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Abstract: In flight control systems, the actuators need to tolerate aerodynamic torques and continue their operations
without interruption. To this end, using the simulators to test the actuators in conditions close to the real flight is
efficient. On the other hand, achieving the guaranteed performance encounters some challenges and practical limitations
such as unknown dynamics, external disturbances, and state constraints in reality. Thus, this article attempts to present
a robust adaptive neural network learning controller equipped with a disturbance observer for passive torque simulators
(PTS) with load torque constraints. The radial basis function networks (RBFNs) are employed to identify the unknown
terms, providing information for the disturbance observer. Besides, the tuning parameters are chosen optimally by
adopting the grey wolf optimization (GWO) algorithm. The closed-loop system stability is also proven by the barrier
Lyapunov function (BLF) while the total uncertainties, including system dynamics, friction, and disturbance, are tracked
by the total estimation. Thus, the predetermined performance, robust behavior, and high-precision estimation are the
achievements of the presented controller for PTS. To confirm the ability of the proposed control idea, simulations are
provided. Furthermore, a comparison scenario is also considered to emphasize the supremacy of the proposed control
system.

Key words: Neural network, passive torque simulator, state constraint, disturbance observer, grey wolf optimization
algorithm, robust control.

1. Introduction
In real flight, the actuators which control the surfaces, rotors, and the moving parts of plane fins are exposed to
aerodynamic torques. The flight actuator system plays a key role in directing the flight equipment. Actuators
need to tolerate such aerodynamic torques and continue their operations without interruption. In order to
simulate real-world applications, the hardware in the loop (HIL) is a suitable solution since it may lead to
reducing the time and costs, and also mitigating the risks arising from field experiments [1, 2]. This is a
technique whereby real signals from the controller are synchronized with a test system simulating reality. Tests
and designs are carried out as if they were in the real world, using an iteration system. The HIL is used in the
academic research and technical fields, especially in the different dimensions of engineering, including aircraft
and aerospace industries [3, 4], power systems [5, 6], vehicle systems [7, 8], marine systems [9], robotics [10, 11],
telecommunications [12], and experimental mass and spring systems [13].

The PTS is one of the most important equipment in HIL systems, known as the aerodynamic load
simulator, and is based on the terms and trajectory of the flight, the aerodynamic load torque, or the forces
∗Correspondence: javad_keighobadi@yahoo.com
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acting on the flight control system. Parameter uncertainties, extra torque, torque resulting from nonlinear
friction, and disturbance are major factors affecting the performance of PTS that should be considered during
the design procedure. Considering different challenges in the simulator and controller design leads to increasing
the accuracy and efficiency of the designed system [14, 15].

Interesting and diverse research has been conducted with the use of aerodynamic load simulators based on
torque control. In [16], an adaptive robust control law is derived to control an electrical load simulator in which
an extended state observer is adopted to estimate the uncertainty. In [17], an actuator velocity input feedforward
compensating method is proposed for an electro-hydraulic load simulator. In [18], a robust control approach
considering nonlinearity and external active motion disturbance is utilized for a load simulator. In [19], a pitch
control approach is suggested to reduce aerodynamic loads and torque ripples for wind turbines. In [20], an
observer-based controller is employed for an electro-hydraulic load simulator using a dynamic surface approach
and a synchronous compensation is adopted to remove the actuator’s motion effects. In the framework of the
feedback linearization control, a neural network (NN)-based inversion scheme is applied to a hydraulic actuator
[21]. In [22], a torsion spring is designed by using the double torsion spring precompression method for a load
simulator with zero compensation. In [23], a desired model compensation-based active disturbance rejection
control is employed for an electro-hydraulic load simulator employing the theory of singular perturbation. In
[24], an iterative learning control of the proportional derivative (PD) type in parallel with a traditional PD
feedback controller is designed for an electric dynamic load simulator and adaptive learning gains is utilized to
repress random measurement noises and periodic disturbances. In [25], an adaptive backstepping controller with
a clustering-based fuzzy learning method is presented for the PTS against extra torque, friction, and parametric
uncertainties.

Unavoidably, real-world applications are encountered with state constraints. This factor is recognized as
a practical limitation that can be dealt with by the barrier Lyapunov function (BLF), as a beneficial solution.
This leads to hampering the transgression of constraints by considering log -type Lyapunov functions during the
stability analysis [26, 27]. Several symmetric and asymmetric BLF-based control schemes have been addressed
to guarantee the stability of the overall system subject to the state constraints [28–30].

As a considerable problem in the field of controller theory, choosing the control parameters effects
directly on the system performance. Recently, several meta-heuristic algorithms, such as African vultures
optimization algorithm (AVOA) [31] or particle swarm optimization (PSO) algorithm [32], were reported for
different applications to find optimal values of the control parameters. Moreover, the iterative learning-based
algorithm, as a powerful tool in regulating the controller gains, is also received great attention [33]. Therefore,
finding the optimal values of the control gains is also studied in this research accordingly.

Inspired by the above observation, this work aims to propose an optimal robust NN learning-based
controller for the PTS in the presence of uncertainties subject to the load torque constraint. The design structure
is formed by integrating NN with the disturbance observer in the framework of the BLF-based backstepping
algorithm while the grey wolf optimization (GWO) algorithm is employed to choose the optimal parameters of
the control structure. Thus, the contributions of this article can be highlighted as:

• In the framework of the backstepping method, a new robust NN constrained control scheme is proposed
for the PTS subject to the external torque and nonlinear frictions.

• A disturbance observer is integrated with NN to improve the performance of the system while the total
estimations are also provided.
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• In order to find the optimal values of the controller parameters, the grey wolf optimizer is adopted during
the process.

• The proposed idea confirms that the signals are bounded and the tracking error remains in the prespecified
bound during the process.

The rest of the article is structured as follows. Section 2 consists of two subsections: the dynamic equations and
the NN structure. Section 3 presents the proposed control law and the stability proof. Section 4 illustrates the
optimization algorithm. Section 5 describes the results of simulations. Finally, section 6 states the conclusion
of this paper.

2. Problem formulation
2.1. Modeling
Figure 1 depicts the schematic of PTS. To model the system, the voltage and current equations of the actuator
and torque motor are used and the torque eventuating from nonlinear friction is considered.

The actuator structure is also exhibited on the right side of Figure 1. The voltage and current formulas
related to the actuator are expressed by (1) and (2).

La
dia
dt

+Raia + Cbωa = ua (1)

Ja
dωa

dt
+Baωa + Tf + TL = Tea , Tea = Ctia (2)

Figure 1. The passive torque simulator.

In the above equations, Ja (Nm.s2/rad) denotes the actuator rotational inertia, ia (A) is the actuator
current, Ra (Ω) denotes the actuator resistance, La (H) stands for the actuator inductance, Cb (V.s/rad) repre-
sents the back electromotive force (back-emf) constant, the actuator rotational speed is described by ωa (rad/s) ;
ua (V ) denotes the actuator input voltage, the actuator viscous coefficient is written by Ba (Nm.s/rad) and
Ct (Nm/A) stands for the torque constant. The actuator electromagnetic torque, the load torque, and the
torque derived from the nonlinear friction are represented by Tea (Nm) , TL (Nm) and Tf (Nm) , respectively.
The left side of Figure 1 displays the structure of the torque motor. The equations of voltage and current of
the torque motor are formulated as:

Lm
dim
dt

+Rmim + Cbωm = um (3)
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Jm
dωm

dt
+Bmωm + Tf + TL = Tem , Tem = Ctim (4)

where Jm (Nm.s2/rad) denotes the torque motor rotational inertia, im (A) is the torque motor current, Rm (Ω)

denotes the torque motor resistance, Lm (H) stands for the torque motor inductance, the torque motor ro-
tational speed is described by ωm (rad/s) ; um (V ) denotes the torque motor input voltage and the torque
motor viscous coefficient is written by Bm (Nm.s/rad) . The motor electromagnetic torque are represented by
Tem (Nm) .

The PTS consists of a torque motor, actuator, and torque sensor which is observed in Figure 1. The motor
and the actuators are connected using a shaft to transfer torque to each other. Compared to the entire system,
the coefficients of inertia and damping related to the torque sensor are negligible. The load torque is expressed as:

Cs(θm − θa) = TL (5)

in such a way that Cs (Nm/rad) is the stiffness of the torque sensor. The angular displacement of the actuator
is represented by θa (rad) . The angular displacement of the torque motor is also described by θm (rad) .

The torque motor is in a control loop and the load torque (TL) is set by it on the reference torque (Tr) .
Assuming the reference torque (Tr) and the input voltage (um) are zero, the extra electromagnetic torque
(T∗

em) is extracted. Using Tr = 0 and um = 0 in (3) and (4) yields:

Lm
di∗m
dt

+Rmi∗m + Cbω∗
m = 0 (6)

Jm
dω∗

m

dt
+Bmω∗

m + T∗
f + T∗

L = T∗
em (7)

where i∗m (A) and ω∗
m (rad/s) are the torque motor current and torque motor rotational speed in the condition

that Tr and um are zero; the load torque and the torque derived from the nonlinear friction are represented
by T∗

L (Nm) and T∗
f (Nm) when Tr and um are zero. Diminishing (6) from (3) gives:

(im − i∗m)Rm + Lm
d(im − i∗m)

dt
+ Cb(ωm − ω∗

m) = um (8)

Considering dω∗
m

dt = θ̈∗m , dωm

dt = θ̈m , ω∗
m = θ̇∗m , and ωm = θ̇m , it is gained by subtracting (7) from (4):

Jm(θ̈m − θ̈∗m) +Bm(θ̇m − θ̇∗m) + Tf − T∗
f + TL − T∗

L = Tem − T∗
em (9)

Assuming that after establishing control TL equals Tr , in the conditions Tr = 0 we have T∗
L ≈ 0 , and by

placing in (5) we have θa = θ∗m , and yields:

Jm(θ̈m − θ̈a) +Bm(θ̇m − θ̇a) + Tf − T∗
f + TL − T∗

L = Tem − T∗
em (10)

Jm(θ̈m − θ̈a) = (Tem − T∗
em)−Bm(θ̇m − θ̇a)− Tf + T∗

f − TL + T∗
L (11)

(θ̈m − θ̈a) =
(Tem − T∗

em)

Jm
− Bm

Jm
(θ̇m − θ̇a)−

1

Jm
(Tf − T∗

f + TL − T∗
L) (12)
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By Multiplying Cs on each side of the (12), we have:

Cs(θ̈m − θ̈a) = Cs
(Tem − T∗

em)

Jm
− Cs

Bm

Jm
(θ̇m − θ̇a)−

Cs
Jm

(Tf − T∗
f + TL − T∗

L) (13)

Based on (5) and (13), one can write:

T̈L = Cs
(Tem − T∗

em)

Jm
− Bm

Jm
ṪL − Cs

Jm
(Tf − T∗

f + TL − T∗
L) (14)

Substituting Tem − T∗
em = Ct(im − i∗m) (obtained from (4)) into (14) yields:

T̈L =
CsCt(im − i∗m)

Jm
− Bm

Jm
ṪL − Cs

Jm
(Tf − T∗

f + TL − T∗
L) (15)

On the other hand, the electrical dynamics of the torque motor are faster in comparison with the mechanical

dynamics. Hence, Lm
d(im−i∗m)

dt can be neglected in (8):

(im − i∗m) =
um

Rm
− Cb

Rm
(ωm − ωa) (16)

Substituting (16) into (15) results in:

T̈L =
CsCt
Jm

(
um

Rm
− Cb

Rm
(ωm − ωa)

)
− Bm

Jm
ṪL − Cs

Jm
(Tf − T∗

f + TL − T∗
L) (17)

T̈L =
CsCt
Jm

um

Rm
− CsCt

Jm

Cb
Rm

(ωm − ωa)−
Bm

Jm
ṪL − Cs

Jm
(Tf − T∗

f + TL − T∗
L) (18)

Employing the first-order derivative of (5) in (18) gives the following result:

T̈L =
CsCt
Jm

um

Rm
− Ct

Jm

Cb
Rm

ṪL − Bm

Jm
ṪL − Cs

Jm
(Tf − T∗

f + TL − T∗
L) (19)

It can be rewritten as:

T̈L =
CsCt

JmRm
um − (

CtCb
JmRm

+
Bm

Jm
)ṪL − Cs

Jm
TL − Cs

Jm
(Tf − T∗

f − T∗
L) (20)

By defining f and placing T∗
L from (7) we have:

f =
Cs
Jm

(Tf − T∗
f − T∗

L) =
Cs
Jm

(Tf − T∗
em + Jmθ̈a +Bmθ̇a) (21)

To compute and simulate the nonlinear friction effect on torque, we employ the LuGre model. It explains
the behavior of the dynamic frictions such as viscous friction and Stribeck effect, variable static force, and
presliding displacement simultaneously [34]. Based on the LuGre model, the nonlinear friction effect on the
torque can be modeled through the following equations:

130



SAADAT et al./Turk J Elec Eng & Comp Sci

Tf = σ0z + σ1ż + σ2v (22)

in which

ż = v − σ0 |v|
g(v)

z (23)

g(v) = Fc + (Fc − Fs)e
−( v

vs
)
2

(24)

Based on the above explanations, σ2 is the viscous friction coefficient, σ1 denotes the damping term, σ0

is the stiffness of the bristles, g(v) represents the Stribeck effect, z is the average briste defection, vs is the
stribeck velocity, Fs stands for the static friction, and Fc describes the coulomb friction. The LuGre model
parameters are given in Table 1 [35].

Table 1. The parameters of LuGre model.

Parameter Value Unit
σ0 105 N/m
σ1

√
105 Ns/m

σ2 0.4 Ns/m
Fc 1 N
Fs 1.5 N
vs 0.001 m/s

Therefore, the below formula related to the output torque can be obtained as:

T̈L = −aṪL + bum − cTL − f (25)

where a = CtCb

JmRm
+ Bm

Jm
, b = CsCt

JmRm
and c = Cs

Jm
.

2.2. Neural network structure
Radial basis function networks (RBFNs) are recognized as a kind of artificial neural network adopted for various
tasks. The universal approximation and the fast learning speed are the key points for RBFN, distinct from
other NNs [36, 37]. As shown in Figure 2, the RBFN consists of the input layer, the hidden layer, and the
output layer. The activation function used in the hidden layer is determined by the distance of each input data
from the established centers and is utilized to approximate the output based on the input values as shown in
(26):

Q̂ = Γ̂T
1 ϕ =

n∑
i=1

m∑
j=1

Wi · ϕi(∥xi − cj∥) (26)

in which Γ̂1 is the estimated weight vector, ϕ is the nonlinear function of the inputs, n is the data number,
m denotes the number of neurons, xi = (x1, ..., xn) ∈ Rn represents the input data, cj = (c1, ..., cm) ∈ Rm is
the center of neurons, ϕi = (ϕ1, ..., ϕn) ∈ Rn stands for the activation function and Wi = (W1, ...,Wn) ∈ Rn

denotes the neuron weights.
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Figure 2. Structure of the RBFN

The Gaussian function is used to create the activation function as:

ϕi(∥xi − cj∥) = exp

(
− (∥xi − cj∥)2

2σ2

)
(27)

where σ describes the Gaussian function variance, which defines the degree of dispersion of the data. It should
be mentioned that in this paper, f1 is an unknown term, described by the structure of RBFN as f1 = Γ∗

1
Tϕ+ϵ1

in which Γ∗
1 is the optimal weight vector such that sup

∣∣f1 − Γ∗T
1 ϕ

∣∣ ≤ ϵ1 for any |ϵ1| < ϵm [39]. On the other

hand, since the optimal weight vector is not available, the estimated weight vector Γ̂1 should be obtained by
the adaptive law derived from the Lyapunov-based stability analysis. More details are given in the next section.

3. Control design algorithm and stability analysis
In this part, a robust adaptive BLF-based NN learning controller using a disturbance observer is proposed for
the PTS. By defining TL = x1 and ṪL = x2 , the system dynamics (25) subject to the external disturbance
d(t) can be expressed as:

ẋ1 = x2 (28)

ẋ2 = f1 − bu+ d(t)

where f1 = −ax2 − cx1 + f . The purpose of control design is to realize good tracking performance in such a
way that the output stays within |x1| ≤ kc . It is worth pointing out that the following assumptions and lemma
are employed in the stability analysis.
Assumption 1: The desired path xd

1(t) and its time-derivatives up to the required order satisfy |xd
1(t)| ≤ A0 <

kc and |xd
1
(j)

(t)| ≤ Aj in such a way that kc and Aj are positive constants.
Assumption 2 [38]: The total disturbance D1 , including the time-varying external disturbance d(t) and the

error of NN approximation ϵ1 , can satisfy |D1| ≤ϱ1 and
∣∣∣Ḋ1

∣∣∣≤ζ1 where ϱ1 and ζ1 are unknown positive

constants.
Lemma 1 [39]: For any positive constant ka , the following inequality holds for the interval |ω1| < |ka| :

log
k2a

k2a − ω2
1

≤ ω2
1

k2a − ω2
1

(29)
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Based on the backstepping algorithm [40], two steps are provided for designing the proposed controller as fol-
lows:
Step 1)
The tracking error is described as:

ω1 = x1 − xd
1 (30)

Choose virtual control as:

β1 = −k1ω1 + ẋd
1 (31)

in which k1 > 0 . The derivative of ω1 is obtained as:

ω̇1 = ẋ1 − ẋd
1 = x2 − ẋd

1 = ω2 + β1 − ẋd
1 (32)

Thus,

ω̇1 = −k1ω1 + ω2 (33)

Considering |ω1| < ka , we choose the Lyapunov function as:

V1 = 0.5 log(
k2a

k2a − ω2
1

) (34)

Using (32), the derivative of V1 is obtained as:

V̇1 =
ω1(ω2 + β1 − ẋd

1)

k2a − ω2
1

(35)

Employing (33) in (35) gives the following result:

V̇1 =
−k1ω

2
1

k2a − ω2
1

+
ω1ω2

k2a − ω2
1

(36)

Step 2)
The derivative of tracking error for the second subsystem is expressed as:

ω̇2 = ẋ2 − β̇1 = Γ∗T
1 ϕ+ ϵ1 + d(t)− bu− β̇1 = Γ∗T

1 ϕ+D1 − bu− β̇1 (37)

where D1 = d(t) + ϵ1 . The Lyapunov function is considered as:

V2 = V1 +
1

2
ω2
2 +

1

2
Γ̃T
1 γ

−1
1 Γ̃1 +

1

2
D̃2

1 (38)

where γ1 > 0 . Also, Γ̃1 and D̃1 are considered as Γ∗T
1 − Γ̂1 and D1 − D̂1 , respectively. Note that Γ̂1 is the

estimated NN weight vector and D̂1 is the disturbance observer, defined later. The derivative of V2 can be
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expressed as:

V̇2 =
−k1ω

2
1

k2a − ω2
1

+ ω2

(
Γ∗T
1 ϕ+D1 − bu− β̇1 +

ω1

k2a − ω2
1

)
− Γ̃T

1 γ
−1
1

˙̂
Γ1 + D̃1(Ḋ1 − ˙̂

D1) (39)

The control law is suggested as:

u =
−Γ̂T

1 ϕ− k2ω2 − ω1

k2
a−ω2

1
+ β̇1 − D̂1

−b
(40)

in which k2 > 0 . Hence,

V̇2 =
−k1ω

2
1

k2a − ω2
1

+ ω2(−k2ω2 + Γ̃T
1 ϕ+ D̃1)− Γ̃T

1 γ
−1
1

˙̂
Γ1 + D̃1(Ḋ1 − ˙̂

D1) (41)

However, the disturbance observer can be described as:

D̂1 = L1 (x2 − χ2) (42)

χ̇2 = Γ̂T
1 ϕ− bu+ D̂1 − L−1

1 ω2

where L1 > 0 and χ2 is an auxiliary variable. The derivative of (42) is obtained as:

˙̂
D1 = L1 (ẋ2 − χ̇2) = L1

(
Γ̃T
1 ϕ+ D̃1

)
+ ω2 (43)

Using (43) in (41), we have:

V̇2 =
−k1ω

2
1

k2a − ω2
1

− k2ω
2
2 + Γ̃T

1

(
ω2ϕ− γ−1

1
˙̂
Γ1

)
+ D̃1

(
Ḋ1 − L1

(
Γ̃T
1 ϕ+ D̃1

))
(44)

The adaptive law is chosen as:

˙̂
Γ1 = γ1

(
ω2ϕ− δ1Γ̂1

)
(45)

where δ1 > 0 . Employing Young inequality [41], we have:

D̃1Ḋ1 ≤ 1

2
D̃2

1 +
1

2
ζ21 (46)

−D̃1Γ̃
T
1 ϕ ≤ 1

2
ρ1D̃

2
1η

2
1 +

1

2ρ1
Γ̃T
1 Γ̃1

Γ̃T
1 Γ̂1 ≤ −1

2
Γ̃T
1 Γ̃1 +

1

2
∥Γ∗

1∥2

in which η1 and ρ1 are positive constants. Using (45) and (46) in (44), V̇2 is obtained as:

V̇2 ≤ −k1ω
2
1

k2a − ω2
1

− k2ω
2
2 −

(
δ1
2

− L1

2ρ1

)
Γ̃T
1 Γ̃1 −

(
L1 −

L1ρ1
2

η21 −
1

2

)
D̃2

1 +

(
δ1
2
∥Γ∗

1∥2 +
1

2
ζ21

)
(47)
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Thus, one can write:

V̇2 ≤ −AV2 +B (48)

where
A = min

{
2k1, 2k2, γ1

(
δ1 − L1

ρ1

)
, (2L1 − L1ρ1η

2
1 − 1)

}
and B = { δ1

2 ∥Γ
∗
1∥2+ 1

2ζ
2
1} . Thus, the uniformly ultimate

boundedness (UUB) stability of the closed-loop system is realized. According to the Assumption 1 and the
boundedness of ω1 , it is inferred that |x1| < ka + A0 ≤ kc . The block diagram of the proposed framework is
also exhibited in Figure 3.

Figure 3. The block diagram of the proposed framework.

4. Grey wolf optimizer

Grey wolf optimizer, as a meta-heuristic optimization algorithm, implements the mathematical model of the
leadership hierarchy and hunting mechanism of grey wolves in nature. The search procedure begins with consid-
ering a random population of grey wolves. The possible position of the prey is estimated by tuning the search
agents, including the number of iterations, beta, delta and alpha parameters. Each factor leads to updating the
distance of the wolf from the prey [42, 43].

The distance between the wolves and the prey is explained as follows:

G⃗ = |C⃗ · X⃗P (t)− X⃗(t)| (49)

X⃗(t+ 1) = X⃗P (t)− A⃗ · G⃗ (50)

in which X⃗ denotes the position vector of a grey wolf, X⃗P represents the position vector of the prey, and t

indicates the current iteration. A⃗ and C⃗ are coefficient vectors that are computed as:

A⃗ = 2a⃗ · r⃗1 − ā (51)

C⃗ = 2 · r⃗2 (52)

in which r⃗1 and r⃗2 are random vectors in [0, 1] that allow wolves to reach any position around the prey, and
a⃗ is employed to express approaching the prey that is linearly reduced from 2 to 0 during the optimization
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process. Using the error dynamics ω1 and ω2 , the cost function is also expressed as follows:

F =

∫ t

0

|ω1 + ω2|dt (53)

where t is the run time. As shown in Figure 4, the flowchart presents the performance of the GWO.

Figure 4. Flowchart of the GWO.

Remark 1: Increasing controller parameters k1 and k2 leads to achieving the small value for the tracking
error. However, large values of the aforementioned coefficients lead to growing the control input which may
violate the predefined bounds. Furthermore, increasing γ1 and L1 leads to improving the estimation task of
the control system.
Remark 2: Different from the relevant works on the PTS, our presented controller illustrates the following
properties:
1) In contrast with [45] and [46], better tracking performance is realized by deriving a new backstepping-based
robust learning control law instead of the conventional backstepping method.
2) Integrating NN with disturbance observer leads to improving the estimation purpose, which has not been
studied in [15, 47].
3) According to our knowledge, proposing a BLF-based learning controller for PTS has not been discussed before.

Remark 3: To show the efficacy of the current work in comparison with the given controller in [25], the
following points are highlighted:
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1) To enhance the robust behavior of the proposed controller, an NN-based disturbance observer is designed in
this study while it has not been addressed in [25].

2) The issue of output constraint is tackled by employing the BLF technique while it has not been studied
in [25].

3) Compared with [25], in which the control parameters were chosen by the trial and error technique, the
design parameters of this study are optimally tuned by adopting the GWO algorithm.
Remark 4: Apart from the reported advantages of the proposed controller (see Remarks 2 and 3), we can also
add the challenges of the proposed control scheme, which can be considered as future work. In the current work,
the constraint bound has been considered as constant values. In order to bring the proposed control framework
closer to real-world applications, the constraint bound needs to be considered as the time-varying values. Besides,
although the NN structure is a powerful approximator, this algorithm may increase the computational burden.
Thus, using the function approximation technique (FAT) can cope with this problem [44]. This issue can be
also studied in our future work.
Remark 5: Compared with [48], the tracking error of the proposed controller has remained within a narrower
bound. This is due to proposing a disturbance observer-based BLF control scheme, which has not been used in
our previous research. (It is worth noting that the predefined bound in the current work is set to 0.005 while
it was chosen as 0.01 in the previous research). In addition, by comparing the control signals of both control
approaches, it can be inferred that better tracking responses have been achieved by injecting less control effort.
Remark 6: The employed disturbance observer has a nonlinear structure due to the existence of term
Γ̂T
1 ϕ in which ϕ is the regressor matrix constructed by nonlinear activation functions derived from RBFNs.

Furthermore, it can be considered as an extension of the disturbance observer given by [49] since both approaches
need an auxiliary state, denoted by χ2 in (42), obtained from an adaptation mechanism. However, the current
disturbance observer is based on a model-free approach while the mentioned disturbance observer has a model-
based structure. The stability of the current disturbance observer has been proven along with the stability proof
of the proposed controller in a compact form. This leads to achieving UUB stability. On the other hand, as
given by (46), utilizing the Young inequality remains constant terms as δ1

2 ∥Γ
∗
1∥2 and 1

2ζ
2
1 , which prevent the

exponential stability in our proof. It is worth noting that the UUB stability is a well-known stability criterion
in the field of backstepping-based designs, as clearly found in the related literature [26], [38], [44].

5. Simulation results
As presented before, the first section is dedicated to the model description, which leads to obtaining the output
torque equation as mentioned in (25), and also neural network (NN) structure (26). After that, the modeling
equation is written in the form of (28), which is used as the system dynamics for the control design and
simulations. Besides, f1 is considered as an unknown term in (28), which is approximated by the NN structure.
Thus, inspired by the (26), the approximated term is modeled as f̂1 = Γ̂T

1 ϕ in the design procedure. Therefore,
using the virtual input (31), the control input (40), the disturbance observer (42), and the adaptive law (45),
the results of the simulation are achieved in this part. The system parameters are borrowed from [45], given as
Cs = 950 , Ct = 5.732 , Cb = 5.732 , Jm = 0.04 , Rm = 7.5 , Bm = 0.244 . The initial conditions are set to zero
for the state variables x1 and x2 . The input signals for the neural network structure are the state variables x1

137



SAADAT et al./Turk J Elec Eng & Comp Sci

and x2 , as defined by (28). Three centers cj , are evenly spaced in [−1, 1]× [−1, 1] and the variance is set to 2

to form the activation function. Note that the RBFN weight Γ̂1 is updated by the adaptive law, given by (45).
The control parameters are tuned by the GWO algorithm as k1 = 2.887 , k2 = 3.490 , γ1 = 11.218 , δ1 = 0.115 ,
and L1 = 4.255 . Figure 5 presents the best optimal value of the defined cost function found by GWO. In order
to test the capability of the disturbance observer utilized in the proposed controller design, white noise with a
variance of 0.1 is considered during the operation.

The results of the control system are presented in the first subsection, and then, a comparison scenario
with a relevant method [45] is given in the second subsection.

Figure 5. The best optimal value of the defined cost function.

5.1. The results related to the proposed control law
To achieve the proper performance in tracking the desired torque, estimation of the uncertainties caused by
additional torque, nonlinear friction, and parameter uncertainties along with the estimation of the disturbances
applied to the system, plays an important role.

Following this point, the disturbance observer-based neural network learning method is employed to
estimate the uncertainties. By adding a neural network learning structure and disturbance observer to the
BLF-based backstepping design, the control law is formed to inject into the PTS for tracking the desired
torque. Thus, the results are recorded in Figures 8-12. The result of total uncertainty estimation including
extra torque, external disturbance, and the torque due to nonlinear friction is shown in Figure 6.

The torque tracking response is exhibited in Figure 7. The difference between the torque resulting from
the proposed method and the desired torque is considered as a tracking error (ω1 ), which is observed in Figure
8. In addition, the performance of the second error surface (i.e. ω2 ) is also given in Figure 8. The well-behaved
control signal is represented by Figure 9. From the results given by Figures 8-10, it can be deduced that the
suggested control law provides satisfactory performance both for tracking and estimation purposes. Changing
the Ka value and its effect on the tracking error are shown in Figure 10. From this figure, it can be found that
the tracking error is restricted based on the Ka value, indicating the constraint of the load torque.
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Figure 6. The approximation of total unknown terms.

Remark 7: The total uncertainty is DT = f1 + d(t) while the total estimation is D̂T = Γ̂T
1 ϕ + D̂1 . Since

NN and disturbance observer are sharing data, it cannot be precisely determined whether Γ̂T
1 ϕ can identify

f1 . Thus, the goal of the proposed control scheme is gained from the estimation point of view, if the total
estimation D̂T can follow the total uncertainty DT with high accuracy. As a result, the estimation task is also
confirmed by Figure 6.
Remark 8: According to Figure 10, while the predetermined bound becomes narrower, from 0.01 to 0.0025,
no violation occurs. This shows the ability of the proposed control law with respect to constraint control.

5.2. Comparison scenario

In this subsection, the performance of the presented control system is compared with the results obtained from
a relevant control technique [45]. The tracking performance of both methods is depicted in Figure11. It can
be deduced that the tracking error of the proposed method stays within the predefined bound while the result
obtained from [45] violates the bound. In other words, our proposed method is successful in realizing the load
torque constraint.

Figure 7. Tracking response by applying the proposed method: TL (solid line), Tr (dash line).
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Figure 8. Torque tracking errors after applying the proposed method.

Figure 9. Control effort.

Figure 10. Comparison of tracking error affected by different values of ka .
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Figure 11. Comparison between the proposed control system and [45] in view of tracking performance.

6. Conclusion
This research presents an adaptive robust constrained control law for passive torque simulators in the presence
of parametric uncertainties, nonlinear friction, and extra torque. Besides, an adaptive RBFN shares the
information with the designed disturbance observer to approximate total uncertainties. This leads to promoting
the robust performance of the system. The boundedness of the signals in the overall system is ensured using the
Lyapunov theorem. The supremacy of the proposed control framework to the conventional control methods is
also exhibited by the simulations. In the future, we will study the effects of actuator fault and input constraints
on the performance of PTS, simultaneously. In addition, we can employ the quadratic program-based safety
constraint methodology to upgrade our constraint-based design as a future work [50].
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