing the magnitude of antenna
excitation groups.

Other reported analysis in the literature includes a comparison of ultrawideband and narrowband focusing
[14]. The effectiveness of 3D focusing is investigated in [15]. Real and imaginary parts of antenna excitations
are considered as real parameters and optimized separately to maximize the field magnitude at the desired point
in [16]. In [17], antenna phases in subarray groups surrounding a cylindrical breast medium were optimized to
enable focusing. Yet in another study [18], a hyperthermia applicator with antenna arrays arranged in hexagonal
fashion around the breast medium. Antenna excitation optimization was performed by maximizing the power
transmission efficiency.

In another previous study [19], 2D FOCO (Optimal Constraint Power Focusing) approach is used in
multifrequency for focusing with different breast models. Elkayal et al. [20] and Curto et al. [21] oriented
their analysis towards temperature concentration rather than focusing on SAR with basic phantoms. In light
of [4], Dooley et al. [22] extended Fenn’s study and documented a clinical study involving the application of
local anesthesia to the breast, followed by the insertion of a sensor catheter into a small incision. This sensor is
responsible for monitoring both the electric field and temperature within the area. A beamforming technique
was introduced for the purpose of noninvasive Microwave Hyperthermia in the context of pediatric brain cancer
treatment in [23]. In [24], microwave hyperthermia technique is used for enhance the process of healing the
muscle tissues postinjuries.

269



ACAR et al./Turk J Elec Eng & Comp Sci

To increase the accuracy and effectiveness of focusing, particularly recently reported studies are per-
formed with realistic magnetic resonance imaging (MRI)-based digital phantoms. Although it is important to
perform optimization with such phantoms, the evaluation of electric fields in an in-homogeneous environment is
challenging. Therefore, mostly FEM-based commercial software or in-house algorithms are used for the evalua-
tion of electric fields. FEM-based methods, especially for dispersive and lossy environments, are suffering from
both time and computational inefficiencies. The goal of this work is to overcome these challenges by modeling
the breast medium with cylinders. Through this approach, analytical solution can be used to calculate the field
distribution in the breast medium. The cylindrical of the medium allows the calculation of antenna phases
with a very straightforward approach, which simply relies on maximizing the modulus of a complex quantity.
Although the medium is simplified in previously reported studies with different approaches [17, 18], limitations
and effectiveness of simplifying the medium have not been reported. Unlike the previous work, we propose a
thorough analysis by simplifying the breast medium with three-layered eccentric cylinders and next compute
the electric field distribution in terms of cylindrical harmonics using analytical approaches. A simple and robust
optimization technique is then implemented to maximize the total electric field at the tumor region which is
represented as the vector summation of complex quantities in terms of antenna phases. This work offers sev-
eral advancements: (1) Simplified modeling: We introduce a three-layered, eccentric cylindrical breast model.
This facilitates analytical methods, addressing computational and time-intensive constraints of traditional FEM
techniques. (2) Excitation enhancement: We employ an innovative excitation phase optimization. This ensures
electric fields intensify specifically around tumor areas. (3) Personalized approach: We incorporate patient
uniqueness through a dielectric property (DP) averaging technique. Optimizations are based on DP averages
from detailed breast phantoms. (4) Comprehensive evaluation: Our method’s potential and limitations are
explored by contrasting the phase results of our model with those from intricate breast tissue representations.

Utilization of the proposed technique is attractive due to, (a) straightforward implementation, (b) minimal
computational and time cost, and (c) a simple and robust phase optimization scheme in which the phases are
directly computed by taking one of the antenna phases as a reference. Towards this end, this work adopts a
cylindrical microwave applicator surrounding the cylindrically modeled breast medium with eight individual
circularly positioned line sources. The focus is achieved first by selecting a reference phase value for one of
the excitation sources. Next, to maximize the vector sum at the desired point, the phases of the remaining
excitation sources are directly calculated so as to be in-phase with the chosen reference phase value. To expand
the application of the technique for different breast models, the DPs of the main cylinder is obtained from
the realistic models and the phases are optimized accordingly. Lastly, calculated phase values are tested with
the corresponding realistic digital breast phantoms and successful results are obtained. An extensive numerical
analysis is given to test the approach under different circumstances. Lastly, calculated phases are evaluated
with realistic digital phantoms.

The remainder of this paper is organized as follows: Problem configuration and approach are defined in
Section 2, the results along with analysis are given in Section 3, conclusions are drawn in Section 4.

2. Problem statement and the method

This section describes the hyperthermia problem and demonstrates the hyperthermia applicator configuration.
Moreover, a detailed explanation of analytical electric field modeling, phase optimization approach, and the DP
averaging of the realistic breast medium is given.
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2.1. Statement of the problem

Consider the microwave breast hyperthermia problem configuration illustrated in Figure 1a. Here the human
breast is illuminated by N antennas excited by different phases positioned in a circular fashion surrounding the
breast. For simplicity, the amplitudes of the antenna currents are assumed to be equal. The goal is to adjust the
electric field distribution inside the breast region so that its amplitude at a target point is maximum. The target
point ideally corresponds to the center of the malignant tumor. This will also ensure the maximum temperature
at this point since the electromagnetic energy that will be converted into heat is proportional to |E|2 and σ .
It is well known that the conductivity values (σ ) of malignant tumors are larger than that of healthy tissues
and it is an inherent property of the tissue [25]. Therefore, the main aim of the hyperthermia problem at hand
becomes the optimization of the antenna phase values in order to maximize the electric field at the center of the
malignant tumor. This problem can be cast as a nonlinear optimization problem [26, 27]. Although a limited
number of simplified approaches have been reported [28], the majority of the presented studies [29–31] relies on
slow optimization techniques in conjunction with computationally demanding full-wave analysis of the breast
medium.

2.2. Evaluation of the focusing effectiveness with realistic fatty breast phantom

In the present study, it is shown that the optimization of the antenna phases can be effortlessly achieved by
utilizing a simplified human breast model. This model consists of eccentric homogeneous cylinders which allow
the calculation of the field distribution analytically. In the following sections, the simplified cylindrical breast
model, patient-specific DP calculation to homogenize the medium, and the solution of the phase optimization
problem are given in detail.

2.3. Hyperthermia problem with equivalent simplified cylindrical structure

The two-dimensional (2D) cross-section view of the heterogeneous model along with circular hyperthermia
applicator configuration for breast hyperthermia problem is shown in Figure 1a. The breast tissue in the
hyperthermia problem is transformed into a homogeneous three-layered cylindrical model and it is shown in
Figure 1b. The cross-sectional view given in Figure 1b represents skin, homogenized breast medium, and
tumor. The outer cylinder DPs and radius are denoted with εs , σs , and ρs , respectively, which depict the
skin. Inner concentric cylinder DPs and radius are denoted with εb , σb , and ρb , respectively, which represent
the homogenized breast medium. Finally, the off-center cylinder with a much smaller radius (ρt ) was inserted
into the breast to represent the malignant tumor DPs denoted with εt , σt . Since the biological tissues are
nonmagnetic, all tissues in the cylindrical model have the permeability of free space (µ0 ). Note that all DPs
representing the skin, breast, and malignant tumor tissue was obtained using the single-pole Debye model with
parameters given in [32].

2.4. Dielectric property (DP) approximation for homogenized breast medium

In this work, two types of realistic breast models obtained from MRI are considered. Class− II type of breast
with 012204 ID is classified as a fatty breast model and Class− III type of breast with 062204 ID is classified
as a very dense breast model. Both models are obtained from [33].

Using the approach proposed in [15], the DPs of the homogenized breast represented with the second
concentric cylinder (ρb ) in Figure 1b are calculated. This approach essentially homogenized the heterogeneous
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healthy breast tissue in the realistic model. To execute this method, we initially obtain a cross-section from
each breast model at z = 0 . Next, the thickness of the skin in each MRI model is calculated. Since the skin is
represented with an outer cylinder, the skin DPs are omitted during the calculation of DPs for the homogenized
cylinder. In the simplified model, the thickness of the outer cylinder (ρs − ρb ) approximately has the same
thickness as the skin in the realistic breast slice.

(a) (b) (c)

1

Figure 1. Microwave breast cancer hyperthermia problem configuration. Subfigures are: (a) 3D problem representation,
(b) problem cross-section and configured system with realistic breast tissue, (c) the equivalent simplified eccentric
homogeneous cylindrical configuration with layers representing skin, homogenized breast medium, and tumor.

In order to calculate the DPs of the homogenized breast medium, the spatial mean of DPs, namely
dielectric constant ε(x, y) and conductivity σ(x, y) , in the realistic breast medium are calculated with the
following equations:

εb =
1

S

∫∫
ε(x, y) dx dy (1)

σb =
1

S

∫∫
σ(x, y) dx dy (2)

where S is the total area of the breast medium cross-section excluding skin. Also, tumor inclusion is not
considered during the spacial mean calculation of heterogeneous medium DPs. Using the above equations, the
spacial mean DPs of the heterogeneous breast medium composed of fat and fibroglandular tissues are calculated
and assigned to the second concentric cylinder with ρb radius shown in Figure 1b. The calculated dielectric
properties for fatty breasts with 012204 ID are εb = 7.82 and σb = 0.37 and for dense breasts with 062204 ID
are εb = 15.76 and σb = 0.92 at 4 GHz.

2.5. Modelling of the sources and field distribution

In order to focus the EM field to a desired point inside the breast, 8 line source is placed on a circle with 45◦

angular distance and the same distance from the center of the circle. It is assumed that each line source has
the same amplitude. The phase of one of the 8 line sources is chosen as the reference. For simplicity, the first
antenna is chosen with a reference phase zero (0). Note that this choice does not affect the solution. The total
incident field at any point outside the breast medium can be written as follows:
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Ei(x) =

8∑
m=1

−η0k0I0
4

ejφmH
(2)
0 (k0|x− y(m)|) (3)

where H
(2)
0 is the Hankel function of the 2nd kind with zero order, x = (x1, x2) and y(m) = (y

(m)
1 , y

(m)
2 ) are the

observation point and the location of the mth source in 2D space, respectively. In equation (3), k0 = ω
√
ε0µ0

is the wave number of the free space, η0 =
√

µ0

ε0
is the intrinsic impedance of the free space, I0 is the current

strength of the line sources and φm is the phase of the mth line source, where m = 1, 2, ..., 8 . The addition
theorem for cylindrical harmonics can be used to express the incident field in the region ρs < ρ < ρa as;

Ei(ρ, ϕ) =− η0k0I0
4

8∑
m=1

ejφm

∞∑
n=−∞

H(2)
n (k0ρa)Jn(k0ρ)e

jn(ϕ−ϕm), ρs < ρ < ρa (4)

where (ρ, ϕ) denotes the cylindrical coordinates, (ρa, ϕm) is the location of mth source, m = 1, 2, ..., 8 . H
(2)
n

and Jn are the Hankel function of the second kind with nth order and the Bessel function of the nth order,
respectively. The total field inside and outside the breast region can now be written through the use of the
shifted cylindrical coordinates (ρ′, ϕ′) , where the center for this new system is taken as the center of the off-
centered circle inside the breast representing the tumor in the cross-section given in Figure 1b. Thus, one can
represent the total field in the whole space as:

E =

(
−η0k0I0

4

)


8∑
m=1

ejφm

∞∑
n=−∞

[
H

(2)
n (k0ρa)Jn(k0ρ) + amn H

(2)
n (k0ρ)

]
ejn(ϕ−ϕm), ρs < ρ < ρa

8∑
m=1

ejφm

∞∑
n=−∞

[
bmn Jn(k1ρ) + cmn H

(2)
n (k1ρ)

]
ejnϕ, ρb < ρ < ρs

8∑
m=1

ejφm

∞∑
n=−∞

[
dmn Jn(k2ρ

′) + emn H
(2)
n (k2ρ

′)
]
ejnϕ

′
, ρ < ρb, ρ

′ > ρt

8∑
m=1

ejφm

∞∑
n=−∞

[
fm
n Jn(k3ρ

′)
]
ejnϕ

′
, ρ′ < ρt

(5)

where amn , bmn , cmn , dmn , emn , and fm
n are unknown coefficients that need to be determined.

Using the appropriate boundary conditions together with coordinate transformations, one can determine the
unknown coefficients, by following the method given in [34]. The method is based on the application of the
addition theorem in conjunction with an appropriate coordinate transformation. Then one can easily apply the
boundary conditions on the surfaces of the inner and outer cylinders to reduce the problem to the solution of
an infinite dimensional matrix equation which is solved by truncation of the system [34]. The field inside the
tumor circle can now be determined by using the coefficients fm

n appearing in equation (5). Eventually, those
coefficients will be used in the phase optimization algorithm, which will be given in the next section.

2.6. Phase optimization approach based on maximization of the vector sum at the target point

Consider the electric field at the center of the small circle shown in the cross-section given with Figure 1b,
which coincides with the center of the malignant tumor. It is denoted as E tumor . We define the central point
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of the tumor circle as a focus point denoted by (xf , yf ) . Then, ρf and ϕf forms as ρf =
√
x2
f + y2f and

ϕf = tan−1(yf/xf ) , with respect to the shifted origin. Taking (5) into account, E tumor can be written as
follows:

Etumor = −η0k0I0
4

8∑
m=1

ejφm

∞∑
n=−∞

fm
n Jn(k3ρf )e

jnϕf (6)

Let us define Am as,

Am = −η0k0I0
4

∞∑
n=−∞

fm
n Jn(k3ρf )e

jnϕf (7)

It is obvious that (6) is a complex quantity and since it is desired to maximize the magnitude of this expression,
we can simply define an extremum problem in terms of the unknown phase values of the line sources. To this
aim, we define the following function which is the square of the magnitude of Etumor as a function of unknown
phase values.

f(φ1, φ2, φ3, φ4, φ5, φ6, φ7, φ8) =EtumorE
∗
tumor

=

∣∣∣∣∣
8∑

m=1

ejφmAm

∣∣∣∣∣
2 (8)

The phase optimization problem can now be defined in a much more compact form as:

Determine φ̃ so that f(φ̃) → max.

where φ̃ = (φ1 , φ2 , φ3 , φ4 , φ5 , φ6 , φ7 , φ8 ) is considered as vector in 8 dimensional Euclidean space.
Now, let us write f in the following explicit form:

f(φ̃) =
∣∣A1e

jφ1 +A2e
jφ2 + ...+A8e

jφ8
∣∣2 (9)

The phase of the first antenna (φ1 ) is set to 0◦ as a reference, and in order to maximize the quantity given
in (9), the phases of the field at the center of the tumor due to remaining antennas should be equal to the phase
of the expression (A1 ) formed by the first antenna.

Arg(A1) = Arg(A2e
jφ2) = ... = Arg(A8e

jφ8) (10)

Then, the phases of the remaining antennas can now be obtained as follows:

φk = Arg(A1)−Arg(Ak) (11)

where k = 2, 3, ..., 8

Because of the indefiniteness of argument of complex quantities, phase of the each antenna is set to stay
between [−π, π] interval.
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3. Results and discussion

The methodology described in Section 2.6 is implemented for two cylindrical configurations shown in Figure
1b. The dimensions of these configurations are ρs = 55.7 mm , ρb = 52.2 mm for Class − II type of breast
with the 012204 ID and ρs = 40.1 mm , ρb = 38.6 mm for Class− III type of breast with the 062204 ID. The
radius of the tumor is ρt = 5 mm for both configurations. The difference between the two configurations is
that the first one mimicked a fatty breast and the second mimicked a dense breast. To implement the method,
first, phantom models obtained from [33] are imported to both MATLAB and computer simulation technology
(CST) software. Next, spacial averaged DPs of the breast medium are calculated to homogenize each model.
Subsequently, the DPs of skin, homogenized breast medium, and tumor dielectric properties are assigned. Both
configurations are illuminated with 8 line sources which are placed 80mm away from the center of the breast
medium. They are separated with 45◦ angle in a circular manner as shown in Figure 1b. After setting the
breast configuration, the phases are obtained using the optimization approach given in Section 2.6.

Next, using the phases obtained from the homogenized phantom, the corresponding realistic inhomogeneous
breast phantom is illuminated with the same antenna to perform the electric field, energy, and heat distribution
analysis. To this aim, first, the amplitude of the electric field inside the breast phantoms for both realistic
Class−II with 012204 ID and Class−III with 062204 ID types, namely fatty and dense, are calculated using
an in-house method of moments (MoM) technique in MATLAB. Note that I0 = 1 A , frequency is selected as 4
GHz, the background is assigned as air with εr = 1 , and the background cell dimensions in 2D MoM analysis
are set to 0.5 x 0.5 mm2 .

The antenna phases obtained through the optimization with a simplified model were also used in CST for
both realistic breasts to produce temperature distribution. In CST, a sphere with a radius of 5 mm is placed to
mimic the malignant tumor tissue. The dipole antennas are placed as in Figure 1a and driven with a Gaussian
signal with the normalized amplitude. During the thermal analysis in CST, thermal parameters given in [15] are
used. A cooling medium outside the digital phantoms is also applied during thermal analysis. The convection
boundary condition is applied on the skin with the convection coefficient of 200W/m2 ◦C and the temperature
of 25◦C in order to prevent the skin from overheating. For a better comparison of the given results, two metrics
are calculated. One is the Euclidean 2-D distance between the target point and the maximum point of power
density or temperature. The desired focus point coordinates are shown with (xf , yf ) , and (xm, ym) denotes
the coordinates of the obtained maximum power density or the maximum temperature. The second calculated
metric is the ratio of the total power density of the tumor cells and healthy cells denoted with Qtumor/Qhealthy

and it is defined in (12)

Qtumor/Qhealthy =

∫∫
Stumor

σ(x,y)|E(x,y)|2 dxdy

Stumor∫∫
Shealthy

σ(x,y)|E(x,y)|2 dxdy

Shealthy

(12)

where Stumor and Shealthy denote the cross-sectional area of the tumor and the cross-sectional area of healthy
tissues, respectively. Finally, it should be emphasized that all results are given on the z = 0 plane. The
remainder of this section reports the obtained results in detail.
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3.1. Evaluation of the focusing effectiveness with realistic fatty breast phantom

The tumor inclusion with 5 mm radius is placed at two locations in the simplified homogeneous cylindrical
model mimicking the Class − II type with 012204 ID fatty breast phantom. The two locations are (x, y) =

(13.3, 20.2) mm named case-1 and (x, y) = (−24.8,−12.1) mm named case-2. The phase values for each
location are obtained using the analytical modeling of the fields inside the homogenized cylindrical model along
with the optimization approach given in Section 2.6. Next, phases obtained from the simplified model are used
in MoM and CST with the realistic fatty model (Class−II ID 012204 breast) to obtain field, power density, and
temperature distributions. Obtained results case-1, namely for (x, y) = (13.3, 20.2) mm are shown in Figure
2. Comparing the amplitude of the electric field distribution with and without optimization in Figures 2a and
2b, it can be seen that the field strength increases significantly at the tumor when optimization is applied.
Similarly, a comparison of Figures 2c and 2d shows that microwave power density increases in direct proportion
to the amplitude of the electric field.

Table 1. A comparison of power density ratio results between the tumor and healthy tissue (Qtumor/Qhealthy ) obtained
from in-house simulations for fatty Class− II ID 012204 breast along with the distance between the target focus point
(xf , yf ) and obtained maximum power density (xm, ym) .

Breast (xf , yf ) (xm, ym) Distance Qtumor/Qhealthy

type (mm) (mm) (mm)
Fatty - case-1 (13.3,20.2) (13.3,20.5) 0.3 0.61
Fatty - case-2 (-19.1,-12.1) (-25.7,-13.0) 26 0.27

In Table 1, the target focus point (xf , yf ) , the point (xm, ym) where the maximum power density is obtained
and the distance between the two points are given. Similarly, the power density ratio results between the tumor
and healthy tissue (Qtumor/Qhealthy ) are given for two locations. It is shown in Table 1 that for case-1 the
focusing is achieved with 0.3 mm shift from the target location with a 0.61 power density ratio.

In the next step, case-1 is evaluated in CST with Class − II type with 012204 ID fatty realistic breast
phantom. In Figures 2e and 2f, the temperature distributions obtained with the optimized phase values are
shown. We note that the appropriate power factor is set to 15 and power radiated from each antenna is
increased to 6W in order to reach the desired temperature on the tumor for both fatty and dense cases during
CST simulations. From Figure 2e, it can be seen that the maximum temperature occurs inside the tumor
inclusion. However, some of the healthy tissues are also heated up to 40◦C . We try to overcome this unwanted
outcome by turning off the furthest three antennas away from the tumor using the approach proposed in [9].
Through this process, the number of active antennas is reduced to 5 from 8. The results after this process are
shown in Figure 2f. As shown in Table 2, the maximum point of temperature occurs only at a 1.3 mm distance
from the focus for both 8 and 5 antennas.

Next, we move on to a more challenging scenario, case-2, for fatty breast. Here, the malignant tumor is
located on the glandular tissue which has very similar DPs to the malignant tumor inclusion. The MoM results
of case-2 are shown in Figure 3. As seen from Figures 3a and 3b, with the optimized phase values, the amplitude
of the electric field increased and it is concentrated inside the tumor. It is clear from Figures 3c and 3d, power
density is concentrated inside the tumor by focusing the amplitude of the electric field on the center of the
tumor. From Figure 3d, it can be seen that 26 mm shift from the target location with 0.27 power density ratio
for case-2 are obtained.
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Figure 2. The distribution of normalized electric field amplitude, microwave power, and temperature for a Class− II
breast model, calculated at (x, y) = (13.3, 20.2) mm via MoM and CST software. It presents both optimized and
unoptimized antenna phase scenarios. Subfigures are: (a) electric field distribution without optimization, (b) electric
field distribution with optimization, (c) power density without optimization, (d) power density with optimization, (e)
temperature distribution, and (f) temperature distribution with the furthest three antennas deactivated.

Table 2. A comparison of temperature peak obtained from CST Simulations for fatty Class − II ID 012204 breast
along with the distance between the target point (xf , yf ) and obtained maximum temperature point (xm, ym) .

Breast Antenna (xf , yf ) (xm, ym) Distance
type status (mm) (mm) (mm)

Fatty - case-1 On (13.3,20.2) (12.3,19.5) 1.3
Fatty - case-1 S6, S7, S8 Off (13.3,20.2) (12.3,19.5) 1.3
Fatty - case-2 On (-19.1,-12.1) (-12.8,-8.0) 7.6
Fatty - case-2 S1, S7, S8 Off (-19.1,-12.1) (-21.3,-10.0) 3

The results obtained from the CST are given in Figure 3, and the maximum temperature is shifted 7.6 mm
from the tumor center according to Figure 3e. Next, the furthest three antennas from the center of the tumor
are shut down. The temperature distribution obtained with the remaining 5 antennas is illustrated in Figure
3f. It can be seen that higher temperature values are obtained inside the tumor and the temperature shift is
decreased to 3 mm. The results are also given in Table 2.

3.2. Evaluation of the focusing effectiveness with realistic dense breast phantom
In order to see the focusing performance for the realistic dense breast, previously described steps are applied
to the dense breast model which is classified as Class − III type with 062204 ID. The tumor inclusion has a
radius of 0.5 mm and is placed at (x, y) = (−13.4,−8.5) mm and (x, y) = (15, 3.6) mm named case-3 and
case-4, respectively.
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Figure 3. The distribution of normalized electric field amplitude, microwave power, and temperature for a Class− II
breast model, calculated at (x, y) = (−24.8,−12.1) mm via MoM and CST software. It presents both optimized and
unoptimized antenna phase scenarios. Subfigures are: (a) electric field distribution without optimization, (b) electric
field distribution with optimization, (c) power density without optimization, (d) power density with optimization, (e)
temperature distribution, and (f) temperature distribution with the furthest three antennas deactivated.

Results for the case-3 are shown in Figures 4a and 4b. Using the optimized phase values, the amplitude of
the electric field increased significantly on the tumor as shown in Figures 4a and 4b. Since the power density
is directly proportional to the electric field, it can be seen from the Figures 4c and 4d that the power density
is maximum at the center of the tumor. Distance between the desired maximum power density point and
obtained maximum power density occurring in MoM simulations is 3.7 mm as given in Table 3. Obtained
Qtumor/Qhealthy ratio is 0.55 which means around 35% power density concentrated inside the tumor inclusion
compared to the whole breast.

Table 3. A comparison of power density ratio results between the tumor and healthy tissue (Qtumor/Qhealthy ) obtained
from in-house simulations for dense Class−III ID 062204 breast along with the distance between the target focus point
(xf , yf ) and obtained maximum power density (xm, ym) .

Breast (xf , yf ) (xm, ym) Distance Qtumor/Qhealthy

type (mm) (mm) (mm)
Dense - case-3 (-13.4,-8.5) (-16.5,-10.5) 3.7 0.55
Dense - case-4 (15.0,3.6) (23.0,19.0) 17.4 0.082
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Figure 4. The distribution of normalized electric field amplitude, microwave power, and temperature for a Class− III
breast model, calculated at (x, y) = (−13.4,−8.5) mm via MoM and CST software. It presents both optimized and
unoptimized antenna phase scenarios. Subfigures are: (a) electric field distribution without optimization, (b) electric
field distribution with optimization, (c) power density without optimization, (d) power density with optimization, (e)
temperature distribution, and (f) temperature distribution with the furthest three antennas deactivated.

Temperature distribution for optimized antenna phase values is shown in Figure 4e, and it can be seen that
temperature distribution is spread rather than focusing inside the tumor inclusion. In order to prevent possible
hot spots and shift the focus to inside the tumor inclusion, the antennas located at the furthest distance from
the tumor canter are again turned off. The obtained temperature distribution with the remaining 5 antennas is
shown in Figure 4f where the maximum temperature is still outside the tumor. However, the distance between
the focus point and the maximum point decreases from 6.9 mm to 5.25 mm by 23.9 % as shown in Table 4.

For case-4 dielectric properties of tumor and glandular tissue are similar to one another which makes it
harder to focus the electric field. MoM results for this simulation are presented in Figures 5a–5d. As seen
from the figures, with the optimization process, the maximum values for electric field and power density do not
change significantly, but the focus is shifted to the tumor side. For CST results as depicted in Figure 5e, the
maximum temperature is obtained outside the tumor inclusion similar to the MoM results. By turning off the
furthest three antennas from the tumor, although the maximum power is still outside the tumor, more power
is concentrated in tumor inclusion. As a consequence of that, the maximum temperature is shifted inside the
tumor location and reaches the 41◦C as seen from the Figure 5f.

From Table 3, the shift from the desired focus point is 17.4 mm and the ratio of Qtumor/Qhealthy is 0.082.
As predicted from the MoM results, in CST analysis, when all 8 antennas are working, the maximum point of
temperature distribution occurs at a distance of 8.3 mm from the desired focus point, as seen from Table 4.
Moreover, turning off the farthest three antennas decreases the distance around 81.93 % to 1.5 mm. With this
approach, the maximum point of temperature occurs inside the tumor inclusion.
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Table 4. A comparison of power density ratio results between the tumor and healthy tissue (Qtumor/Qhealthy ) obtained
from CST Simulations for fatty Class−II ID 012204 breast dense Class−III ID 062204 breast along with the distance
between the target focus point (xf , yf ) and obtained maximum power density (xm, ym) .

Breast Antenna (xf , yf ) (xm, ym) Distance
type status (mm) (mm) (mm)

Dense On (-13.4,-8.5) (-6.5,-9.0) 6.9
Dense S1, S7, S8 Off (-13.4,-8.5) (-10.0,-12.5) 5.25
Dense On (15.0,3.6) (7.5,0.0) 8.3
Dense S5, S6, S7 Off (15.0,3.6) (13.5,3.0) 1.5
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Figure 5. The distribution of normalized electric field amplitude, microwave power, and temperature for a Class− III
breast model, calculated at (x, y) = (15, 3.6) mm via MoM and CST software. It presents both optimized and
unoptimized antenna phase scenarios. Subfigures are: (a) electric field distribution without optimization, (b) electric
field distribution with optimization, (c) power density without optimization, (d) power density with optimization, (e)
temperature distribution, and (f) temperature distribution with the furthest three antennas deactivated.

Regarding the safety limits, there are no specific safety limits for breast cancer hyperthermia. Having said
that, in the context of hyperthermia research, two common limitations are often discussed, and they can be
considered safety-related limitations: (1) According to [35], the most important issue is to eliminate the heating
of the skin, (2) limiting the energy deposition at the remaining healthy tissue within the breast medium to
prevent hot spots.

In our frequency of operation, power deposition to the skin tissue surrounding the breast is inevitable due
to the high inherent conductivity of the skin. However, the temperature can be controlled by using a cooling
medium. We implemented a cooling medium with 25 ℃ to prevent overheating of the skin. Next, to mitigate
the hot spots in healthy tissue, we shut down the furthest three antennas away from the tumor. We can attempt
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to evaluate the safety of our system by comparing the total power deposited by our system to the previously
reported ones. In [36], for a system operating between 300 and 6000 MHz, the maximum power density for 4
GHz is calculated as 7.58 W/m2 for continuous exposure systems and 40.82 W/m2 for timed exposure systems.
In our study, for Case 1, the total power density of the system is calculated as 9.7 W/m2 , but when the furthest
three antennas shut down, it decreased to 6 W/m2 , which is below the power limits reported in [36]. For Case
2, the total power density of the system is calculated as 8.93 W/m2 , but when the furthest three antennas are
shut down, it decreased to 5.4 W/m2 , which is again below the calculated power reported in [36]. For dense
breast, Case 3, the total power density of the system is calculated as 7.99 W/m2 , but when the furthest three
antennas shut down, it decreased to 4.53 W/m2 , which is below the power levels reported in [36]. Finally, for
Case 4, the total power density of the system is calculated as 4.42 W/m2 , but when furthest three antennas
shut down, it decreased to 3.35 W/m2 , which is below the previously reported power levels in [36]. In [36], SAR
limit is reported as 20 W/kg for timed exposure system. When all antennas are operating, for Case 1, Case 2,
Case 3, and Case 4, the SAR is calculated as 20 W/kg, 18.41 W/kg, 16.47 W/kg, and 9.11 W/kg, respectively.
When the furthest three antennas are shut down, for Case 1, Case 2, Case 3, and Case 4, the SAR is calculated
as 12.37 W/kg, 11.13 W/kg, 9.34 W/kg, and 6.9 W/kg, respectively. As shown in the calculations above, for
all four cases, the SAR deposition in our system does not exceeded the SAR limit.

4. Conclusions
This work presents a fast and effective phase optimization approach for breast cancer hyperthermia treatment.
Through modeling the breast tissue as a cylindrical medium, the field distribution was obtained using an
analytical solution approach. Once the field distribution is expressed in the target medium with cylindrical
harmonics, the field strength is maximized at the desired point via a simple vector optimization of the source
phases. It was concluded that the obtained phases perform well when contrast difference occurs for dielectric
and thermal properties between the malignant tumor and surrounding breast tissue. When the tumor inclusion
is located in the fibroglandular tissue, the shift of temperature focus is significantly improved by turning off the
farthest three antennas. The proposed technique shows promising results for rapid optimization of the antenna
phases.
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