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Abstract: Nephrons are the basic filtering units of the kidneys. Progression of chronic kidney disease (CKD) destroys
nephrons permanently. Although there are many computing schemes suggested in recent years to identify CKD stages, no
computing method has been suggested for identifying the nephron loss within kidney regions during CKD progression. In
this paper, a novel pattern matching-based computation scheme is proposed to detect nephron loss in the kidney regions
during CKD progression. We consider image registration (IR) with different transforms and a structural similarity index
algorithm (SSIM) to match patterns of ultrasound images of kidney regions to identify the nephron loss. Simulation
results show that the proposed scheme based on IR and SSIM algorithms detects almost 34% and 51% and almost 35%
and 56% of the nephron damage in the cortex and medulla relative to a normal kidney, respectively. We extend the
pattern matching scheme to identify CKD stages, as well. The proposed scheme based on IR and the SSIM algorithm
can identify CKD stage with accuracy of 96% and 88%, respectively. The prediction accuracy of the proposed scheme
for identifying CKD stage is comparable to that of the gray level co-occurrence matrix-based method, which is the best
among the existing computing methods. However, the proposed scheme has advantages over the preexisting scheme, such
as: the proposed method can be used to identify both CKD stage and the nephron loss in different kidney regions, and
it identifies CKD stage without using a classifier. Therefore, the proposed pattern matching-based computing method
is a better alternative to existing computing schemes for CKD stage identification.

Key words: Nephron, chronic kidney disease, ultrasound image, image registration, structural similarity index

1. Introduction
Nephrons are basic building elements of the human kidney. Nephrons filter out toxic elements from the impure
blood and retain nutrients required for the body. A healthy human kidney has about 2 million nephrons, but
there is wide variability according to race, region, and ethnicity [1]. The average nephron number could vary in
the approximate range of 2 million to 2.5 million [2]. The cortex and medulla are the two important regions of
the human kidney. Two types of nephrons exist according to their presence at specific locations in the human
kidney: cortical nephrons (found in the cortex) and juxtamedullary nephrons (found in the medulla) [3]. The
pelvis is also an integral region of the kidney, and it is made up of pelvis cells, not nephrons [3]. Chronic kidney
disease (CKD) is a silent disease that destroys the functioning capability of nephrons [3]. CKD is categorized
into five stages (stage-1, stage-2, stage-3, stage-4, and stage-5). Stage-1 indicates the primary stage of CKD
∗Correspondence: rehan.ahmad@nmims.edu
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and stage-2 indicates progression of the kidneys towards a critical state. Stage-3 indicates the beginning of the
critical stage while stage-4 indicates that the kidneys are in a critical state. Stage-5 indicates kidney dysfunction
leading to kidney failure [3]. Early detection of nephron loss could help nephrologists visualize the amount of
damage in the kidney regions and advise the patient accordingly to start treatment [4]. The impact of CKD
progression is viewed as nephron loss. Nephron loss can be identified through the glomerular filtration rate
(GFR) method and biopsy [5]. The GFR method uses blood and urine samples of the patient. In this method,
the amount of toxicity present in the blood and the amount of urine produced by the kidneys are estimated
for CKD stage identification. GFR values are in the unit mL/min/1.73 m2 . GFR values in the range of
100–120 represent healthy kidneys, while GFR values in the ranges of 90–99, 60–89, 30–59, 15–29, and below
15 represent CKD stage-1, stage-2, stage-3, stage-4, and stage-5, respectively. In the biopsy method, sample
kidney tissues are extracted from the region under examination [5]. These two methods are invasive, expensive,
and time-consuming and they require a certain controlled environment to produce accurate results. Patients
suffering from CKD and associated ailments are sometimes not in a proper mental state for these tests. An
alternative imaging approach to estimate nephron loss to access the impact of CKD on internal kidney regions
(the cortex and medulla) is required, which could be less expensive, less time-consuming, and independent
of human expertise. Ultrasound (US) imaging is a noninvasive, radiation-free, infection-free, and less costly
method compared to biopsy and GFR clinical processes [4]. Through US imaging, kidney tissue damage can
be observed directly. Some patients’ blood examinations might yield normal results but their kidney tissues
are nevertheless damaged. This damage will result in the quick progression of CKD stages and cannot be
observed from blood examinations [6]. US images are able to capture significant amounts of information about
internal kidney regions such as the cortex and medulla in terms of gray-scale intensity distribution. US kidney
images also provide relevant information related to the impact of CKD stage progression on kidney internal
regions [6]. In recent years, computational methods have been suggested to identify different kidney diseases,
including CKD classification, cancer, and hydronephrosis [4], [7] - [21]. These methods are briefly discussed
here to identify pertinent issues related to the development of a new computational scheme. CKD classification
is applied to analyze kidney images using statistical moment descriptors and t-tests [4]. Elongated quinary
patterns and the support vector machine-radial basis function (SVM-RBF) are used to determine the presence
or absence of CKD in US images [7]. Gray-level co-occurrence matrix (GLCM) features were processed with
the SVM classifier to identify CKD stage in [8]. In another method, the kidney cortex area was estimated to
distinguish between normal tissue and CKD stages [9]. Serum creatinine level was mapped with the cortex to
identify CKD stages [10]. Recently, we proposed a scheme to identify CKD stages using 14 GLCM features
and a linear discriminant analysis classifier [11]. GLCM features and an artificial neural network classifier were
used to identify CKD as normal, mild, or severe in [12]. In another scheme, GFR values were mapped with
US kidney images and ResNet as a classifier was used to predict kidney functions [13]. Kidney cysts are round
fluid-filled sacs that form within the kidney or on the kidney. Active contour and level-set methods were used
for the segmentation of single and multiple cysts [14]. The whale optimization algorithm was used to categorize
kidney cysts and tumors [15]. A computing method based on K-nearest neighbor was used to classify normal
kidneys, kidneys with one cyst, and kidneys with multiple cysts [16]. In another work, a multiresolution-based
decomposition method was used to detect cysts in US kidney images [17]. A computing method based on a
residual learning network to detect kidney abnormalities among cysts, tumors, stones, and the normal state
was proposed in [18]. A metaheuristic SVM classifier for the detection of renal calculi or kidney stones was
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proposed in [19]. Morphological segmentation and an ensemble multiple-support vector machine were used to
identify kidney stones and cysts in [20]. A CNN-based computing scheme was proposed for the diagnosis of
hydronephrosis and the normal state of the kidneys [21].

From the literature, it has been observed that there are many studies on CKD stage classification and
the detection of kidney cysts, kidney stones, kidney cancer, and hydronephrosis. Detection of the amount of
nephron loss in the human kidney is an important part of CKD diagnosis and treatment. Nephron loss indirectly
indicates the amount of deterioration happening in a specific region of the kidney. This plays a significant role
in the diagnosis and treatment of the disease relevant to the specific kidney part. Therefore, it is important
to detect the amount of nephron loss during CKD progression. However, this particular aspect is missing in
the literature. A computational scheme is required that could provide data on the actual or relative loss of
nephrons in different kidney regions when CKD progresses with respect to a normal kidney. In this paper,
we propose a computation scheme to estimate the relative amount of nephron loss in the cortex and medulla
regions with respect to normal kidneys during CKD progression. A proposed pattern-matching scheme is also
used to develop a computation scheme to identify CKD stages.

2. Materials and methods
This section discusses the collection and sorting of the image dataset and the methods used to identify CKD
stages and amounts of nephron damage within kidney regions at different CKD stages.

2.1. Image dataset

As there is no standard dataset available in the literature to study CKD, we prepared the required dataset for
this study with the help of two experienced radiologists of a radiology center (Shivam Diagnostics, Jalgaon,
Maharashtra, India). We received written consent from the chief radiologist of Shivam Diagnostics to receive
human adult kidney images for use in this research work related to CKD stage identification. We also received
consent for consultation with their doctors and to obtain necessary advice related to the research work. Kidney
images free of scars, stones, cysts, tumors, hydronephrosis, or any other ailments were included in this work.
CKD stage labeling and the sorting of images was done with the help of a radiologist. US kidney images were
captured using an ultrasound machine (Hitachi Aloka S-60) with a convex probe in video format, each of size
4–6 MB. Video frames of suitable views were saved in .bmp image format. All the images were preprocessed
using a median filter of size 3 × 3 to remove speckle noise and each pixel in an image was 24 bits wide. With
the help of the radiologists, each image was cropped manually to avoid a complex segmentation approach. After
cropping, the file size of each US image varied between 75 and 202 KB. The region of interest was identified and
unrelated information embedded within the image was removed. The human kidney has two major functioning
regions: the cortex and medulla [2]. Figure 1 shows the cortex and medulla regions of a normal kidney and
kidneys in different CKD stages. Figure 1 also shows US sample images of stagewise CKD progression from
normal to stage-5.

In this figure, the progression of CKD from normal to stage-5 can be seen as an increase in the gray
value of pixels. One can observe from Figure 1 that there is an increase in the gray value of pixels within the
kidney regions with the progression of CKD stages. As per the observation of the radiologists, higher gray
values of pixels represent dead nephrons. Figure 1 shows a normal US kidney image with a large number of
pixels possessing lower gray values. Pixels with lower gray values represent more functioning nephrons. As CKD
progresses towards higher stages, pixel gray values also increase, which represents a large amount of nephron
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Figure 1. Stagewise CKD progression and effect of CKD progression in cortex and medulla of a human kidney
in US images.

damage. In the US image of stage-5, a majority of the nephrons have higher gray values, which indicates
that the kidney has lost large amounts of functioning nephrons. Semiautomatic and automatic segmentation
methods do not work for the extraction of cortex and medulla data due to the complex embedding patterns of
these regions. Manual segmentation was used under the supervision of radiologists for identification and precise
extraction of the cortex and medulla regions [22]. Manual segmentation was performed in MATLAB 2021.

Figure 2. Segmented regions of cortex and medulla of normal kidney and different CKD stages: (a) cortex
of normal kidney (CN), (b) medulla of normal kidney (MN), (c) cortex of stage-1 CKD (CS1), (d) medulla of
stage-1 CKD (MS1), (e) cortex of stage-2 CKD (CS2), (f) medulla of stage-2 CKD (MS2), (g) cortex of stage-3
CKD (CS3), (h) medulla of stage-3 CKD(MS3), (i) cortex of stage-4 CKD (CS4), (j) medulla of stage-4 CKD
(MS4), (k) cortex of stage-5 CKD (CS5), (l) medulla of stage-5 CKD (MS5).
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The segmented regions of the cortex and medulla are shown in Figure 2. From Figure 2 one can observe
that the gray values of pixels in the segmented images are gradually increasing for higher CKD stages. Similarly
to Figure 1, from Figure 2 it can be observed that the segmented cortex region of the normal kidney possesses
more pixels with low gray values and pixel gray values increase according to the progression of CKD stage.
Therefore, the segmented regions possessing pixels with increased gray values represent larger numbers of dead
nephrons in those regions.

3. Experimental setup

This section discusses the methods for estimation of damaged nephrons within the internal kidney regions and
presents a template-based approach for CKD stage identification.
A computational scheme is proposed to identify the amount of nephron loss in kidney regions. Some kind
of pattern matching is to be applied to US kidney images to identify nephron loss. All US kidney images of
the dataset were captured at different times and with variations in the angle of the probe. This was due to
variations of subjects at the radiology center. Considering these two major factors, and from the literature,
for texture/pattern matching the amount of similarity is identified using standard methods such as image
registration (IR) and the structural similarity index (SSIM). SSIM and IR are used to find intensity similarity
and structural similarity between two images captured at different times and different angles. The cortex and
medulla of a normal kidney are compared with those of different CKD stages using US images for texture/pattern
matching.
About 700 US kidney images were collected at the above-mentioned radiology center in the last two years and
these images are considered in this work. Not all 700 collected images reflect CKD stages. Of these 700 images,
33 images are of normal kidneys and 363 images reflect the five different CKD stages. The remaining images
portray other kidney ailments such as stones, cysts, or hydronephrosis. The CKD stagewise distribution of the
collected images is as follows: normal, 33 images; stage-1, 95 images; stage-2, 104 images; stage-3, 84 images;
stage-4, 40 images; stage-5, 40 images. Due to the smaller numbers of collected images for normal kidneys and
stage-4 and stage-5, we considered only 30 images of each CKD stage including the normal state for this work
to avoid any bias of particular CKD stages while averaging the results. Out of these 700 kidney images, 30
images for each of the six stages (normal, stage-1, stage-2, stage-3, stage-4, and stage-5) were chosen. These
images were manually segmented to extract the cortex and medulla. Therefore, 60 images with segmented
regions obtained from 30 images of each CKD stage and a total of 360 segmented images of the cortex and
medulla were obtained for normal kidneys and the five CKD stages. Segmented images of particular regions of
the cortex/medulla were compared for similarity with segmented images of the same region of the next higher
CKD stage. For this image comparison, the IR and SSIM methods were used. MATLAB 2021 software was
also used for this purpose.

3.1. Image registration

Image registration (IR) aligns two images of the same scene taken at different times from different views. IR
compares two images, where one is the reference image and the other is the target image [23]. It does not
matter which image will be the reference from the image taken at different times, but selection of the reference
image plays a vital role in finding the similarity index value. Hence, the reference image was selected by the
radiologists only. The reference image must be from the class of normal kidneys, as we are finding similarity
values with respect to normal kidney images. Because of variations in the sizes of normal kidneys (due to region,
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race, etc.), similarity index values will vary marginally, which does not affect the overall result much. We also
tested similarity index values by selecting different images of normal kidneys and found that using different
images of normal kidneys does not affect the result much. Care must be taken while selecting reference images
of normal kidneys. Hence, in this regard, the role of the radiologist is important. If the reference image is
selected from any CKD stage, it will substantially affect the overall result. The intertemporal interval was set
to be equal for all individuals. This helped provide uniformity in the acquisition of images.

In this research, a monomodal US image-based registration algorithm was used to find the similarity
index between two images by comparing the intensity of two US images [24]. The monomodal IR method uses
four types of parametric transforms: similarity, affine, rigid, and translation [23].
Similarity transform performs translation, rotation, and scaling dissimilarity between the reference image and
target image. It can be expressed as follows:

X = xscosθ − yssinθ + h (1)

Y = xscosθ + yssinθ + k (2)

Here, s, θ , and (h, k) are scaling, rotation, and translation dissimilarity between the images. The angle between
the lines is used to define the rotational dissimilarity. In an image, the ratio of distance between points is used
to define the scaling difference between the images.
Affine transform preserves lines and parallelism of lines between a reference image and a target image [25].
Affine transform can do rotation, translation, and shearing of images. It can be expressed as follows:

[[xi; yi]; [Xi;Yi]i = 1, 2, 3...] (3)

Here, i represents the i th image.  X
Y
1

 =

a11 a12 a13
a21 a22 a23
0 0 1

 x
y
1

 (4)

a11 , a12 , a21 , and a22 specify aggregate scaling, rotation, reflection, and shearing and a13 and a23 specify the
translation.
Rigid transform translates and rotates a reference image and target image to achieve correspondence between
them [25]. It detects small changes in object shape, small changes in object intensity, straightness of lines, and
nonzero angles between straight lines. It can be expressed as follows:

Tlinear(x, y) =

[
a

′

b
′

]
= R.

[
a
b

]
+

[
tx
ty

]
(5)

Here, R is the rotation matrix and t is the translation vector.
Translation transform can do rotation and translation of target images to map them with reference images. It
uses two parameters, unlike rigid transform. It can be expressed as follows:

fTranslation(x, y) = f(Tx + Tx,y + Ty) (6)

Tx and Ty are horizontal and vertical translations.
All above-mentioned transforms are used for the monomodal IR method. Considering the monomodal

nature of US kidney images, another image similarity measure known as the structural similarity index (SSIM)

1242



AHMAD and MOHANTY/Turk J Elec Eng & Comp Sci

is also used in this research. The SSIM is designed as a heuristics approach not derived from any specific image
formation model [26]. It assesses the visual impact of changes in image luminance, contrast, and structure. All
these parameters are separable [26].

3.2. Structural similarity index algorithm
Pixels of an image demonstrate strong dependencies and these dependencies carry useful information about the
structure of a scene. SSIM exploits the pixel dependencies to model the structural information of an image
[26]. It measures image similarity by assessing the visual impact of changes in three components, luminance (l),
contrast (c), and structure (s), between two images x and y. These are defined as follows:

l(x, y) =
2µxµy + C1

µ2
x + µ2

y + C1
(7)

c(x, y) =
2σxσy + C2

σ2
x + σ2

y + C2
(8)

s(x, y) =
σxy + C3

σxσy + C3
(9)

Here, µx and µy are the mean intensity of the pair of images under comparison, defined as follows:

µx =
1

NM

N∑
i=1

M∑
j=1

x(i, j) (10)

µy =
1

NM

N∑
i=1

M∑
j=1

y(i, j) (11)

N and M are the width and height of an image, and x(i, j) represents the ith row and jth column of image x.
σx and σy are the standard deviations of image x and y, defined as follows:

σy = (
1

NM − 1

N∑
i=1

M∑
j=1

y(i, j)− µy)
1/2 (12)

σy = (
1

NM − 1

N∑
i=1

M∑
j=1

y(i, j)− µy)
1/2 (13)

σxy is the sample correlation between coefficients x and y . C1 , C2 , and C3 [26] are constant numbers greater
than zero to stabilize the computation of Eqs. (7), (8), and (9) and prevent the denominators of Eqs. (7), (8),
and (9) from becoming zero to avoid unstable results [26]. The overall similarity measure between images x and
y is estimated using the following relation:

SSIM(x, y) = [l(x, y)]α[c(x, y)]β [s(x, y)]γ (14)

Here, parameters α , β , and γ for α > 0 , β > 0 , and γ > 0 mediate the relative importance of the three
components.
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4. Results and discussion
For estimation of nephron loss, IR with different transforms and the SSIM index algorithm help to identify the
similarity between two images. The comparison of an image from one stage with images of the next stage gives
a similarity value. A high similarity value (towards 1) signifies that images are more identical to each other. In
other words, high similarity values represent a smaller amount of nephron loss.

4.1. Estimation of nephron loss within internal kidney regions at different CKD stages

As discussed earlier, out of 700 collected kidney images, 30 images were chosen for each of the six stages
(normal, stage-1, stage-2, stage-3, stage-4, and stage-5). Therefore, 30 manually segmented images of the cortex
and medulla were obtained from each set of 30 images of a particular CKD stage, and a total of 360 segmented
images of the cortex and medulla were obtained from normal kidneys and five CKD stages. All images of the
cortex were scaled at 651×1366 and all images of the medulla were scaled at 235×450 pixel size. Images were
rescaled to this size because this was the smallest dimension of one image in the dataset.
One segmented image of a normal kidney was randomly chosen with the help of radiologists and labeled as a
reference image, which was compared to 30 segmented images of the same kidney region for a particular CKD
stage labeled as target images. For example, one image of the cortex of a normal kidney was compared with a
set of 30 segmented images of cortexes of stage-1. Similarly, the same reference image of the cortex of a normal
kidney was compared with another set of 30 images of cortexes of stage-2, and so on. In a similar manner,
segmented images of the medulla of a normal kidney were compared with segmented images of the medulla of
different CKD stages to estimate the similarity values. Comparison of the reference and target image pairs was
performed using different image registration transforms.
The average similarity values of 30 pairs of segmented images of two different CKD stages were estimated using
different IR transforms. The estimated values are listed in Table 1. Similarity values were normalized to 1. A
similarity value of 1 is considered to be 100%, which indicates that there is no damage to the nephrons of the
target image when compared to the reference image. Table 1 represents the average similarity values between
different regions of normal kidneys and different CKD stages using different IR transforms.

Table 1. Average similarity values between different regions of normal kidneys and CKD stages. S1 - CKD
stage-1, S2 - CKD stage-2, S3 - CKD stage-3, S4 - CKD stage-4, S5 - CKD stage-5.

CKD stages Image registration transforms Kidney regionSimilarity Affine Rigid Translation
Normal-S1 0.70 0.69 0.67 0.66

Cortex
Normal-S2 0.71 0.71 0.70 0.70
Normal-S3 0.71 0.70 0.69 0.69
Normal-S4 0.70 0.69 0.65 0.65
Normal-S5 0.69 0.68 0.64 0.64
Normal-S1 0.57 0.57 0.57 0.54

Medulla
Normal-S2 0.57 0.58 0.57 0.54
Normal-S3 0.52 0.51 0.50 0.48
Normal-S4 0.50 0.49 0.47 0.44
Normal-S5 0.49 0.48 0.44 0.42

Table 1 lists the estimates of the relative loss of nephrons in the cortex and medulla regions of different
CKD stages with respect to normal kidneys. From Table 1, it is observed that the average similarity values
between normal kidneys and different CKD stages of the cortex region are approximately 70%, 69%, 67%, and
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67% using similarity, affine, rigid, and translation transforms, respectively. The similarity values between normal
kidneys and different CKD stages of the medulla region are about 53%, 53%, 51%, and 49% using similarity,
affine, rigid, and translation transforms, respectively. For each transform and for all stages, the vertical average
is considered. Furthermore, Table 1 shows that the IR method with translation transform estimates relative
nephron loss in the cortex region of stage-1 to stage-5 with regard to normal kidneys varying between 34% and
36%. Similarly, the relative nephron loss in the medulla region of stage-1 to stage-5 with regard to normal
kidneys varies between 46% and 58%. Therefore, the estimates of nephron loss shown in Table 1 vary widely
between CKD stages and kidney regions.
As shown in Table 1, IR with translation transform outperforms the other transforms because of its properties
such as overlapping the anatomical objects in both images as much as possible by resolving the translational
misalignment between the images by preserving the size of the image object [27]. In the cortex and medulla
regions, IR with translation transform captures the progressive loss of nephrons as CKD stages progress and
it outperforms the other transforms. In the cortex for stage-1 to stage-5, the similarity value is almost 66%,
which indicates almost 34% nephron damage due to CKD progression. In the medulla for stage-1 to stage-5,
the similarity value is almost 49%, which indicates almost 51% nephron damage due to CKD progression. As
shown in Table 1, nephron loss varies from almost 34% up to 51% in different regions of the kidney. Therefore,
the nephron losses estimated by the proposed scheme are very much in conformity with the observations of
radiologists based on clinical data. The SSIM index values of the cortex and medulla from US images of
different pairs of CKD stages were also estimated. The estimated values are listed in Table 2.

Table 2. Average similarity values using SSIM index algorithm between normal kidneys and different CKD
stages. S1 - CKD stage-1, S2 - CKD stage-2, S3 - CKD stage-3, S4 - CKD stage-4, S5 - CKD stage-5.

SSIM index algorithm
Cortex Medulla
Normal-S1 0.62 Normal-S1 0.50
Normal-S2 0.67 Normal-S2 0.46
Normal-S3 0.67 Normal-S3 0.44
Normal-S4 0.64 Normal-S4 0.42
Normal-S5 0.64 Normal-S5 0.40

From Table 2, it is observed that the average similarity values between the cortex region of normal kidneys
and different CKD stages is almost 65%, which indicates that there is almost 35% nephron damage in the cortex
region of different CKD stages compared to normal kidneys. Similarly, the average similarity values between
the medulla region of normal kidneys and different CKD stages is found to be 44%, which indicates that there
is almost 56% nephron damage in the medulla region of different CKD stages compared to normal kidneys. For
all stages, the vertical average is considered. It is also observed from Table 2 that, at different CKD stages
(from normal to stage-1 and stage-1 to stage-5), the nephron damage for the cortex region varies in the range
of 33% to 38%, and for the medulla region it varies in the range of 50% to 60%. More nephron damage occurs
in the medulla region because of its large volume [28]. For identification of nephron loss, similarity values of
CKD images belonging to normal kidneys are close to unity and those of stage-1 and stage-2 are marginally less
than the similarity values of normal kidneys as the nephron loss is relatively less in these CKD stages. However,
the similarity values of stage-3, stage-4, and stage-5 are expected to be substantially lower compared to the
similarity values of normal kidneys due to high amounts of nephron loss. As shown in Table 2, the similarity
values of images of CKD stages progress from normal to stage 5 with a gradual decrease as per expectations, as
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the amount of nephron loss increases with the progress of CKD stages. The results shown in Table 2 are very
much in conformity with the observations of the radiologists based on clinical data.
To find reasons for nephron loss, medical practitioners use autopsy procedures. With this approach, kidney
sample tissues are analyzed through histopathological evaluations to identify the causes of the prevalence of the
disease. Autopsy is performed after the death of the patient and has limitations like delays in carrying out the
autopsy, improper sampling, and nonavailability of representative samples, which influence the correctness of
the results [29].
Nephron loss can also be detected using biopsy procedures. Renal biopsy, when performed for CKD patients,
may have higher risks of bleeding and does not provide in-depth information about damage. The accuracy of
the results of renal biopsy are low when the kidneys are small in size, particularly in CKD stage-3 to stage-5.
The proposed method is noninvasive and detects the amount of nephron loss of living humans of any age,
without performing any extra tests like eGFR or biopsy. The amount of damage identified by the IR algorithm
and SSIM algorithm reflects the overall damage of nephrons in the kidney cortex and medulla regions. From
Table 1 and Table 2, it is observed that a gradual decrease in functioning nephrons takes place in different
kidney regions due to CKD progression. Early identification of nephron damage in kidney regions will assist
nephrologists in drawing first-hand conclusions and deciding on a course of treatment.

4.2. CKD stage identification using similarity index

This section discusses a novel template-based approach for CKD stage identification. We have shown that the
nephron damage in different kidney regions during CKD progression can be estimated using similarity index
values. While computing similarity values for the estimation of nephron loss, we found that the IR and SSIM
methods can also be used for CKD stage identification. There is a twofold advantage when the similarity index
is used for CKD stage identification, as only one method will be used for the identification of CKD stage and
nephron damage in kidney regions and the similarity index method does not require multiclass classifier and
parameter settings for the classification of CKD stages. Keeping this in mind, in this paper, we propose a
computing method based on the similarity index for CKD stage identification. The proposed method classifies
CKD stages in two steps. In step-1, similarity index threshold values are determined for different CKD stages,
and then the threshold values are used to classify the CKD stage in step-2. Figure 3 shows a stepwise flow
diagram for CKD stage identification using IR and the SSIM algorithm.

Initially, US kidney images belonging to CKD stages were collected and sorted. Normal kidney images
and CKD images were segregated into a training set and test set. In the training phase, a reference image was
selected and compared to images of normal kidneys and CKD stage-1, stage-2, stage-3, stage-4, and stage-5.
Minimum and maximum similarity index values were identified to create a table of stagewise threshold values
and approximation was done. In the testing phase, comparisons of images were done and the obtained similarity
values were mapped with stagewise defined threshold values for identification of CKD stages. A template-based
approach for CKD stage identification is discussed in the following section.

4.2.1. Determination of threshold values of CKD stages

As discussed in Section 3, out of the collected 700 US images of normal kidneys and five CKD stages, 396
images were found suitable and were considered for step-1 and step-2 of the proposed method. The selected 396
images were split in a ratio of 80:20 for use in step-1 and step-2 of the proposed scheme. Therefore, 330 images
(normal: 22 images, stage-1: 84 images, stage-2: 93 images, stage-3: 73 images, stage-4: 29 images, and stage-5:
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Figure 3. Flow diagram for CKD stage identification using IR and SSIM algorithm.

29 images) were used in step-1 of the proposed scheme to determine the threshold values of the similarity index
while the remaining 66 images of the total selected images were used in step-2 to identify the CKD stage. From
the selected images, 66 images, i.e., 11 images each for normal kidneys and the five CKD stages, were segregated
for step-2. All selected US kidney images were manually segmented before they were used in step-1 and step-2.
After manual segmentation, all kidney images were rescaled at dimensions of 196×293. Images were rescaled to
this size because this was the smallest dimension of one of the images in the dataset. Figure 4 shows manually
segmented images of normal kidneys and the five CKD stages.

From Figure 4, one can observe that whole kidney images are considered in step-1 and step-2. To
avoid complexity of the segmentation process, these whole kidney images are manually segmented under the
supervision of radiologists to have a precise kidney structure [22]. For determination of similarity index values,
one US image of a normal kidney (labeled as the reference image) is chosen randomly with the help of radiologists
from the available dataset. The reference image is compared with the remaining normal kidney images, as kidney
size differs from person to person of different regions [2]. The same reference image is compared with images of
stage-1 through stage-5 in step-1. Image comparisons are done using the IR algorithm with similarity transform
and the SSIM index algorithm. From image comparison results, minimum and maximum similarity index values
of each CKD stage are estimated using the IR algorithm with similarity transform as shown in Table 3.

As shown in Table 3, the actual minimum and actual maximum similarity values of two adjacent stages
are not continuous. There is a clear gap between them. If the actual minimum and maximum similarity values of
each CKD stage are considered as the threshold values, then in step-2, the similarity index of the test image may
fall in the gap of the threshold values, and that creates ambiguity in predicting the CKD stage of the test image.
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Figure 4. Segmented US images of different CKD stages.
Table 3. Estimated threshold values of image comparisons using IR algorithm with similarity transform, where
δM i and ∆Ma are ∆M i /2, ∆Ma /2. Legend: Mi: actual minimum value, Ma: actual maximum value, AMi:
approximate minimum value, AMa : approximate maximum value, Avg.: average.
Avg= (M i+Ma )/2, ∆M i = M i – Avg., ∆Ma = Ma – Avg., AM i = M i +δM i , AMa= Ma +δMa

Stage Actual value Avg. Difference (∆)
δMi δMa Approximate Rounded off

Min.
(Mi)

Min.
(Ma) ∆Mi δMa AMi AMa [AMi] [AMa]

N 0.92 0.99 0.96 -0.03 + 0.03 -0.02 +0.02 0.91 1.01 0.91 1.0
1 0.87 0.90 0.88 -0.02 + 0.02 –0.01 +0.01 0.86 0.90 0.86 0.90
2 0.595 0.79 0.69 -0.10 + 0.10 –0.05 +0.05 0.54 0.85 0.54 0.85
3 0.29 0.49 0.39 -0.10 + 0.09 –0.05 +0.05 0.24 0.53 0.24 0.53
4 0.20 0.22 0.21 -0.01 + 0.01 –0.01 +0.01 0.19 0.23 0.20 0.23
5 0.09 0.17 0.13 -0.04 + 0.04 –0.02 +0.02 0.07 0.19 0.07 0.19

To remove such ambiguity, actual minimum and actual maximum similarity values are approximated such that
there is continuity between the lower and upper threshold values of two adjacent stages. Approximation of actual
minimum and actual maximum values can be done many ways. However, we have estimated correction values
(∂Mi

, ∂Ma
) to approximate actual minimum and actual maximum values. Finally, the approximate values

are rounded to obtain the desired threshold values of each CKD stage. Table 3 shows calculated rounded-off
approximate values, which are used as threshold values in step-2 of the computations. Similarly, we determined
similarity index threshold values of CKD stages using the SSIM index algorithm and these values are given in
Table 4.

4.2.2. Prediction of CKD stages using threshold values

In step-2 of the proposed scheme, 66 images of normal kidneys and the five different CKD stages are considered
as test images. During step-2, test images are selected randomly from the image set of 66 images one by one
and compared with reference images for calculations of similarity index values. Similar to step-1, one image is
selected randomly from the images of normal kidneys as a reference image for step-2. Table 5 lists the actual
CKD stage of 66 test images and the predicted CKD stage of test images obtained using the threshold values
of Table 3 (IR algorithm with similarity transform).
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Table 4. Estimated threshold values of image comparisons using SSIM index algorithm, where δM i and ∆Ma

are ∆M i /2, ∆Ma /2. Legend: Mi: actual minimum value, Ma: actual maximum value, AMi: approximate
minimum value, AMa : approximate maximum value, Avg.: average.
Avg= (M i+Ma )/2, ∆M i = M i – Avg., ∆Ma = Ma – Avg., AM i = M i +δM i , AMa= Ma +δMa

Stage Actual value Avg. Difference (∆)
δMi δMa Approximate Rounded off

Min.
(Mi)

Min.
(Ma) ∆Mi δMa AMi AMa [AMi] [AMa]

N 0.91 0.99 0.95 -0.04 + 0.04 -0.02 + 0.02 0.89 1.02 0.89 1.0
1 0.85 0.87 0.86 -0.01 + 0.01 -0.07 + 0.01 0.84 0.88 0.84 0.88
2 0.58 0.78 0.68 -0.09 + 0.10 -0.05 + 0.05 0.53 0.83 0.53 0.83
3 0.26 0.47 0.37 -0.01 + 0.10 -0.05 + 0.05 0.21 0.52 0.21 0.52
4 0.14 0.19 0.17 -0.02 + 0.02 -0.01 + 0.01 0.13 0.19 0.13 0.20
5 0.07 0.11 0.09 -0.02 + 0.02 -0.01 + 0.01 0.06 0.12 0.06 0.12

Table 5. Prediction of CKD stages using threshold values obtained with IR algorithm with similarity transform,
where TI is test image, LI is labeled image, PS is predicted stage, and SV is similarity value.

TI LI SV PS TI LI SV PS TI LI SV PS TI LI SV PS
1 S-4 0.22 S-4 17 S-2 0.69 S-2 33 S-3 0.48 S-3 50 S-2 0.66 S-2
2 S-1 0.84 S-2 18 N 0.92 N 34 N 0.91 N 51 S-5 0.12 S-5
3 S-3 0.27 S-3 19 S-1 0.90 S-1 35 S-2 0.66 S-2 52 S-3 0.39 S-3
4 S-5 0.17 S-5 20 S-5 0.05 S-5 36 S-3 0.42 S-3 53 N 0.93 N
5 S-2 0.70 S-2 21 N 0.93 N 37 S-5 0.06 S-5 54 S-2 0.86 S-1
6 S-3 0.32 S-3 22 S-4 0.25 S-3 38 S-4 0.21 S-4 55 S-1 0.88 S-1
7 S-4 0.20 S-4 23 N 0.95 N 39 S-3 0.50 S-3 56 S-2 0.72 S-2
8 S-1 0.89 S-1 24 S-1 0.86 S-1 40 S-1 0.88 S-1 57 S-3 0.38 S-3
9 S-4 0.23 S-4 25 S-2 0.69 S-2 41 S-5 0.21 S-4 58 S-5 0.11 S-5
10 S-2 0.52 S-3 26 S-3 0.44 S-3 42 N 0.97 N 59 S-4 0.23 S-4
11 N 0.91 N 27 S-4 0.15 S-5 43 S-3 0.52 S-3 60 N 0.95 N
12 S-1 0.87 S-1 28 N 0.98 N 44 S-5 0.07 S-5 61 S-1 0.86 S-1
13 S-5 0.10 S-5 29 S-2 0.66 S-2 45 N 0.94 N 62 S-4 0.22 S-4
14 S-4 0.21 S-4 30 S-1 0.86 S-1 46 S-2 0.86 S-1 63 S-3 0.30 S-3
15 S-5 0.13 S-5 31 S-4 0.21 S-4 47 S-1 0.87 S-1 64 S-2 0.74 S-2
16 S-3 0.43 S-3 32 S-5 0.16 S-5 48 S-4 0.21 S-4 65 S-1 0.92 N

49 S-5 0.05 S-5 66 N 0.98 N
N: Normal, S-1: stage-1, S-2: stage-2, S-3: stage-3, S-4: stage-4, S-5: stage-5

Similarly, Table 6 lists the predicted CKD stages of the same set of 66 test images using the threshold
values from the SSIM index algorithm of Table 4.

A confusion matrix is obtained using the actual and predicted CKD stages of the 66 test images of Table
5 and Table 6. The confusion matrix is used to estimate the accuracy of the proposed scheme in predicting
different CKD stages. It is desirable to have a confusion matrix with more diagonal elements, which represents
correct identification. The off-diagonal elements of the confusion matrix represent the incorrect identification
of test images [11]. Algorithm performance is considered poor when a higher number of test images fall off the
diagonal in the confusion matrix. Stagewise values of the confusion matrix of Table 5 and Table 6 are shown in
Figure 5. These parameter values are used to estimate prediction accuracy of individual CKD stages and the
overall accuracy rates of all six stages are estimated using the formulas of Eqs. (15) and (16). The i th stagewise
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Table 6. Prediction of CKD stages using threshold values obtained with the SSIM index algorithm, where TI
is test image, LI is labeled image, PS is predicted stage, and SV is similarity value.

TI LI SV PS TI LI SV PS TI LI SV PS TI LI SV PS
1 S-4 0.28 S-3 17 S-4 0.18 S-5 33 N 0.93 N 50 S-2 0.88 S-1
2 S-1 0.69 S-2 18 S-1 0.86 S-1 34 S-2 0.78 S-2 51 S-1 0.84 S-2
3 S-2 0.51 S-3 19 S-3 0.44 S-3 35 S-5 0.11 S-5 52 S-3 0.43 S-3
4 S-1 0.86 S-1 20 S-4 0.22 S-4 36 N 0.94 N 53 S-4 0.21 S-4
5 N 0.92 N 21 S-2 0.86 S-1 37 S-1 0.92 N 54 S-5 0.08 S-5
6 S-2 0.79 S-2 22 S-3 0.22 S-4 38 S-3 0.21 S-4 55 S-1 0.89 S-1
7 S-4 0.21 S-4 23 S-5 0.20 S-4 39 S-4 0.22 S-4 56 S-2 0.70 S-2
8 S-5 0.21 S-4 24 S-3 0.83 S-2 40 S-5 0.13 S-5 57 S-3 0.81 S-2
9 N 0.93 N 25 S-2 0.49 S-3 41 S-4 0.17 S-5 58 N 0.97 N
10 S-4 0.20 S-4 26 S-1 0.73 S-2 42 N 0.94 N 59 S-3 0.49 S-3
11 S-5 0.12 S-5 27 S-4 0.21 S-4 43 S-1 0.88 S-1 60 S-5 0.14 S-5
12 S-5 0.09 S-5 28 S-3 0.39 S-3 44 S-3 0.46 S-3 61 S-5 0.14 S-5
13 S-3 0.84 S-2 29 N 0.96 N 45 N 0.90 N 62 S-5 0.13 S-5
14 S-1 0.81 S-2 30 S-1 0.87 S-1 46 S-2 0.80 S-2 63 S-4 0.20 S-4
15 N 0.92 N 31 S-2 0.48 S-3 47 S-4 0.14 S-5 64 S-2 0.86 S-1
16 S-2 0.74 S-2 32 S-5 0.14 S-5 48 N 0.92 N 65 S-3 0.79 S-2

49 N 0.91 S-1 66 S-1 0.87 S-1
N: Normal, S-1: stage-1, S-2: stage-2, S-3: stage-3, S-4: stage-4, S-5: stage-5

(a) Confusion matrix of Table 5 for IR with
similarity transform

(b) Confusion matrix of Table 6 for SSIM index
algorithm

Figure 5. Confusion matrix.

accuracy (Ai) can be computed using the following formula:

Ai =
TPi + TNi

TPi + TNi + FPi + FNi
(15)

Here, TPi represents the correct classification of the i th stage’s test image. FPi represents the incorrect
classification of the i th stage’s test images into other stages. FNi represents the incorrect classification of
other stage’s test images into the i th stage. TNi represents the number of test images not influencing the
identification of the i th stage.

From Figure 5, one can observe that the confusion matrix of Table 5 for IR with similarity transform
has more diagonal elements, which shows that IR with similarity transform identifies CKD stages with better
accuracy.

On the other hand, the confusion matrix of Table 6 for the SSIM index algorithm has comparatively
fewer diagonal elements, which represents poor classification results.
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Aggregate accuracy (AA) can be computed using the following formula:

AA =

S∑
i=1

Ai

S
(16)

Here, A i represents the stagewise classification accuracy of the i th stage and S represents the total number of
stages. Stagewise prediction accuracy and aggregate accuracy of IR (with similarity transform) and the SSIM
index algorithm are estimated using Eqs. (15) and (16).

We also estimated the stagewise and aggregate prediction accuracy of the same set of test images using
the GLCM-based method of [11] and the SVM-based method of [30] for comparison. The estimated values are
listed in Table 7.

Table 7. Comparison of prediction accuracy of image registration (with similarity transform) and SSIM index
algorithm methods.

Algorithms Stagewise AggregateNormal Stage-1 Stage-2 Stage-3 Stage-4 Stage-5
IR with similarity transform 98.48 93.93 93.93 96.96 95.45 96.96 95.95
SSIM index 96.96 86.36 78.78 84.84 87.87 92.42 87.87
GLCM-based method [11] 96 96 100 98 96 95 96.83
SVM-based method [30] 45 26 69 76 90 90 66.00

As shown in Table 7, the prediction accuracy of the IR algorithm for identifying individual CKD stages
is higher than the prediction accuracy of the SSIM index algorithm. Among the existing methods, the GLCM-
based image classification method of [11] has higher prediction accuracy than the prediction accuracy of the
SVM-based method of [30]. Compared with the GLCM-based classification method of [11], the prediction
accuracy of the proposed method based on IR with similarity transform provides the same or better prediction
accuracy for three CKD stages (normal, stage-4, and stage-5), while the prediction accuracy rates of two CKD
stages (stage-1 and stage-3) are marginally lower (within 2%) than those of [11]. The aggregate prediction
accuracy of the proposed method based on the IR algorithm with similarity transform is almost identical
to that of [11]. Overall, the prediction accuracy offered by the IR algorithm has performance comparable
to that of the GLCM-based image classification method for identifying CKD stages. The IR algorithm with
similarity transform provides better results for identifying CKD stages. This is because of properties of similarity
transform such as preserving shape and angles between lines but not size [27]. The proposed method is simple
and straightforward compared to the existing image classification methods of [11] and [30]. Therefore, the
proposed computing method based on pattern matching is a better alternative to existing image classification-
based methods for CKD stage identification.

5. Conclusion
In this paper, a novel pattern matching-based computation scheme has been proposed to detect nephron loss in
different kidney regions due to CKD progression. We have considered the IR algorithm with different transforms
and the SSIM algorithm for pattern matching of different kidney regions to identify nephron loss. Simulation
results showed that the proposed scheme based on the IR and SSIM algorithms detects almost 34% and 51%
and almost 35% and 56% nephron damage in the cortex and medulla relative to normal kidneys, respectively,
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due to CKD progression. It was also observed from the results that the IR algorithm with translation transform
offered better results compared to the other IR transforms for detection of nephron loss in the cortex and
medulla of the kidneys. When the performance of the IR algorithm was compared to the SSIM algorithm, we
observed that the IR algorithm with translational transform was able to detect nearly 2% to 4% higher nephron
loss relative to normal kidneys than the SSIM. Therefore, the IR algorithm with translational transform is the
better choice over the SSIM to estimate relative nephron loss due to CKD progression. The limitation of this
study is that it did not identify the absolute amount of damaged nephrons. We have also proposed a computing
scheme to identify CKD stages using a novel pattern matching method. The proposed method does not use a
classifier, unlike the existing schemes. Instead, it uses a reference table of threshold values obtained during the
training phase for stage classification. Furthermore, simulation results showed that the proposed scheme based
on IR with similarity transform and the SSIM algorithm can identify CKD stages with accuracy of 96% and
88%, respectively. The prediction accuracy of the proposed scheme for identifying CKD stages using IR with
similarity transform is comparable to that of the GLCM-based image classification method, which is the best
among the existing methods. The proposed scheme has a few advantages over the existing computing scheme for
CKD stage identifications, such as: (i) the proposed method is simple and straightforward; (ii) it can be used to
identify both CKD stages and nephron loss during CKD progression; (iii) there is no need for feature extraction
and selection of contributing features; and (iv) it does not require the classification stage, unlike the existing
schemes. Overall, the proposed IR-based computing method can be used for CKD stage identification and to
estimate relative nephron loss with respect to normal kidneys. Therefore, the proposed computation scheme is
a better alternative to the existing schemes proposed for CKD stage identification. The proposed scheme does
not provide the exact estimate of the nephron loss in the kidney regions and that is its only limitation.
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