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Abstract: This study aims to perform fast fault diagnosis and intelligent protection in an active distribution network
(ADN) with high renewable energy penetration. Several time-domain simulations are carried out in EMTP-RV to
extract time-synchronized current and voltage data. The Stockwell transform (ST) was used in MATLAB/SIMULINK
to preprocess these input datasets to train the adaptive fault diagnosis deep convolutional neural network (AFDDCNN)
for fault location identification, fault type identification, and fault phase-detection for different penetration levels. Based
on the AFDDCNN output, the intelligent protection scheme (IDOCPS) generates the signal for isolating a faulty section
of the ADN. An intelligent fault diagnosis scheme that combines ST and deep learning methods aids the artificial
intelligence-based protection scheme in isolating the faulty section. This study uses the PyTorch framework to build
both the AFDDCNN and IDOCPS. The proposed protection technique classifies and isolates faults and coordinates
protection with minimum operating time in the IEEE 13-bus ADN. It consistently gives high accuracy for fault diagnosis
and minimum operating time for the IDOCPS even when the network’s topology is modified to the IEEE 34-bus ADN.
The experimental results indicate that the proposed model is more accurate and provides faster fault diagnosis and
isolation than state-of-the-art methods.

Key words: Distributed energy resources, Stockwell transform, deep convolutional neural network, phasor measurement
units, distributed generation, multilayer perceptron, multiobjective firefly algorithm

1. Introduction
Distributed energy resources (DERs) are connected to distribution systems to meet rising energy demands,
optimal operation requirements, and the need to reduce greenhouse gas emissions. Protection and control of
distribution systems (DSs) have become difficult due to the integration of time-varying low inertia inverter
interfaced distributed generations (IIDG) [1, 2]. The fault current level in the DS changes according to the
penetration level, type, and location of the distributed generation (DG). While designing a protection scheme,
neglecting the above-mentioned challenges causes relay coordination loss, protection blinding, unintentional
islanding, and sympathetic tripping [2]. The phasor measurement units (PMUs) allow real-time dynamic
monitoring of the DS, and fault zone identification is simpler with correctly allocated PMUs. The authors of [1]
utilize µPMU data and a stacked autoencoder (SAE) for fault location in the DS, but they neglected the fault
classification and the effect of high impedance fault (HIF) on the algorithm. The study presented in [2] proposed
intelligent microgrid fault diagnosis using a deep learning model. Even though various operating conditions
∗Correspondence: klm.eee@psgtech.ac.in
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were considered, the increased computation time for Fourier-based continuous wavelet transform (FTCWT),
complexity in locating faults, and disregarded protection coordination aspect is their major drawback. The
authors of [3] proposed time-synchronized protection for fault diagnosis of a microgrid by extracting statistical
features from the PMU data for the k-nearest neighbor (kNN) module. In [4], the authors proposed an
intelligent protection scheme based on the TT transformation and deep belief network, while [5] utilizes adaptive
convolution neural network (ACNN) for fault location in DS. The authors of [6] proposed a hybrid classifier
for fault location in active distribution networks (ADN). Further, these researchers [4–7] focused more on
fault identification and location, but the protection aspect of the DS and time complexity analysis were not
considered. The authors of [8] recommended applying an enhanced extreme learning machine (ELM) based on
the discrete orthonormal ST (DOST) for intelligent fault diagnosis. Even though various fault scenarios were
created to depict the efficacy of the proposed method, HIF, scalability for the larger DS, suggested method
performance comparison and its computing time were neglected. In [9], DOST-support vector machine (SVM)-
based fault diagnosis for transmission systems was presented utilizing the synchronized current measurements
from remote terminal units (RTUs). However, these methods are ineffective for short distribution lines, DS with
varying DER penetration, and fault resistance. The fuzzy sets for fault diagnosis and protection coordination
with optimization algorithms were reported in [10–14]. However, multiple optimal settings and miscoordination
were observed due to difficulty in establishing global minimums using fuzzy membership functions. In [15], the
authors proposed utilizing the grey wolf optimizer algorithm to determine the optimal overcurrent relay (OCR)
and distance relay settings for the transmission system, while [16] utilized the rate of change of phasor voltage
for coordination in a medium voltage DS. However, the methodology suggested in [15] and [16] is ineffective
for a low-voltage ADN. The study presented in [17] utilized the firefly algorithm (FA) for fault detection and
protection coordination in a DS; however, the heuristic algorithm failed to find the global optimum and converge
to practically effective solutions due to the lack of a universally applicable method. In addition to monitoring
the power grid with PMUs, the difficulty of optimizing PMU deployment has attracted considerable interest due
to the high cost of PMU installation [18]. In [19], an algorithm was proposed to identify optimal deployment
for measurement devices (PMUs and smart meters) considering variable DER integration. Most previously
reported DS protection schemes are limited to detecting the fault without identifying the faulty line segment or
examining whether the other healthy lines remain unaffected without tripping. Intelligent protection requires an
adaptive fault diagnosis approach for effective fault phase identification and isolation in the DS. The centralized
intelligent decision-making mechanism based on PMUs employed in the present work addresses this issue by
utilizing a relay that would only trip the faulty line between two buses.

This study utilizes a DOST for preprocessing the input dataset that retains all the critical data for a
novel artificial intelligence (AI)-based classification algorithm. The proposed adaptive fault diagnosis effectively
performs fault detection, classification, and location tasks utilizing current and voltage data from the time-
synchronized PMUs placed at the appropriate location on the ADN. Furthermore, the developed intelligent
protection scheme utilizes the adaptive fault diagnosis output to identify and isolate the faulty section with
minimum operating time (OT) under various ADN operating conditions. The significant contributions of the
proposed work can be summarized as follows: i) The adaptive fault diagnosis unit developed using an adaptive
fault diagnosis deep convolutional neural network (AFDDCNN) performs the task of exact fault phase and
location identification for various operating modes of the ADN. ii) An intelligent protection algorithm that
utilizes the multiobjective firefly algorithm (MOFFA), and multi-layer perceptron (MLP) is proposed for the
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protection and coordination of directional OCR (DOCR). iii) Supervised learning of MLP is used to select
the best optimal protection strategy with an appropriate setting for the different operating scenarios. iv) The
effectiveness of the proposed algorithm is assessed for modified IEEE 13-bus and IEEE 34-bus ADNs. v) Based
on the response time the superiority of the proposed algorithm is compared with other protection techniques
reported in the literature. The paper’s organization is as follows: Section 2 introduces the investigated test ADN
utilized in the proposed work; Section 3 describes the proposed intelligent fault diagnostic unit (AFDDCNN)
for fault identification, classification, and isolation along with the implementation and dataset preparation
from the test system; Section 4 describes the proposed intelligent protection scheme (IDOCPS) for primary
protection, backup protection and protection coordination in the test ADN; Section 5 verifies the effectiveness
of the proposed model and the adaptability of the algorithm to larger ADN; and Section 6 gives a detailed
performance analysis of the proposed method with other methods listed in the literature; Finally, Section 7
concludes the paper with the limitations of the proposed methodology, and directions for future work on ADNs
protected using the proposed intelligent protection scheme.

2. Investigated distribution system

The modified IEEE 13-bus and IEEE 34-bus ADNs [20, 21] examined for the proposed protection method and
simulated in EMTP 4.2.85, 2019®, are shown in Figures 1a and 1b. The IEEE 13-bus ADN includes two DFIG
wind generators (DG1 and DG3) of 150 kW connected at nodes 671 and 634, one wind farm with four DFIG
wind generators (DG3) of 1 MW capacity connected to node 675, and one PV unit (DG4) of 750 kW connected
at node 652. High DG penetration is achieved by modifying the IEEE 34-bus ADN to include IIDG at nodes
820, 822, and 844, asynchronous wind generators at nodes 848 and 890 and synchronous generators at nodes
840 and 864 [2]. Sensitivity analysis was performed to determine the optimal number of PMUs to minimize the
cost of utilities and the technical limitations associated with communication aspects [18]. PMUs at generation
sources provide current and voltage measurements for the fault location identification algorithm. As shown in
Figure 1, this results in 4 PMUs for IEEE 13-bus ADN and 9 PMUs for IEEE 34-bus ADN nearer to DER
throughout the network for constant monitoring. The dataset preparation using S-transform was performed in
the MATLAB/SIMULINK environment on a computer with a 32 GB RAM Intel Core i7 3.20 GHz processor
under various operating conditions as described in [2]. Two cycles of current and voltage waveforms obtained
from the PMU location for each fault/nonfault scenario are converted into a time-frequency pattern using the
DOST. The AFDDCNN is trained on these patterns as input to diagnose the fault in the ADN.

3. Proposed adaptive fault diagnostic methodology

3.1. Implementation and dataset preparation

ST utilizes progressive resolution with absolutely referenced phase and frequency information to generate a
time-frequency pattern for the given signal [22]. Eq. (1) computes the continuous ST for a given input signal
h(t).

S(τ, f) =
|f |√
2π

∞∫
−∞

h (t)e
−(τ−t)2f2

2 e−i2πftdt (1)
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Figure 1. (a) Investigated IEEE 13-bus ADN model with DG; (b) investigated IEEE 34-bus ADN model with DG.

Here, τ , f , and 1√
2

∞∫
−∞

e
−(τ−t)2f2

2 dt =
√
2π

|f | are the time, frequency, and Gaussian window functions, respec-

tively. This paper uses DOST, which localizes the spectrum while retaining beneficial ST phase features and
reducing redundancy in the time-frequency representation [23]. Eq. (2) provides an effective representation of
DOST.

S[v,β,τ ] [kT ] =
ie−iπτ

√
β

{ e
−i2π( k

N − τ
β )(v− β

2 − 1
2 ) − e−i2π( k

N − τ
β )(v+

β
2 − 1

2 )}
2Sin(π( k

N − τ
β ))

(2)

Here, v is a frequency variable representing the center of a frequency band, β indicates the frequency resolution,
and τ is a time variable that indicates the time localization. The following rules are applied to sample the
time-frequency space to ensure orthogonality: Rule 1: τ = 0, 1, . . . , β − 1 ; Rule 2: v and β must be
selected such that each Fourier frequency sample is used once and only once [22, 24]. Using octave sampling
with variable p representing the octave number p = 0, 1, 2, . . . , log2N − 1 the parameters (v, β, τ) change
for p > 1, p = 2, ..., log2 N − 1, β = 2 (p− 1) , τ = 0, 1, . . . , 2 (p− 1) − 1, v = 2(p − 1) + 2(p − 2) ,
which modifies Eq. (2). The current and voltage waveforms obtained when a line–ground (LG) fault occurs
at distribution line 3 (DL3) of the test system are shown in Figure 2a. The time-frequency pattern obtained
by applying DOST for the faulted phase current in the test system is shown in Figure 2b. Furthermore, the
time-frequency patterns obtained for all the phase voltage and current for a particular scenario act as labeled
input datasets to the AFDDCNN. Similarly, the test system can obtain the voltage, current, and time-frequency
patterns by simulating various operating conditions as mentioned in [2]. The dataset obtained with 50,000 fault
cases and 1,158 no-fault cases from EMTP-RV are used for training the AFDDCNN model. The fault cases
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include the labeled datasets of AG, BG, CG, AB, AC, BC, ABG, ACG, BCG, ABC, and ABCG at different
operating scenarios like DG1 out, DG2 out, DG3 out, DG4 out, DG1 and DG2 out, DG2 and DG3 out, DG1
and DG3 out, DGP-140, DGP-120, DGP-100, DGP-75, and DGP-40. On the other hand, the no-fault cases
include labeled datasets under normal operating conditions with different operating scenarios. Due to the rarity
of faults during normal operation, the resulting current and voltage signals present an unbalanced dataset for
classification. Therefore, the dropout regularization of the AFDDCNN model tackles overfitting issues that
arise during training if the classifier is trained using an imbalanced dataset.

The architecture of the adaptive fault diagnostic deep convolutional neural network (AFDDCNN) em-
ployed for fault diagnosis is shown in Figure 3 [25]. It has an input layer, five convolutional layers with dropout
regularization, three max-pooling layers, three fully connected layers, and an output layer. The vectorized
activation of a layer in the AFDDCNN is defined in Eq. (3).

A[L] = g[L](W [L] ∗A[L−1] + b[L]) (3)

Here, W [L] denotes a weight vector of the layer L, b[L] denotes a bias for layer L, ”∗ ” indicates the convolution
operation, and g[L] is an activation function for layer L. The hyperparameters for the proposed AFDDCNN
are determined based on Bayesian optimization and are listed in Figure 3. This involves finding the optimal
set of hyperparameters such as learning rate, batch size, number of layers, filters, filter sizes, and dropout
rate that yield the best performance for the fault diagnosis problem. The model adjusts its weights and
biases to minimize the gap between projected and actual outputs using the training set (60%), while Bayesian
optimization [26] utilizes the validation set (20%) to tune hyperparameters, and the test set (20%) evaluates the
trained model’s performance. By evaluating the model on the test dataset obtained using stratified sampling,
model performance is estimated and advanced with intelligent decisions [27]. The optimized hyperparameter
for training the proposed model utilizes a mini-batch size of 128 (27 ) with a learning rate of 0.0001 for 250
epochs.

(a) (b)

Time (s) Time (s)

Figure 2. (a) Current and voltage waveforms for LG fault in DL3 at t = 0.0222 s (θ = 130◦ , Rf = 0.01Ω , FL = 10%,
LVAR = 50%, DGP =100%); (b) DOST of faulted phase current.
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Figure 3. AFDDCNN architecture used for the proposed fault diagnosis

3.2. Fault detection and classification unit
The various steps in designing the proposed adaptive fault diagnosis framework are described in Figure 4. First,
the AFDDCNN1 trained using the labeled dataset determines whether the fault is a low-impedance fault (LIF)
or HIF. It consists of two convolution layers and a fully connected layer with two output neurons representing
whether the fault is HIF/LIF. Next, the fault detection/classification unit (AFDDCNN2) helps with exact fault
phase identification and classification. The fault detection and identification unit receives a time-frequency
representation of the current and voltage dataset from the PMU as input to the AFDDCNN2, as shown in
Figure 2. The proposed AFDDCNN2 architecture, as shown in Figure 3, utilizes five convolutional layers to
extract hidden feature maps from the given data. The output feature is reduced by dropout regularization
performed at the convolutional layer, preventing overfitting of the model.

Furthermore, the three maximum pooling layers described by Eq. (4) downsample the output features
and eliminate redundant information. In addition, a rectified linear unit (ReLU) described by Eq. (5) is
utilized as an activation function to get faster convergence and reduce the output feature. Eq. (6) represents
the categorical cross-entropy loss function used for the classification task in the fault diagnosis unit.

a
(l+1)
j = Pool

(
a
(l)
1 , . . . , a

(l)
i , . . . , a(l)n

)
, i ∈ R

(l)
j (4)

g(z) = max(0, z) =

{
z_i if z_i ≥ 0

0 if z_i < 0
(5)

L(ŷ, y) =
1

m

m∑
i=1

(ŷi − yi)
2

2
= − 1

m

m∑
i=1

n∑
j=1

((yij ∗ log(ŷij) + (1− yij)log(1− ŷij)) (6)
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Here, z = w ∗ x + b , yij is the actual distribution label and ŷij is the predicted output distribution
label from the AFDDCNN model. Finally, using convolution and pooling processes, three fully connected layers
judge the features once they are extracted and downsampled. In the last fully connected layer, 144 neurons
correspond to 132 faults and 12 no-fault cases. Furthermore, the softmax normalization expressed by Eq. (7)
at the output layer determines credible fault types based on the probability of a multiclass fault classification
problem.

F (Xi) =
exp(Xi)∑k
j exp(Xj)

i = 0, 1, 2, . . . ., k (7)

Figure 4. AFDDCNN architecture used for the proposed fault diagnosis

3.3. Fault location identification unit
The fault location identification unit (AFDDCNN3) recognizes the precise ADN’s fault location for different
instances and identifies the correct defective line. The AFDDCNN3 utilizes regression to identify the fault
location in the distributed line section from the pretrained model. The root mean squared logarithmic error
(RMSLE) loss function described in Eq. (8) is the objective function (OF) to be optimized throughout the
learning process of the regression AFDDCNN3 to minimize errors in the model.

L(F̂L, FL) =

√√√√ 1

m

m∑
i=1

(log(F̂L)− log(FL))
2

(8)
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Here, F̂L and FL are the predicted and exact fault locations, respectively. As the time-synchronized DL current
and voltage data include nondiscriminating data at different fault locations; AFDDCNN3 has an additional
convolutional layer to locate faults accurately. The output regression layer indicates the faulted DL section
(DL1, DL2, DL3, DL4, DL5, DL6, DL7, DL8, DL9, and DL10) with the exact fault location. The intelligent
protection unit utilizes this information to remove the faulty section without disrupting the other healthy DLs.

4. Proposed intelligent directional overcurrent protection unit
The ADN’s high DG penetration and dynamic load condition necessitate an intelligent relay algorithm with
multiple protective settings. Eq. (9) employs the fault current ratio obtained from current measurements to
evaluate the OT for the conventional DOCR utilized in the DS [16, 28].

Operating time t =
(λ ∗ TMS)

( IF
PS

γ − 1)
+ L (9)

Here, λ , γ , and L are the characteristic relay constants, and CS is the curve setting for the DOCR. In
Eq. (9), IF , PS, TMS indicates the fault current, plug setting, and time multiplier setting of the DOCR. One
of the challenges in ADN protection coordination is the need to consider multiple objectives, such as minimizing
protective device OT while maintaining system stability and minimizing power losses. With a directional feature,
the novel IDOCPS built using MLP and MOFFA employed in this paper enables different protective settings
for varying operating conditions. The architecture of an MLP with a hidden layer, input layer, and output
layers that utilize the Levenberg–Marquardt backpropagation learning method is shown in Figure 5a [29]. The
various relay settings for different operating modes are provided for the offline training of the MLP to select
the appropriate coordination setting for the given configuration.

The backpropagation algorithm enables the network to update its weights and biases to minimize errors
between the predicted and actual outputs during training. This iterative process continues until the network
converges to a state where the error is minimized. MOFFA is a variant of the FA used to solve optimization
problems with multiple objectives [30]. MOFFA is a bioinspired swarm intelligent optimization technique to
solve the proposed scheme’s multiobjective nonlinear coordination problem [30, 31]. In MOFFA, the basic FA
is modified to handle multiple OFs using Pareto dominance to determine the best solutions. MOFFA uses
a population of fireflies, each representing a candidate solution to the optimization problem. These fireflies
move towards brighter and better solutions, and the movement of the fireflies is based on the attractiveness
between them, which is determined by their relative fitness. These nondominated solutions form the Pareto
front, representing the optimal trade-offs between the different objectives. The multi-OF with n objectives is
given by Eq. (10) and is subjected to an inequality constraint gi ≤ 0; i = 1, 2, . . . , j and equality constraints
hi = 0; i = 1, 2, . . . , k .

Min f(x) = [f1 (x), f2 (x), . . . , fn (x)]T (10)

The structure of individual fireflies modified to represent the proposed intelligent directional overcurrent pro-
tection scheme (IDOCPS) is depicted in Figure 5b. MLP can learn from historical data and predict optimal
coordination settings, while MOFFA can search for optimal protection settings (DOCR) in the wide operat-
ing conditions of the ADN [32]. MLP is used to formulate the problem of optimal OCR coordination. After
formulating the problem, the TMS and NIDOCPSi of OCRs are determined using MOFFA. These values are
then utilized as the starting decision in MLP, which results in the global optimal solution. The parameters and
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stopping criteria for determining the MOFFA and MLP structure are represented in Figure 5c. An overview of
the proposed IDOCPS algorithm is shown in Figure 5d. The IDOCPS utilizes the data obtained from the short
circuit analysis of the ADN under various operating conditions [21, 23], the connection status of DG, primary
and backup protection settings of the upstream and downstream relay, and the output of the AFDDCNN. In
the IDOCPS, fireflies are chosen randomly, along with the operating constraint of protection coordination of the
DOCR. Each firefly determines the optimal relay setting for that operating mode. The firefly with a minimum
OF value is chosen as the best firefly, and the new protection settings are updated. Finally, the pretrained
MLP determines the optimal relay setting to minimize the OT for the particular operating mode and sends
the trip signal accordingly. Eq. (11) describes the main OF for optimizing the OT of the IDOCPS under
different operating conditions. Eqs. (12) and (13) indicate the fault current and NIDOCPSi computation by
the algorithm for the intelligent protection of the ADN. Eq. (11) is solved to get the minimum OT subjected
to the relay characteristic constraint of Eq. (14) and the coordination constraint of Eq. (15). The difference
between the backup relay (tBRIDOCPSkl ) and primary relay (tPRIDOCPSkl ) OTs must be optimized so that
the coordination time interval (CTI) is minimal [13, 14].

Minimize

m∑
i=1

Operating time tIDOCPSi =
(λi ∗ TMSi)

(Nγi

IDOCPSi − 1)
+ L =

1

m

m∑
i=1

(ŷi − yi)
2

2
(11)

NIDOCPSi =
(Ini − Ini−1)

IPickup
(12)

Ini =

m∑
i=1

(DGiStatus × IDGi + ILFAnodei) (13)

Imax
load ≤ NIDOCPSi ≤ Imin

fault (14)

Coordination T ime Interval (CTI) ≤ tBRIDOCPSkl − tPRIDOCPSkl (15)

Here, Ini is the postfault current, DGiStatus is the status of the DG connection, IDGi is the current contributed
by the DG, ILFAnodei is current without DG connection, IPickup is the pickup current, k is the configuration
index, l is the fault location and Ini−1 is the prefault current at the i th node of an ADN. The regression-based
IDOCPS adopts TMS and NIDOCPS with DG uncertainty and penetration to accurately predict intelligent
protection settings for each operating scenario. Based on the OT computed by Eq. (11), the IDOCPS generates
the trip signal to isolate the appropriate section of the ADN without affecting the healthy phase of the ADN.
When the primary relay fails to operate due to loss of communication, the backup relay acts after the time
delay and isolates the faulty section.

5. Simulation results and discussion
The competence of the fault detection/classification, fault location identification, and intelligent protection
units was evaluated based on investigations performed under various operating conditions [2]. The classifier
accuracy, dependability, security, recall, and F1-score for performance evaluation of the developed AFDDCNN
model were then calculated using the metrics indicated in Table 1 [2, 7, 21].
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Figure 5. (a) Architecture of the MLP. (b) Structure of individual firefly in proposed hybrid MLP-MOFFA scheme (c)
Parameter for determining the structure of MOFFA and MLP (d) Flowchart for the intelligent directional overcurrent
protection scheme (IDOCPS).

Table 1. Formulae for evaluation of performance metrics for the proposed AFDDCNN [2, 7, 21].

S. no. Performance metric Formulae
1 Accuracy (Ncf +Ncn)/(Ncf +Ncn+ Nwf +Nwn)
2 Dependability Ncf/(Ncf +Nwn)
3 Security Ncn/(Nwf +Ncn)
4 Recall Ncf/(Ncf +Nwf)
5 F1-score Ncf/(Ncf + 1/2(Nwf +Nwn))

Ncf - Number of correct fault conditions, Ncn - number of correct normal conditions, Nwf - number of wrong fault conditions,
Nwn - number of wrong normal conditions
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5.1. Performance evaluation of the proposed fault diagnosis technique for different fault scenarios

The proposed method’s effectiveness for detecting fault /no-fault scenarios using the ADN’s fault detection
unit (AFDDCNN1) is represented in Figure 6a. The suggested AFDDCNN1’s average accuracy, dependability,
security, F1 score, and recall value for HIF at 50% DG penetration in the ADN is 99.76%, 99.25%, 99.19%,
99.37% and 99.58%, respectively. The effectiveness of the proposed method for each fault type by fault
classification unit (AFDDCNN2) in the ADN is represented in Figure 6b. The accuracy, dependability, security,
F1 score and recall value for the AFDDCNN2 for 75% load variation in the ADN is 99.83%, 99.21%, 99.03%,
99.52%, and 99.47%, respectively. Hence, the overall accuracy of AFDDCNN1, AFDDCNN2, and AFDDCNN3
is 99.74%, 99.69%, and 99.58%, respectively. The error in locating precise faults in the DL is compromised
when fault resistance is increased, which is demonstrated by 6c. It can be observed that the percentage error
in locating fault ranges from 0.6% to 2% for fault resistance of 1000 Ω . The iterative prediction curve that
represents the development of both training and validation losses across the epochs for an AFDDCNN are
shown in Figure 6d; it was found that the prediction error rate was almost minimal when the number of
epochs approached approximately250. Table 2 presents the training and testing accuracy of the proposed fault
detection, classification and location unit and its comparison with the methodology suggested in [2]. It can
be inferred from Table 2 that the proposed approach does not overfit for fault diagnosis since the accuracy is
same across the two datasets. While a small drop in accuracy is to be anticipated between the training and test
datasets, it is nevertheless evident that the method does not overfit for fault diagnosis.
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Figure 6. Performance analysis using statistical indices for (a) the proposed fault classification unit (AFDDCNN2), (b)
the proposed fault detection unit (AFDDCNN1), (c) error in computing fault location by the proposed fault location
unit (AFDDCNN3), and (d) loss vs epoch curve for the proposed AFDDCNN.
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Table 2. Calculated fault detection, classification, and location units accuracy of the proposed AFDDCNN for the test
ADN and comparison with results obtained for intelligent fault diagnosis in [2].

Fault type
Fault detection accuracy Fault classification accuracy Fault Location accuracy

Proposed AFDDCNN1 DCNN[2] LSTM[2] Proposed AFDDCNN2 DCNN[2] LSTM[2] Proposed AFDDCNN3 DCNN[2] LSTM[2]
Training Testing Testing Testing Training Testing Testing Testing Training Testing Testing Testing

LG 99.73 99.65 98.19 99.61 99.83 99.58 97.73 98.61 99.78 99.52 98.02 98.87
LL 99.85 99.78 98.93 98.51 99.93 99.84 97.87 98.76 99.86 99.67 98.17 98.29
LLG 99.88 99.63 98.64 99.08 99.69 99.56 98.06 99.53 99.64 99.38 98.39 98.92
LLL 99.96 99.32 98.07 99.92 99.78 99.49 98.06 98.91 99.72 99.65 99.21 99.14
LLLG 99.91 99.59 98.79 98.3 99.85 99.67 98.22 98.03 99.57 99.48 98.83 98.27
HIF 99.87 99.76 98.16 99.12 99.74 99.31 96.88 97.79 99.69 98.97 98.62 97.36

DCNN - Deep convolutional neural network[2], LSTM - Long short-term memory[2].

5.2. Optimization results of the proposed intelligent protection technique

Table 3 indicates the variation of TSMPR1, TSMBR1, NPR1, NBR1, tPR1kl, tBR1kl of the IDOCPS for
primary and backup protection for each fault node (a-r) in a grid-connected IEEE 13-bus test system with
75% DG penetration. The variables (TMS, NIDOCPS ) were initialized using the values acquired after running
MOFFA for 1000 iterations, and the final values were determined using the MLP by determining the optimum
OF with the lowest OT from Eq. (11). The CTI and maximum/minimum OT parameters obtained by the
proposed scheme meet all OT criteria. Based on the proposed scheme, the backup protection relay for primary
relay R24 is R25, with OTs equal to 0.3976 s for R24 and 0.7142 s for R25, resulting in a CTI of 0.3166 s for a
fault at n that experienced miscoordination when using the conventional protection scheme. Relay R25 in the
proposed strategy has a forward characteristic devoted to a fault at o and a reverse characteristic dedicated to
a fault at m. Table 3 illustrates that both operating modes’ average primary and backup protection OTs are
0.3359 s and 0.5893 s for the test IEEE 13-bus ADN in grid-connected mode with 75% DG penetration. Hence,
the average OT of the IDOCPS for the modified IEEE 13-bus ADN is 0.4626 s for the grid-connected ADN.
Similarly, the primary and secondary protection settings were obtained for the islanded mode of operation of
the ADN. Table 4 indicates the variation of TSMPRI , TSMBRI , NPRI , NBRI , tPRIkl, tBRIkl of the IDOCPS
for primary and backup protection of the grid-connected IEEE 34-bus test system with 40% DG penetration.
It is observed from Table 4 that relay R7 takes 0.1710 s to operate for a fault at point d, 0.479 s at point b, and
0.8322 s at point a. In the event of a fault at point d, primary relay R7 activates first, whereas, in the event of
a malfunction at point b, relay R5 should be activated first. In the event of a failure, the tripping action should
be transferred to relay R7.

5.3. Response time of the algorithm

The training of each algorithm (AFDDCNN) using the input training dataset takes about 150 s for all operating
scenarios of the ADN. The fault diagnosis algorithm testing, DOST computation, and intelligent protection
took 10.123 ms, 4.321 ms, and 20.056 ms, respectively. The intelligent protection technique isolates faults for
a different ADN operating mode at an average OT of 34.5 ms, provided that parallel processing is used. The
simulation’s results complied with the time frame for building a real-time protection strategy with considerable
DG penetration.
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Table 3. Calculated protection setting and OT for different scenarios of the modified IEEE 13-bus ADN in grid-connected
mode with 75% DG penetration.

Fault location Primary relay Backup relay TSM PR1 NPR1 TSM BR1 NBR1 tPR1kl tBR1kl CTI
a R1 R0 0.256 2.543 0.596 2.27 0.33 0.6701 0.3401
b R2 R1 0.562 5.305 0.213 3.498 0.1238 1.0273 0.9035
b R3 R1 0.143 3.456 0.438 2.458 0.3692 0.682 0.3128
c R4 R2 0.129 2.477 0.634 2.157 0.4516 0.8309 0.3793
c R5 R3 0.123 3.488 0.364 3.118 0.3205 0.6462 0.3257
d R6 R1 0.697 4.278 0.157 3.514 0.4786 0.8596 0.381
d R7 R1 0.756 3.191 0.179 2.148 0.5213 0.8637 0.3424
e R8 R6 0.342 4.187 0.479 2.981 0.498 0.7601 0.2621
e,f R9 R6 0.245 5.383 0.5447 4.374 0.2369 0.931 0.6941
g R10 R1 0.921 6.282 0.456 5.546 0.2984 1.0194 0.721
g R11 R1 0.109 3.991 0.362 3.797 0.5466 0.8465 0.2999
h R12 R10 0.365 5.715 0.943 4.772 0.4266 1.1966 0.77
h R13 R11 0.375 4.898 0.496 4.188 0.1762 0.4714 0.2952
i R14 R12 0.623 3.292 0.849 2.854 0.3364 0.7895 0.4531
i R15 R13, R17 0.362 3.516 0.355 2.995 0.2546 0.627 0.3724
j R16 R14 0.2454 2.782 0.492 2.182 0.4695 0.8848 0.4153
j R17 R4 0.509 2.422 0.141 1.959 0.3291 1.1138 0.7847
k R18 R12, R15 0.169 8.887 0.055 7.127 0.4823 0.7182 0.2359
k R19 R13, R14 0.834 4.396 0.027 2.953 0.582 0.8483 0.2663
l R20 R18 0.219 5.249 0.454 5.434 0.2913 1.1765 0.8852
l R21 R19 0.169 4.091 0.154 3.112 0.3769 0.9035 0.5266
m R22 R10, R13, R26 0.774 3.989 0.315 2.684 0.5472 0.8954 0.3482
m R23 R11, R12, R25 0.056 3.494 0.59 1.924 0.2358 0.8612 0.6254
n R24 R11, R12, R25 0.519 5.249 0.198 3.768 0.3976 0.7142 0.3166
o R25 R10, R13, R27 0.171 5.842 0.251 4.896 0.2691 0.6977 0.4286
o R26 R11, R12, R28 0.863 7.689 0.519 5.247 0.4932 0.863 0.3698
p R27 R25, R29 0.455 8.254 0.171 6.716 0.3925 0.9268 0.5343
p R28 R26, R30 0.3678 3.956 0.863 2.384 0.2053 0.6682 0.4629
q R29 R9, R27 0.943 3.289 0.157 2.946 0.4909 0.9287 0.4378
q,f R30 R8 0.596 6.681 0.525 5.657 0.2143 0.9005 0.6862
r R31 R27, R30 0.213 2.549 0.463 2.932 0.4573 0.7538 0.2965

TSMPR1, TSMBR1, NPR1, NBR1, tPR1kl, tBR1kl Time setting, plug setting, and operating time for primary and backup relay
in intelligent protection for active 75% penetration of DG in IEEE 13-bus ADN.

6. Comparison with existing protection schemes

The effectiveness of the suggested fault diagnostic scheme and that of several machine learning and deep learning-
based fault detection and identification strategies outlined in the literature are compared in Figure 7a [3, 5, 6, 34].
According to the results, the suggested fault diagnosis approach for the ADN was more efficacious than other
AI-based methods documented in the literature. The suggested AFDDCNN detects and locates the fault with
excellent precision and speed. In addition to fault diagnosis, the intelligent protection scheme is also presented
for the test system. The overall OT of primary and backup protection of the protection scheme and of others
listed in the literature for the ADN are compared in Figure 7b [12, 16, 17, 35].

The proposed protection scheme has an average minimum primary OT of 0.2633 s and a backup time
of 0.4945 s. Table 5 compares the proposed IDOCPS and other protection schemes concerning the number of
input cases, fault location, and total OT. It can be seen that the proposed intelligent protection scheme takes
a wide variety of cases for training the model, eliminating the miscoordination issues faced in previous works.
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The results indicate that the proposed protection scheme’s effectiveness for the varying operating conditions
with high DG penetration is accurate and faster than other schemes.

Table 4. Calculated protection setting and OT for different scenarios of the modified IEEE 34-bus ADN in grid-connected
mode with 40% DG penetration.

Fault location Primary relay Backup relay TSMPRI NPRI TSMBRI NBRI tPRIkl tBRIkl CTI
d R7 R5, R11 0.247 6.053 0.994 3.946 0.171 0.456 0.285
d R8 R7, R10 0.517 8.925 0.714 8.391 0.234 0.479 0.245
i R22 R20, R24 0.958 7.22 0.158 6.349 0.109 0.396 0.287
i R23 R21, R24 0.369 1.946 0.316 5.681 0.188 0.365 0.177
k R29 R25, R30, R32 0.763 2.186 0.731 3.605 0.256 0.575 0.319
k R30 R26, R31,R33 0.174 4.321 0.342 2.137 0.223 0.562 0.339
q R49 R47, R51, R56 0.969 5.715 0.731 9.445 0.129 0.443 0.314
q R50 R48, R52, R56 0.765 8.607 0.52 3.273 0.113 0.378 0.265
s R53 R51, R55 0.286 6.781 0.367 5.72 0.113 0.423 0.31
s R54 R52, R55 0.853 2.018 0.593 3.504 0.238 0.497 0.259
v R62 R58, R61, R64 0.342 8.211 0.853 5.712 0.234 0.556 0.322
v R63 R59, R60, R64 0.158 5.37 0.554 2.948 0.164 0.342 0.178
o R66 R40, R41, R68 0.354 9.504 0.608 3.695 0.179 0.645 0.466
o R67 R65, R68 0.343 7.254 0.022 4.322 0.157 0.521 0.364

TSMPRI , TSMBRI , NPRI , NBRI , tPRIkl, tBRIkl Time setting, plug setting, and operating time for primary and backup relay
in intelligent protection for active 40% penetration of DG in IEEE 34-bus ADN.
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Figure 7. a) Comparative analysis of the proposed scheme with other fault detection algorithms. (b) Performance
analysis of the proposed protection scheme with other protection schemes.
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Table 5. Comparison of the average response time along with the number of cases considered in the existing protection
coordination scheme.

Reference Fault location Number of input cases considered Average response time (s)
[12] 32 314 0.4187
[13] - 37 31.650
[14] - 75 0.3891
[16] 10 2564 0.3773
[17] - 9280 0.4864
[35] 21 42 1.39375
Proposed scheme 200 51158 0.3457

7. Conclusion
With the help of adaptive fault diagnosis using deep learning and DOST, this paper has offered an intelligent
protection scheme (IDOCPS) with an MLP-MOFFA-based approach for optimum coordination of the DOCR
in ADNs. First, the AFDDCNN model developed in PyTorch was used to train and validate the fault
detection/classification and location identification units. Then, using the output of the AFDDCNN, the
intelligent protection scheme sent the trip signal to the appropriate section to isolate the faulty part from
the ADN. In the IDOCPS, the initial solution of OF was found using MOFFA, and the global optimal solution
was determined using the MLP. Thus, the suggested technique combines the benefits of MOFFA and the MLP
and eliminates their shortcomings. Both discrete and continuous TSMs and N were achieved using the suggested
OF set in current digital relays, greatly minimizing relay OTs and providing acceptable protective coordination
between relays. The proposed fault diagnosis algorithm’s major benefits are its quick response time (15 ms)
and adaptation under different DG penetration scenarios demonstrated on several faults and nonfault transients
simulated on the IEEE 13-bus ADN and IEEE 34-bus ADN through EMTP. The simulation results show that
the suggested technique produces faster protection of ADNs compared to the conventional method and heuristic
algorithm-based methods mentioned in the literature, and its performance is unaffected by changes in system
parameters. The significant advantages of this strategy are the trained model’s capacity to adapt protection
settings to network topology alterations and effectively isolate the fault for a larger DS depending on the
parameters obtained during training. The future scope of this work could entail the real-time implementation
of the intelligent coordinated protection scheme based on the results obtained from the proposed method and
stability analysis for the DS with high DG integration. In addition, the method can be extended to include
multiple PMU locations and compared to other deep learning methods.
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