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Abstract: Breast cancer is a prevalent form of cancer across the globe, and if it is not diagnosed at an early stage it can
be life-threatening. In order to aid in its diagnosis, detection, and classification, computer-aided detection (CAD) systems
are employed. You Only Look Once (YOLO)-based CAD algorithms have become very popular owing to their highly
accurate results for object detection tasks in recent years. Therefore, the most popular YOLO models are implemented
to compare the performance in mass detection with various experiments on the INbreast dataset. In addition, a YOLO
model with an integrated Swin Transformer in its backbone is proposed for mass detection in mammography images
within the study. The performance of YOLOv5 models and a transformer-based YOLO model is compared to that of
each other and YOLOv3 and YOLOv4 models using images with different sizes on the INbreast dataset. The best results
are obtained by the transformer-based YOLO model of YOLOv5 for 832 x 832 image size. In another experiment, we
compared the default anchors against the anchors provided by the YOLOv5 autoanchor function before training and saw
that the anchors generated by the YOLOv5 autoanchor increased the success rates. Furthermore, various experiments
were conducted to observe how data augmentation affects performance. Although a small amount of data was used in

the study, high performance was obtained by YOLO algorithms, which are promising tools for cancer detection.

Key words: Breast cancer, deep learning, YOLO, computer-aided detection, transformer-based YOLO, data augmen-

tation

1. Introduction

Breast cancer ranks among the most prevalent types of cancer worldwide. Globally, breast cancer was diagnosed
in 2.3 million women and 684,996 deaths occurred in 2020 [1]. In 2023, it is estimated by the American
Cancer Society that there will be approximately 300,590 (297,790 cases in women and 2800 cases in men)
new breast cancer cases and 43,700 deaths from breast cancer among the US population [2]. Although breast
cancer sometimes occurs after the onset of symptoms, many breast cancer cases do not show symptoms. Early
detection of breast cancer is crucial and regular screening plays a vital role in achieving it [3]. Various medical
imaging techniques are employed to assist in the detection of breast cancer, such as mammography (MG) [4],

magnetic resonance imaging (MRI), positron emission tomography (PET), computed tomography (CT) [5],
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breast thermography (BT) [6], histopathology (HP) [7], and ultrasound (US) [8, 9]. Among them, MG with a
low-dose X-ray is the most prevalent [3]. A mammogram scan takes two images for each breast from two views:
craniocaudal (CC) and medial-lateral oblique (MLO) [10]. The cancer level is evaluated by radiologists utilizing
the Breast Imaging Reporting & Data System (BI-RADS). This system classifies results numbered from 0 to 6
[11]. However, the large number of evaluations performed by radiologists and the complexity of MG can lead
to misdiagnosis [12].

Computer-aided detection (CAD) systems have helped clinicians in diagnosis, detection, and classifying results.
Nevertheless, the biggest challenge when using CAD to detect MG anomalies is the high false-positive rate.
False-positive results cause anxiety in patients, extra exposure to radiation, redundant biopsies, high medical
costs, high call-back rates, and further evaluations. Thus, the current CAD systems should be improved for
more accurate and robust detection by avoiding these limitations.

Recent advances in computer technology, machine learning, and imaging technologies and the widespread
adoption of digital MG imaging have contributed to solving the complex problem of early detection of breast
cancer by deep learning (DL) techniques. In addition, DL methods, especially convolutional neural networks
(CNNs), have received significant interest in CAD for digital MG imaging due to their ability to overcome the
limitations of CAD models. CNNs lead to better detection performance than CAD models and aid radiologists in
identifying and diagnosing potentially malign lesions. CNN models aim to enhance the capability of radiologists
to identify breast cancer in its early stages, even in small lesions, and to notify them for additional analysis [12].
Technologies for detecting objects using DL methods are at the core of the state-of-the-art CAD systems for
the prospective generation. Acting as decision-making assistants, object detection algorithms are expected to
mark/emphasize the lesions and abnormalities in MG images. Since false discoveries and misses pose a great
risk in diagnostic processes, it is crucial to maximize the detection and classification performances for MG
images. The You Only Look Once (YOLO) class of object detection algorithms has become a very popular
approach not only in general object detection tasks but also in the field of mass detection in mammograms,
due to their accuracy and flexibility [13]. Different versions and settings of YOLO algorithms might have
substantial variations in detection performance; hence, it is critical to assess the performance of these models

in mass detection.
In the present study, we used the INbreast dataset for training and testing, and we did not do any preprocessing

except for converting images from DICOM to JPEG format. Then we utilized YOLOv3, YOLOv4, and YOLOv5
models and the different variations of YOLOv5 models (YOLOv5s, YOLOv5m, YOLOv5], and YOLOv5x) and
compared the performance of these models. Since Aly et al. [13] indicated that YOLOv3 outperformed YOLOv1
and YOLOv2 models, no separate comparisons were conducted with YOLOv1 and YOLOv2. The backbone of
YOLOVS5 has been modified by integrating the Swin Transformer and has also been employed for the first time in
the detection of masses from MG images. We also performed another experiment to observe the effect of anchor
production using the K-means clustering algorithm, according to the trained data. In our last experiment, we
observed the performance effect of data augmentation. The present article is structured as follows: Section 2
presents an overview of related research on the detection of breast cancer; Section 3 details the methodology
used in the present study; Section 4 outlines the experiments and presents the results obtained; and, finally, the

conclusions are given in Section 5.
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2. Related work

Various neural network models have been investigated by researchers in recent years for detecting and classifying
malign and benign lesions associated with breast cancer. Studies utilizing different imaging methods such as
HP and US are also present in the literature. However, in the present study, the focus of the literature review
is on MG since mammogram data are used.

Ribli et al. [14] created a CAD system utilizing the Faster R-CNN model for the detection and classification
of breast lesions within the INbreast dataset. The lesions were categorized as either malign or benign. Peng et
al. [15] proposed a method for mass detection by integrating the Faster R-CNN architecture with a multiscale-
feature pyramid network.

Al-Masni et al. [16] suggested a CAD system that utilizes YOLO for the automatic detection and classification
of masses using mammograms. The system was trained and tested on images selected from the Digital Database
for Screening Mammography (DDSM) dataset, with equal representation of benign and malign classes. Al-antari
et al. employed YOLO for mass detection in mammograms, as referenced in [17, 18]. In their 2018 study [17],
they presented a CAD system. YOLO was utilized for detecting and localizing masses. Subsequently, a full
resolution convolutional network (FRCN) was employed for segmenting the detected masses, followed by the
classification of segmented masses into benign and malign categories using a pretrained CNN based on the
AlexNet architecture. In a later work [19], Al-antari et al. enhanced the model introduced in [17] with refine-
ments in the classification and segmentation phases. In another study [20], they conducted similar research.
Firstly, a YOLO detector is employed and assessed for the detection of breast lesions in complete mammograms.
Subsequently, regular feedforward CNN, ResNet-50, and InceptionResNet-V2 are adapted and evaluated for the
task of classifying breast lesions. The performance of the proposed system was tested on two databases: DDSM

and INbreast.
Djebbar et al. [21] introduce an innovative CAD system based on the YOLOv3 architecture. This YOLO-based

CAD system is capable of simultaneously conducting detection and classification within a unified framework.
Despite its slightly larger size compared to previous models, this system exhibits improved accuracy. Aly et
al. [13] suggested an end-to-end YOLO-based model for detecting masses and categorizing benign and malign
lesions. YOLOv1, YOLOv2, and YOLOv3 were employed to automatically detect masses and compare their
performance on the INbreast dataset. Furthermore, they reported that utilizing K-means to create anchors im-
proved the detection performance of their model. Finally, the classification performance was compared between
YOLO, ResNet, and Inception networks on the INbreast dataset for various resolutions. Additionally, YOLO-v3
integrated with K-means clustering for anchors and data augmentation techniques improved the performance
even on challenging samples.

Baccouche et al. [22] present an end-to-end system that utilizes the YOLO model to achieve simultaneous
detection and classification of breast lesions in mammograms. The initial stage of the proposed system involves
preprocessing the images, after which it proceeds to detect anomalous regions suggestive of breast lesions and
subsequently categorizes them based on their pathology, classifying them as either masses or calcifications. The
performance of this model was evaluated on three datasets: CBIS-DDSM, INbreast, and a privately collected
dataset containing 487 mammograms. In another study, Baccouche et al. [23] introduced a YOLO-based fu-
sion model for detecting and classifying breast lesions in current mammograms. They expanded this model’s
application by retrospectively implementing it on synthetic mammograms. These synthetic mammograms were
generated through image-to-image translation models like CycleGAN and Pix2Pix, aiming for early cancer pre-

diction based on previous mammograms. The evaluation results demonstrated the effectiveness of the proposed
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methodology in detecting and classifying breast lesions on current mammograms.

Hamed et al. [24] introduced a CAD system based on YOLOv4, employing a 2-path detection approach for
masses in both full and cropped mammograms. The masses were subsequently classified as benign or malign.
Zhao et al. [25] suggested a YOLOv3-based CAD system for mammogram detection consisting of three main
steps: preprocessing, YOLOv3-based DL model, and model evaluation. They combined detecting the position
of masses and classification tasks for microcalcification, mass, benign, malign, and other classes. Their proposed
model has three models for training on the CBIS-DDSM dataset: general used all images, mass used only mass
samples, and microcalcification used only microcalcification samples. The YOLOv3-based CAD system achieved
high performance and ensured a robust model for lesion detection and various classification tasks. Kolchev et
al. [26] compare the performance of the YOLOv4-based CNN model and Nested Contours Algorithm (NCA)
for lesion detection. They used the INbreast dataset and augmented the data with the mosaic method. In
the training of YOLOv4 1080 images were used; besides 200 proven images were employed in testing models
with the same number for each class: breast cancer and absence. Although the NCA performed better than
YOLOv4, YOLOvV4 has a lower false-positives rates. Therefore, they suggest a hybrid model with YOLOv4 and
NCA to get more accurate and robust results.

Yasir et al. [27] employed cutting-edge object detection models, specifically YOLOv5 and Mask RCNN. The
YOLOv5 model was utilized for detecting and categorizing masses as either benign or malign. On the other
hand, Mask RCNN was applied to identify tumor edges that extend into the breast parenchyma, along with
determining tumor sizes. The model was trained on the INbreast dataset using a combination of YOLOv5 and
Mask RCNN. The performance of this proposed model was assessed by comparing it to the original version of
YOLOv5. Hassan et al. [28] present a model based on YOLOv4 for mass detection and classification. Their
study explores the performance of various augmentation techniques, including the newly introduced mosaic
technique, within the YOLOv4 framework. Additionally, they enhance the detection accuracy by transforming
the images into a multichannel format during the preprocessing phase, resulting in an approximate improvement
of nearly 10%. The evaluation of the model involves experimenting with different combinations of augmentation
techniques. The experiments are conducted using the INbreast and MIAS datasets. For the INbreast dataset,
the results demonstrate that the combination of mosaic with YOLOv4 yields the best performance.

Zhang et al. [29] have proposed an anchor-free-YOLOv3 network for mass detection in mammograms. To miti-
gate the issues caused by using Mean Squared Error (MSE) as the box regression loss, a Generalized Intersection
over Union (GIoU) loss has been adopted for training bounding box regression. For objectness prediction loss,
"focal loss” has been used, which can prevent network deterioration caused by a large number of easy negatives.
Additionally, a new feature fusion method called the summation method has been designed and employed in the
top-down pathway. Comparative experiments were conducted on two databases, the publicly available INbreast
dataset and the private TXMD dataset. Su et al. [30] introduced a YOLO-LOGO model to detect and segment
masses by combining YOLO and LOGO (local-global) networks. The first step of the YOLO-LOGO model
is implementing the YOLOV5L6 model for detecting mass locations and cropping masses from MG images.
Afterward, the LOGO training method was adapted to separately train global and local transformer branches
on both whole and cropped images. Then the segmentation decision was made by merging the two branches.
Thus, LOGO enhanced the balance of the model performance for training and segmentation. The CBIS-DDSM
and INbreast datasets were used to test the effectiveness of the proposed YOLO-LOGO model.

1297



COSKUN et al./Turk J Elec Eng & Comp Sci

Kamran et al. [32] introduced novel U-net-shaped transformer-based architecture (SWIN-SFTNet) based
on transformers that surpasses the performance of existing architectures in the segmentation of micromasses
in breast MG. The CBIS-DDSM and INbreast datasets were utilized in the study. In 2022, Chen et al. [33]
introduced a Multiview Vision Transformer architecture that can independently capture patch relationships
among four mammograms obtained from two different views (CC/MLO) of breasts from both sides (right/left),
using both local and global transformer blocks. The transformer-based model they proposed was tested on a
private dataset. Betancourt Tarifa et al. [31] have developed and conducted experiments involving transformer-
based models for the purpose of mass detection in mammograms. They utilize the Swin Transformer as a
backbone multiscale feature extractor. The OMI-DB dataset was utilized in the study. Lu et al., Yang et al.,
and Vasanthi et al.[34-36] proposed a novel detection model that integrates the Swin Transformer and YOLO.
In [34], Swin Transformer-YOLOv5 was proposed for the real-time detection of wine grape bunches. In [35], the
model was proposed for surface defect detection. That study focuses on enhancing the capability of capturing
long-range semantic information through the introduction of the Swin Transformer Block in the design of the
C3STR module, built upon the foundation of YOLOv5. The utilization of the lightweight attention module,
Coordinate Attention (CA), in the CAHead structure further contributes to the fusion of feature information.
The combined benefits of the ST and CA module result in improved detection ability, particularly for small
objects, leading to an overall enhancement in detection performance. In order to address the visual challenge
of detecting small-scale objects, a YOLOv5X-transformer model was introduced [36]. In this architecture,
the Multihead-Self-Attention module is employed to extract comprehensive details from the feature maps.
Subsequently, the obtained feature maps are aggregated across five distinct scales through Spatial Pyramid
Pooling-Faster (SPPF), enhancing the feature map’s overall quality. For preserving spatial information and
accurate pixel localization, the Path-Aggregated Network (PANet) is employed as the neck model.

The details of the summarized studies in this section are also presented separately in Table 1.

Table 1. Related work.

References Year Dataset Methods Performance

Al-Masni et al. 2017 DDSM YOLO Detection accuracy: 96.33%, Classification ac-

[16] curacy: 85.52%

Ribli et al. [14] 2018 DDSM, Faster R-CNN AUC = 0.95 Malignant lesion detection: 90%,
INbreast, with only 0.3 FP marks per image in the IN-
Private breast dataset
dataset

Al-antari et al. 2018 DDSM FCNN, YOLO Detection accuracy: 99.7% Classification ac-

(18] curacy: 97%

Al-antari et al. 2018 INbreast YOLO, FrCN, Detection accuracy: 98.96% F1-Score: 99.24%

[17] DCNN Mass segmentation: Accuracy: 92.97% F1-

Score: 92.69%

Djebbar et al. 2019 DDSM YOLO Detection accuracy: 97%, Classification accu-

[21] racy: 96.7%

Peng et al. [15] 2020 CBIS- Faster R-CNN, CBIS-DDSM: TPR of 0.93 at 2.28 FP per im-
DDSM, ResNeXt-101 age, INbreast: TPR of 0.95 at 0.3829 FP per
INbreast image
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Al-Antari et al. 2020 INbreast YOLO, FrCN, Detection accuracy: 92.97%, Segmentation
[19] DCNN, Regu- accuracy: 92.97%, Classification accuracy:
lar  Feed-forward CNN: 88.74%, ResNet-50: 92.56%, and
CNN, ResNet-50, InceptionResNet-V2: 95.32%
InceptionResNet V2
Al-Antari et al. 2020 DDSM, IN- YOLO, feed- Detection accuracy: DDSM: 99.17%, IN-
[20] breast forward CNN, breast: 97.27%, F1-Score: DDSM: 99.28%,
ResNet-50, Incep- INbreast: 98.02%, Classification accu-
tionResNetV2 racy: DDSM: CNN: 94.50%, ResNet-50:
95.83%, InceptionResNet-V2: 97.50%, IN-
breast: CNN: 88.74%, ResNet-50: 92.55%,
InceptionResNet-V2: 95.32%
Aly et al. [13] 2020 INbreast YOLO, ResNet, In- Detection accuracy: 89.4%, Classification:
ceptionNet YOLO: Average precision for benign: 94.2%,
for malign: 84.6%, ResNet: 91.0%, Incep-
tionV3: 95.5%
Baccouche et al. 2021 CBIS- YOLO Mass detection accuracy: CBIS-DDSM:
[22] DDSM, 95.7%, INbreast: 98.1%, Private dataset:98%
INbreast,
Private
dataset
Hamed et al. [24] 2021 INbreast YOLO, ResNet, Mass detection accuracy: 97.86%, Classifica-
VGG, Inception tion accuracy: 91%
Zhao et al. [25] 2022 CBIS- YOLO Mass detection accuracy: 97.77%, Mass clas-
DDSM sification accuracy: 98.12%
Hassan et al. [28] 2022 INbreast, YOLO Detection: INbreast: mAP: 99.5%, Precision:
MIAS 98%, Recall: 94%, MIAS: mAP: 95.28%, Pre-
cision: 93%,Recall: 90%
Baccouche et al. 2022 Private YOLO, CycleGAN  For mass: Accuracy: 94%, Precision: 94%,
[23] dataset Recall: 94%, Sensitivity: 95%, AUC: 95
Kolchev et al. 2022 INbreast, YOLO, Nested YOLOv4: Precision: 85%, Recall: 60%, F1-
[26] Private Contours Algo-  Score: 70%, NCA: Precision: 59%, Recall:
dataset rithm (NCA) 93%, F1-Score: 72%
Yassir et al. [27] 2022 INbreast YOLO, Mask Sensitivity: 95%, Specificity: 97%, Preci-
RCNN sion: 91.08%, mAP: 95.20% Accuracy: 98%,
MCC:92.02%
Zhang et al. [29] 2022 INbreast, YOLO INbreast: TPR: 0.95, FP: 1.7, TXMD: TPR:
TXMD 0.94, FP: 5.75
(Private
dataset)
Su et al. [30] 2022 CBIS- YOLO, Local- Detection mAP: CBIS-DDSM: 65, INbreast:
DDSM, Global (LOGO) 61.4 Segmentation F1: CBIS-DDSM: 74.52,
INbreast Networks INbreast: 69.37
Kamran et al. 2022 CBIS- Swin-SFTNet Segmentation Dice-score: CBIS-DDSM:
[32] DDSM, 3.10%, INbreast: 3.81%, CBIS pretrained
INbreast model tested on INbreast: 3.13%
Chen et al. [33] 2022 Private Multiview  Vision AUC = 0.818
dataset Transformers
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Lu et al. [34] 2022 Wine Faster R-CNN, Faster R-CNN: mAP: 53.54%, F1-Score: 0.67,
Grape YOLO, Swin-T- YOLOv3: mAP: 78.93%, F1-Score: 0.72,
Dataset YOLOv5 YOLOv4: mAP: 83.45%, F1-Score: 0.76,

YOLOv5: mAP: 93.64%, F1-Score: 0.83,
Swin-T-YOLOv5: mAP: 97.19%, F1-Score:

0.89
Yang et al. [35] 2023 NEU, ST-CA YOLOv5 AP: on NEU: 43.3, on DAGM2007: 65.9, on
DAGM2007, RSDDs: 50.6
RSDDs
Vasanthi et al. 2023 PASCAL, YOLO PASCAL: mAP: 87.7%, Precision: 85.2%, Re-
[36] VOC call: 81.4%

3. Methodology
3.1. You Only Look Once (YOLO)

There are two approaches for detecting objects: a one-stage detector and a two-stage detector. The object
detection models are built in such a way that they first extract the features of the input images through the
backbone. Then the features are passed on to the object detector, which consists of the detector neck and
detector head. The neck in object detection models serves as a feature aggregator, responsible for merging
and blending the features generated by the backbone, in preparation for the detection step carried out by the
head. The difference between these approaches is that the detection responsibility, including the localization and
classification of each bounding box, is on the head. A two-stage detector performs these two tasks independently
and merges the results (sparse detection), while a single-stage detector applies them simultaneously (dense
detection). YOLO is a one-stage detector [37].

The goal of YOLO is to create a single model for all stages of a neural network. YOLO calculates all the features
of the image and makes predictions for all objects simultaneously, in place of repeating the classification of
disparate areas of the image. The basic idea behind YOLO is to apply S x S cells to the image. When an object
is present in an image and the center of that object falls inside a particular grid cell, then it is the responsibility
of that grid cell to detect that object [37]. Each grid cell is also responsible for class probabilities and predicting
the bounding boxes (B) with the confidence scores for those boxes. Every bounding box is composed of 5 values
of (x, y, w, h) (at the center of the bounding box, width, height) and confidence score. The confidence score,

given in Equation 1, indicates whether there are objects in this box.

con fidencescore = p(Object) x IoU;Téﬁlh (1)
ANB
4 _ . A
IoU _AUB,IOUBE[O,l] 2)

p(Object) is the probability of having an object in the cell and ToU’ "t

pred 18 the intersection over union (IoU)

of the prediction box and ground truth box, given in Equation 2. Because p(Object) is in the range [0,1], if
there are no objects in the cell, p(Object) will be zero. In this situation, the confidence score is equal to zero.
When p(Object) is equal to one, the confidence score will be equal to IoU Z‘;Zh [38]. After the input image

passes through a single neural network of multiconvolutional networks, the system creates a prediction vector
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for each object in the image. The detection process of the YOLO model is shown in Figure 1. Furthermore,

y .
I —
Input Image (SxS grid) ' Detection

Class Probability Map

Figure 1. The detection process of the YOLO model.

YOLO adopts nonmaximum suppression (NMS) to eliminate bounding boxes that do not contain any objects
or have the same object as other bounding boxes. NMS cleans all the overlapping bounding boxes with an ToU
value greater than the threshold [37, 39].

YOLOv1 is the first version of YOLO and it has 24 convolutional and 2 fully connected layers [38]. The second
version of YOLO, known as YOLOv2 or YOLO9000, consists of a network called Darknet-19 that includes 19
convolutional layers and 5 max-pooling layers [39]. Moreover, in YOLOv2, batch normalization has been added
to all convolution layers. This method increases the performance of the network while reducing the training
time [37, 39]. In YOLOv3, Darknet-19’s feature extraction backbone, which has difficulty in detecting small
objects, has been replaced with Darknet-53 to overcome this issue. The network is constructed with a bottleneck
structure (1 x 1 and 3 x 3 convolution layers) within each residual block and a skip connection. YOLOv3 adds
prediction layers aside instead of placing them in the last layers as before. Three different scale detectors use
attributes of the last 3 residual blocks. Feature Pyramid Network (FPN) architecture is used in the neck of
YOLOvV3 [37, 40]. In April 2020, Bochkovskiy et al. published YOLOv4. YOLOv4 uses a novel backbone,
CSPDarknet53 (CSP stands for Cross Stage Partial), and adds the Spatial Pyramid Pooling (SPP) block over
the CSPDarknet53 and uses PANet, which is an advanced version of the FPN, instead of the FPN [41]. The
fifth version of YOLO (YOLOV5) differs from other models in that it uses a CSPNet [42] as the model backbone
and PANet [43] as the neck for feature aggregation. The model structure is given in Figure 2.

Through this progress, feature extraction is improved and the mAP score is significantly boosted [44]. The
SPPF module used is the same as the SPP implemented in YOLOv3, but it is an optimized version that
reduces floating point operations per second (FLOPs) and runs faster than SPP [45, 46]. The YOLOv5 models
with different configurations and parameter sizes are YOLOv5s, YOLOvSm, YOLOv5], and YOLOv5x. Due
to its successful performance in object detection, the YOLOvH algorithm has been primarily employed in the
present study.

IUltralytics, (2022). GitHub [Online]. Website https://github.com/ultralytics/yolov5/issues/6998 (Accessed 16 Feb. 2023)
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Figure 2. Overview of the structure of YOLOV5.'

3.2. Shifted Window (Swin) Transformer

In the realm of computer vision, Vision Transformers (ViTs) have recently emerged as a viable alternative to
traditional CNNs. Notably, the Swin Transformer stands out as a versatile backbone that excels at learning
attention-based hierarchical features, thereby attaining state-of-the-art performance across a wide range of
vision tasks [31]. The Swin Transformer represents a hierarchical vision transformer with the ability to serve as
a versatile foundational structure for various computer vision tasks [48]. Contrary to prior Vision Transformers
like ViT [49], which relied on global self-attention between nonoverlapping, medium-sized image patches (e.g.,
16 x 16 pixels) at a fixed scale, Swin adopts a distinct approach. It employs a window-based strategy alongside
window-shifting at multiple scales. This design constrains self-attention calculations among small patches (4 x 4
pixels) within nonoverlapping windows, while still facilitating cross-window connections. Consequently, this
yields linear computational complexity relative to image size and renders Swin suitable for dense vision tasks.
To date, Swin and its variations have emerged as the foundational architectures underpinning cutting-edge
methodologies in image classification [50], semantic segmentation [50, 51], instance segmentation [52], and object
detection [50]. Considering all the aforementioned attributes, especially its aptitude for extracting hierarchical
multiscale attention features leading to a top-tier performance in intricate computer vision tasks, Swin stands

as the ideal cornerstone for our transformer-based mass detection framework.

3.3. Swin Transformer-based YOLOvV5

Incorporating both YOLOv5 and the Swin Transformer, the two models were merged by substituting Swin
Transformer encoder blocks for the final C3 layer in the underlying network of the YOLOv5. The Swin
Transformer has the ability to capture distant relationships and maintain various local details [48]. While
this merging process might lead to a slight decrease in YOLOv5’s inference speed, it has the potential to
improve detection accuracy. Hence, our suggested approach amalgamated YOLOv5s and the Swin Transformer
to ensure the new architecture inherits their strengths while safeguarding global and local attributes. The

structural diagram of the proposed model is presented in Figure 3.
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Figure 3. Structural diagram of the Swin Transformer-based YOLOv5.

4. Experiments and results
4.1. Experimental setup

The experiments in this manuscript were conducted using an Intel Core i5 processor, a single RTX 2080T1
graphics card, and 16 GB DDR4 RAM hardware with Ubuntu 20.04 operating system. The IoU, number of
classes, the confidence probability threshold, and epochs number used in the experiments are set to 0.5, 2
(benign and malign class), 0.25, and 6000, respectively. The value of the learning rate was set to 0.001 and
adjusted with the scale of 0.1 at the 4000th and 5000th iterations.

4.2. Evaluation metrics

Various assessment measures are employed in studies related to detecting and classifying breast cancer including
True Positives (TP), True Negatives (TN), False Positives (FP), False Negatives (FN), Precision, Recall, Average
Precision (AP), mean Average Precision (mAP), and F1-Score [53].

4.3. Dataset and preprocessing

The INbreast dataset consists of digital mammograms obtained using the Siemens MammoNovation mammog-
raphy system. The format of MG images is DICOM. Four mammograms were collected from 90 patients with
both breasts affected (totaling 360 mammograms), while only two mammograms were gathered from each of
the other 25 patients (totaling 50 mammograms) who had mastectomy in the dataset. Thus, a total of 410
mammograms with both MLO and CC views including normal, benign, and malign cases were gathered from
115 patients. There are 107 patients in total where breast mass is present in both MLO and CC views of
the mammograms. There are some mammograms that have multiple tumors in different positions. Therefore,
there are a total of 116 masses from 50 patients (41 benign and 75 malign masses from 18 and 32 patients,
respectively) among 107 images. The dimensions of the mammograms are either 3328 x 4084 or 2560 x 3328
pixels and they have 14-bit contrast resolution [54, 55]. A total of 107 MG images with masses in both views
(CC and MLO) in the dataset were selected to evaluate the models in the present study. These images’ dataset
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is used by dividing to contain 80% of its size for the training dataset and 20% for the test dataset. Despite the
limited amount of data in the dataset, in order to ensure a fair comparison of results, the same amount of data
as the reference article was used, and the data were partitioned for training and testing in the same manner as
in the reference article [13]. The class distribution of images in the training and test datasets are given in Table
2.

Table 2. Class distribution of images in the training and test datasets.

Class Images in test dataset | Images in training dataset | Total
Benign | 7 28 35
Malign | 14 58 72
Total 21 86 107

In the INbreast dataset, mammograms have a contrast resolution of 14 bits. Therefore, firstly, all DICOM
files are processed by converting them to an 8-bit contrast resolution. Then the coordinates of the masses and
their corresponding pathology classes are obtained from the XML file that lists the cases. After acquiring mass
coordinates, they are normalized to adjust to different image sizes. This normalization process involves scaling
the mass ground truth coordinates into a range of [0.0 to 1.0] relative to the width and height of the image.
Finally, the mammograms are converted to a lower dimension to fit the model. We investigated different image
sizes including 448 x 448, 608 x 608, and 832 x 832 as in [13].

4.4. Comparison results of YOLO models (YOLOv3, YOLOv4, and YOLOVS5)

In this subsection, the performance of different YOLO models is compared on mass detection. The same
parameter values weren selected for models for a fair comparison. In this experiment, YOLOv3, YOLOv4, and
YOLOv5(x) were used for mass detection and classification on the INbreast dataset. The image size was chosen
as 448 x 448 for this experiment. Table 3 summarizes the test results of the YOLOv3, YOLOv4, and YOLOv5
models for 448 x 448 image size. The best benign AP, malign AP, recall, mAP, and F1 values were obtained in
the YOLOv5 model. The YOLOv3 model has higher results than YOLOv4 in this experiment.

Table 3. The results of the YOLOv3, YOLOv4, and YOLOv5 models for 448 x 448 image size.

Benign AP (%) | Malign AP (%) | Precision | Recall | mAP | F1-Score
Aly et al. [13] | 56.0 81.7 80.0 67.0 68.9 72.9
YOLOv3 75.0 78.6 86.7 59.4 76.8 70.5
YOLOv4 51.0 60.6 85.3 56.2 55.8 67.7
YOLOv5 83.0 90.0 83.5 87.0 88.0 | 85.2

4.5. Comparison results of YOLOv5 models (YOLOv5s, YOLOv5m, YOLOv5]l, and YOLOvV5x)
and transformer-based YOLOv5 model

In the reference article [13], researchers used different image sizes for training, namely 448 x 448, 608 x 608,
and 832 x 832, for the YOLOv3 experiment. In this experiment, YOLOv5 models were trained and tested
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with these image sizes. The performance of different YOLOv5 models was compared with each other and ref-
erence article. For 448 x 448 image size, the best recall, benign AP, mAP, and F1 values were obtained in
the YOLOv5x model. The best malign AP and precision values were obtained in the YOLOv5s and YOLOv51
models, respectively. Performance in all metrics is better than in the YOLOv3 model in [13]. For 608 x 608
image size, the best recall and F1 values were obtained in the YOLOv5x model. The best malign AP, mAP, and
precision values were obtained in the YOLOv5s, YOLOv5im, and YOLOv5] models, respectively. For 832 x 832
image size, the YOLOv5x model has the best mAP value and malign AP, and YOLOv5m has the best precision
value. In the experiments conducted, the best results among the YOLOv5 models were obtained using the
YOLOv5x model with an image size of 832. Therefore, the transformer-based model was implemented solely
in the architecture of the YOLOv5x model and for an image size of 832. As a result of this experiment, it
was observed that the implementation of the transformer-based model led to an improvement in performance
across nearly all metrics. The best Benign-AP, recall, mAP, and F1-Score values for the same image size were
obtained with this model. The test results for 448 x 448, 608 x 608, and 832 x 832 image size are presented
in Table 4.

Table 4. The results of the YOLOv5 models for 448 x 448, 608 x 608, and 832 x 832 image size.

Benign Malign Metrics (%)
Image | Model TP | FP | AP (%) | TP | FP | AP (%) | Precision | Recall | mAP | F1-
size Score
Aly et al. [13] 4 2 56.0 12 2 81.7 80.0 67.0 68.9 | 72.9
YOLOv5s ) 9 50.0 16 1 93.0 64.9 82.8 71.0 | 72.8
448 YOLOv5m 5 1 78.0 13 1 91.8 86.3 75.5 84.9 | 80.5
YOLOv51 5 0 80.0 15 3 92.0 89.4 79.8 86.0 | 84.3
YOLOv5x 6 2 83.0 15 1 90.0 83.5 87.0 88.0 | 85.2
Aly et al. [13] 4 0 90.7 12 2 72.1 89.0 67.0 814 | 76.4
YOLOv5s 5 2 63.0 16 0 99.0 84.5 83.4 81.0 | 83.9
608 YOLOv5m 6 2 83.0 15 2 92.0 81.3 87.0 88.0 | 84.1
YOLOv5I 4 0 71.5 15 1 95.4 92.6 73.6 83.4 | 82.0
YOLOv5x 6 3 77.6 17 1 97.9 79.5 92.5 87.7 | 85.5
Aly et al. [13] 7 0 87.5 14 1 80.8 95.0 88.0 84.2 | 91.3
YOLOv5s 6 2 82.0 16 2 96.0 81.8 87.7 89.5 | 84.6
832 YOLOv5m ) 0 85.0 16 1 96.0 96.7 7.3 87.0 | 85.9
YOLOv5I 4 0 69.0 15 1 96.0 95.2 73.3 82.8 | 82.8
YOLOv5x 5 0 85.0 17 1 97.0 96.3 85.7 91.6 | 90.7
Swin Transformer | 6 0 92.8 16 3 96.6 92.1 89.9 94.7 | 91.0
Based YOLOvbx

4.6. Using anchors generated by K-means

Anchor boxes are predetermined bounding boxes with fixed widths and heights used to identify the scale and
aspect ratio of particular object classes for detection. These boxes are selected based on the sizes of objects
in the training datasets and are designed to capture the essential features of the objects. During the detection
process, predefined boxes are distributed over the image. The network calculates probabilities as much as the

allowed number of anchor boxes for each grid and other properties. Calculations are used to improve each
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individual anchor box. Several anchor boxes, each for a different object size can be defined 2.

The anchor boxes can be adjusted to the size of the object being detected using the final neural network
outputs. The network should not predict the final width and height of the object, such as a breast mass in
cancer detection. Instead, only the anchor box closest in size to the detected object should be adjusted to fit
the object size 2. In the original configuration file of the YOLOv3, v4, and v5 models, there are 9 anchors
with different scales presented in the form of (width, height). In the studies given in the previous subsections,
these original values were taken as the anchor values. However, reconstructing new anchors representing breast
masses of the dataset instead of using random anchors may affect the success rate. This has been accomplished
by grouping the masses into 9 relative anchors using bounding boxes and the K-means algorithm integrated
with the YOLO-V3 model on the training set mammograms in [13]. Because the model should not have seen
the test mammograms before, clustering is carried out on the data after excluding the test data. The composed
anchors that are generated are reported as ((15,11), (24,17), (29,21)), ((32,28), (41,31), (63,36)), ((58,46),
(75,65), (120,95)) in the reference article [13]. In Table 5 test results for the YOLOv5 model trained with these
anchors are presented. The image size is chosen as 448 x 448 to compare the results of the reference article.

The dataset has split 80% training set and 20% testing set.

Table 5. Results for YOLOv5 model trained using anchors given in [13] (448 x 448 image size).

Benign Malign Metrics (%)

TP | FP | AP (%) | TP | FP | AP (%) | Precision | Recall | mAP | F1-Score
Aly et al. [13] | 4 2 76.7 11 0 75.1 88.0 62.0 68.9 2.7
YOLOv5s 4 2 66.7 15 1 95.4 79.0 72.7 81.0 75.1
YOLOv5m 5 3 71.4 14 1 82.4 74.2 76.9 79.0 75.5
YOLOv51 6 3 80.4 16 2 93.8 75.9 89.9 87.1 82.3
YOLOv5x 5 1 77.1 14 2 90.1 85.4 76.6 83.6 80.7

In another experiment, we utilize the autoanchor function in YOLOvV5 to verify and generate anchors, before
training starts. The autoanchor function analyzes anchors based on data and training settings, and if it
determines that the initially presented anchors are not suitable or if the number of anchors is specified in
the model file instead of the anchor values, it adjusts the anchors accordingly. To generate new anchors, the
autoanchor function applies K-means clustering to the dataset labels, which have been scaled to the training
image size. The resulting K-means centroids serve as initial conditions for a Genetic Evolution (GE) algorithm.
This GE algorithm then evolves all anchors for 1000 generations using CloU loss and Best Possible Recall (BPR)

as the fitness function *:°

. Since the approach in the reference paper was implemented with YOLOv3 using
an image size of 448 x 448, we also conducted the experiment with YOLOv5 using the same image size for a
fair comparison. The test results for the YOLOv5 model trained with anchors generated by the autoanchor
function for 448 x 448 image size are presented in Table 6. The results of the YOLOv5 model trained with
anchors generated by K-means clustering by autoanchor are more successful than those of the YOLOv5 model

trained using the anchors given in [13].

2MathWorks  Inc. (2022). Anchor  Boxes  for  Object  Detection [online]. Website
https://www.mathworks.com/help/vision/ug/anchor-boxes-for-object-detection.html (Accessed 07 Nov. 2022)

3Bochkovskiy A. (2018). GitHub [online]. Website https://github.com/pjreddie/darknet /issues/568 (Accessed 07 Nov. 2022)

4Ultralytics, (2021). GitHub [online]. Website https://github.com/ultralytics/yolov5/issues/3482 (Accessed 06 Nov. 2022)

5Ultralytics, (2022). GitHub [online]. Website https://github.com/ultralytics/yolov5/issues/6838 (Accessed 07 Nov. 2022)
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Table 6. Results for YOLOv5 models trained with anchors generated by K-means clustering in this study
(448 x 448 image size).

Benign Malign Metrics (%)

TP | FP | AP (%) | TP | FP | AP (%) | Precision | Recall | mAP  F1-Score
YOLOv5s ) 2 61.5 15 0 95.6 84.4 78.7 78.6 81.4
YOLOv5m | 6 2 76.2 14 3 89.2 78.5 83.4 82.7 80.8
YOLOv51 5 0 81.7 16 1 96.3 88.0 82.8 89.0 85.3
YOLOv5x 6 1 84.9 14 0 93.4 91.8 84.0 89.1 87.7

4.7. Data augmentation approach

Deep learning requires a large quantity of data to overcome overfitting issues, to be able to train appropriately,
and to achieve better test performance. Data augmentation refers to the process of creating new training
data by applying various techniques to the existing data. The main goal of data augmentation is to create
different versions of training set images that the model may have already seen during the training process.
Thus, data augmentation is used to solve the issue of limited data in small medical datasets. The primary aim
of the experiments in this subsubsection is to assess the impact of data augmentation on performance. In the
reference study [13], the training data were augmented through rotation and added to the training set, while
the test data were augmented and used as validation data. No modifications were made to the test set.
Initially, we split the original dataset into two parts, where 80% was reserved for the training set and 20% for
the test set as in the reference article [13]. In total, 107 images were divided into five folds each having 21
images and each fold was used as a test dataset. Then we applied data augmentation techniques to increase
the size of the training set. The training dataset was created by augmenting the remaining 86 images with the
data augmentation technique. Specifically, we rotated each image in the training set by three angles of 90°,
180°, and 270° and thus we created a manually augmented dataset. No validation dataset was used at first.
Subsequently, the data obtained by rotating the mammograms in the test set were used as a validation dataset.
In this experiment, more successful results were obtained than in the approach with no validation dataset. The
results of testing the YOLOv5s model trained on an augmented training dataset without a validation dataset
and trained on an augmented training dataset with a validation dataset are presented in Table 7. For fair
comparison as in the reference article, this experiment was done with only 448 x 448 input image size and
5-fold cross-validation. Each fold has different results depending on the selected data for the training and test
datasets. The precision value is above 70% and 80% for the first and second experiments for this subsection,
respectively. However, in many folds, the mAP value is above 70% for these experiments in all folds. In addition
to these experiments, we conducted a data augmentation experiment using the YOLOv5x model with an image
size of 832, with which we previously achieved the best results, and the results are presented in Table 8.

In the table, classical data augmentation refers to training on the augmented dataset with recommended
hyperparameters ° such as scale, HSV, and mosaic in YOLOv5 were utilized. Hyperparameter values, which
are specifically evolved for fine-tuning (COCO pretrained) YOLOv5 models on the VOC dataset, are used. The
values indicate the likelihood of employing that data augmentation method. The hyperparameter values used
are as follows: hsv-h: 0.0138, hsv-s: 0.664, hsv-v: 0.464, degrees: 0.373, scale: 0.898, shear: 0.602, translate:
0.245, flipud: 0.00856, fliplr: 0.5, perspective: 0.0, mosaic: 1.0, mixup: 0.243, copy-paste: 0.0

6Ultralytics, (2020). GitHub [Online]. Website https://github.com/ultralytics/yolov5/issues/852 (Accessed 16 Feb. 2023)
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Table 7. Test results of the YOLOv5s model without augmentation, trained on an augmented training dataset
without a validation dataset, and trained on an augmented training dataset with a validation dataset with

448 x 448 image size.

Benign AP | Malign AP | Precision | Recall | mAP | F1-Score
Aly et al. [13] 91.7 64.0 83.0 79.0 77.8 | 80.9
Original dataset without augmentation | 50.0 93.0 64.9 82.8 71.0 72.7
Augmented training dataset without | 69.0 98.0 96.7 77.4 84.0 | 85.9
validation dataset
Augmented training dataset with vali- | 87.5 93.8 94.3 82.2 90.7 | 87.8
dation dataset
Table 8. Effect of different augmentation techniques on the training dataset with 832 x 832 image size
YOLOv5x models.
Benign AP | Malign AP | Precision | Recall | mAP | F1-Score
Classical data augmentation 71.4 87.4 93.8 62.6 79.4 | 75.1
Augmentation with recommended hy- | 85.0 97.0 96.3 85.7 91.6 90.7
perparameter values
Classical data augmentation + aug- | 92.8 99.2 94.7 92.9 96.0 93.8
mentation with recommended hyperpa-
rameter values

5. Discussion and conclusions

Early and accurate diagnosis of cancer is extremely important. CAD has been used frequently in the field of
medicine in recent decades. These models can help reduce exposure to radiation from X-rays and unnecessary
biopsies. There are several computer-aided approaches employed in the diagnosis of breast cancer. Most of
the various computer-assisted approaches used in breast cancer diagnosis use multistage object detection/image
processing systems rather than a one-time model. Nevertheless, using a two-stage system for detection and
classification can be challenging as the data require preparation for each stage. However, the use of single-stage
detectors such as the YOLO may be more appropriate since this process is not required. YOLO algorithms
are used in object detection and give successful results. Aly et al. [13] conducted various experiments with the
YOLOv1, YOLOv2, and YOLOvV3 algorithms in their study. In the present research, we extended the findings
of the previous study using the YOLOv5 model for a variety of situations and compared the performance of
recent YOLO models in mass detection through different experiments. The size of labeled breast lesion images
is still limited. We used the YOLOv5 model in the INbreast dataset. The dataset has 107 mass mammograms
and has 2 classes, benign and malign. Although limited data are available, the results of YOLO algorithms
in breast mass detection are very promising. The performance of the models is assessed by utilizing precision,
recall, mAP, and F1-Score metrics. For various image sizes in individual experiments, we get varying results.
The best results are obtained by using the YOLOv5 model when the YOLOv3, YOLOv4, and YOLOv5 models
are compared and the result of the YOLOv5x model has a higher score for many metrics than the other models
for 448 x 448 image size. Moreover, YOLOvV5 has better performance than YOLOv3 for other image sizes,
especially for the mAP value. Using YOLOv3, Aly et al. [13] achieved 56%, 81.7%, 80%, 67%, 68.9%, and
72.9% success for benign AP, malign AP, precision, recall, mAP, and F1-Score, while we achieved 83%, 90%,
83.5%, 87%, 88%, and 85.2% success using YOLOvV5(x), respectively. For 608 x 608 image size, the YOLOv5
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model achieved very successful results compared to the YOLOv3 model for almost all metrics. The YOLOv3
model used in [13] performed slightly better for benign AP, recall, and F1-Score for 832 x 832 image size. For
all that, the YOLOv5 model performed noticeably better for malign AP, precision, and mAP values. Although
the mAP and F1-Scores for the 448 x 448 and 608 x 608 image sizes are similar, the highest performance was
obtained with the largest image size (832 x 832) for YOLOv5(x). The utilization of YOLOV5 in conjunction
with a transformer has proven to be a contributing factor to enhanced performance. In the proposed study,
we implement YOLO with a transformer-based backbone for mammogram mass detection, leading to models
that achieve better performance than the previous YOLO methods. Since the most successful results were
achieved with an image size of 832 for YOLOv5x, the transformer-based model was also applied with this image
size. Furthermore, YOLOv5 has an autoanchor function for anchor verification and generation before training.
Using anchors produced with YOLOv5 improved the results because the anchors are generated according to
the training data. Two more experiments were conducted to see how data augmentation affects performance
during the training phase. Data augmentation improved the performance, and the most successful result was
achieved using the augmented training and validation set and augmentation with optimized parameters during
the training phase. In experiments, augmentation with recommended hyperparameter values was used. The
impact of various augmentation techniques on the training dataset of YOLOv5x models with an image size of
832 x 832 is also demonstrated in the study. Apart from these, some of the challenges in mass detection studies
for breast cancer include memory and GPU limitations, having a limited amount of data, and datasets with
missing annotations. In addition, the small number of samples belonging to a class adversely affects the class
results. Furthermore, creating a well-annotated dataset can be time-consuming, costly, and prone to errors.
Semisupervised, self-supervised, or methods capable of generating synthetic data can assist in mitigating the
issue arising from the scarcity of labeled data in experiments. Despite the limitation in the dataset size, applying
transfer learning by leveraging the weights of a model trained on a larger dataset for training can contribute to
an improvement in performance. If the dataset includes both CC and MLO mammograms of the same breast,
utilizing these images together with multiview inputs can contribute to better information extraction, as the
features would correspond to the same breast rather than treating these images as separate inputs. In recent
times, transformer-based designs have demonstrated the capability to capture extensive spatial relationships
through the replacement of convolutional operations, exploiting the self-attention mechanism inherent in the
encoder—decoder architecture, and acquiring intricate and highly expressive representations. Different layers of
YOLO models can also incorporate distinct transformer-based architectures. If transformers were to entirely
replace convolutional operators in machine vision tasks, several challenges would arise, encompassing elevated
memory consumption and computational expenses, but the amalgamation of Transformer and Convolutional
Neural Network (CNN) architectures can potentially yield improved outcomes. In spite of the limitations, our

results indicate that YOLO-based algorithms are promising tools for breast cancer diagnosis.
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