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Abstract: High-dimensional feature vectors entail computational cost and computational complexity. However, a
successful classification can be obtained with an optimally sized feature vector consisting of distinctive features. With
the widespread use of the internet and mobile devices, the need for systems with low computational costs is increasing
day by day. In this study, starting from the idea that each motor imagery is represented as a subject-specific pattern in
the brain, we propose a new and practical method that can generate a low-dimensional feature vector based on wavelet
transform. The feature vector is obtained from the correlation between each trial and each class average. To investigate
the effect of possible temporal shifts in the trial signals, the proposed method is analyzed with signal segments with
different starting points and lengths. The effect of these signal segments on classification is shown. The proposed feature
extraction approach is tested on two different datasets and the classification results are presented in comparison with
previous studies. With the method proposed in this study, much lower-dimensional feature vectors are obtained compared
to previous studies and very satisfactory results are obtained. It is observed that EEG signals related to motor imagery
in the brain have a subject-specific pattern, and this pattern is successfully classified with a feature vector consisting of
only 1 feature per class.

Key words: Brain–computer interface, signal processing, feature extraction, wavelet transform

1. Introduction
Classification is a learning phenomenon performed by using distinctive features. Living organisms develop
behaviors against internal and external stimuli through classification. In order to understand the nature
of this learning adventure and to develop successful classification algorithms, researchers have been trying
to identify the distinctive features that reveal the differences between psychophysiological signals such as
electroencephalography (EEG) and magnetoencephalography. Feature extraction in EEG refers to the process of
identifying relevant and informative characteristics or patterns from raw EEG signals. These extracted features
are then used as inputs for further analysis or classification tasks. Effective feature extraction is crucial for
capturing the discriminative information contained within the EEG data. Various common techniques are used
for feature extraction in EEG analysis. For example, time-domain features are used to capture the properties
of EEG signals in the time domain. Examples include mean, variance, skewness, kurtosis, and other statistical
measures calculated over different time windows or segments of the signal. With frequency-domain features,
∗Correspondence: yerkan@bartin.edu.tr
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EEG signals can be transformed into the frequency domain using techniques such as fast Fourier transform
(FFT) or discrete wavelet transform (DWT) [1]. Frequency-domain features include spectral power, dominant
frequency, spectral entropy, and band power in specific frequency bands (e.g., delta, theta, alpha, beta, and
gamma). Using time-frequency features, EEG signals exhibit dynamic changes in both time and frequency
domains. Time-frequency analysis methods like the Fourier or wavelet transform can be applied to capture
the signal’s spectral changes over time. Time-frequency features include spectrograms, power spectral density
estimates, and event-related spectral perturbation (ERSP). Common spatial patterns [2] and the Savitzky–Golay
filter [3] are also used to find the most distinctive features in signal analysis. However, wavelet transform-based
feature extraction methods have also been used in EEG analysis to decrease the size of the feature vector and
determine the feature subset that maximizes classification success [4]. The classifier method and the feature
vector used with this classifier are the most important factors affecting the success of the classification task.
Common classification methods such as support vector machines (SVMs) [5], the K-nearest neighbors (KNN)
algorithm [6], linear discriminant analysis (LDA) [7], and artificial neural networks [8] have been widely used
in brain–computer interface (BCI) studies. In addition, convolutional neural networks (CNNs), as a type of
artificial neural network that is very popular today, are also used to classify EEG signals and analyze EEG data
[9]. In one such study, Turk compared traditional classification methods with a CNN in an EEG classification
task and presented the results obtained from using hybrids of CNNs with traditional methods [10]. CNNs owe
their popularity to the amount of data that feeds them. However, this machine learning method, which is
frequently used in image processing, needs thousands of images for successful clustering and classification. This
is a disadvantage in terms of computational cost. While traditional methods such as the KNN algorithm and
SVMs have the advantage of working with less data, CNNs can handle the feature extraction step themselves.
However, with the widespread use of the internet and mobile devices, the need for systems with fast speed
and low computational costs is increasing day by day. The main purpose of signal classification is to achieve a
successful classification result with an optimal number of features.

In this study, to reduce the computational cost, we propose a new feature extraction method that has an
optimal number of features. The proposed method was tested on two different public datasets, which we present
below. Datasets obtained by magnetoencephalography (MEG) and electrocorticography (ECoG) methods and
given in BCI Competitions IV and III, respectively, were used to evaluate the proposed method. Sardouie and
Shamsollahi achieved 46.9% (Subject 1 = 59.5%, Subject 2 = 34.3%) accuracy with the MEG dataset as the best
classification success in the competition. They achieved this success with a feature vector obtained by reducing
the frequency domain features of 12 channels and the wavelet coefficients with a supervised algorithm. Moreover,
they used a linear SVM and LDA classification methods together and reached optimal classification accuracy
using a genetic algorithm (GA) [11]. For second place in the competition, Li et al. performed a classification
with average accuracy of 25.1% (Subject 1 = 31.1%, Subject 2 = 19.2%) using an 8-Hz low-pass filter. In
that work, for generating the feature vector, they used the principal components of the amplitude and phase
of the Fourier transform of each sample. They also reduced the size of frequency characteristics with Fisher
discriminant analysis (FDA) [12]. In another study, the MEG dataset was classified with a linear SVM classifier
of the feature vector consisting of wavelet coefficients. That study achieved 23.9% (Subject 1 = 16.2%, Subject
2 = 31.5%) accuracy [12]. When studies with the same MEG dataset other than those from the aforementioned
competitions are examined, Goni et al. achieved 64% success for only Subject 1 using UNEQ class models
with autoregressive features [13]. Hatipoğlu et al. first converted the signals into an angle-amplitude graphic
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image. They then obtained the features by combining image feature detection, feature transform, and the
visual bag-of-words method. They achieved 78.09% and 79.88% classification success for both subjects with
500 features per channel using the KNN algorithm [14]. The ECoG dataset was obtained in an experiment in
which a subject performed imaginary movements of the left little finger or tongue. For the ECoG dataset, the
highest classification accuracy of 79% was obtained with 58% kappa using only six features per channel [15].
On the other hand, in other studies, higher classification successes have been achieved. In their study, Qi et al.
performed channel and feature selection with a method based on particle swarm optimization [16].

In this study, unlike the previous literature, a practical feature extraction method based on wavelet
transform, which reduces the computational complexity by producing very low-dimensional feature vectors, is
proposed. In the proposed method, the feature vector is generated by calculating the correlation of the signal
reduced in size by wavelet transform with the mean of each class. The obtained feature vectors are classified
by SVM and classification results are presented in comparison with previous studies. In addition, we think
that EEG signals with a complex structure should be classified with individual feature extraction methods, and
there may be subject-specific information in different segments of EEG signals. In a previous study, it was
hypothesized that the frequency feature of EEG signals would differ from individual to individual, and it was
shown that the classification success was increased by 4.4% [17]. In this context, we also present the analysis of
classification results obtained by using different segments of the EEG signal in this study.

The rest of this paper is organized as follows. Section 2 describes related work in the field of psy-
chophysiological signal analysis. Section 3 introduces both the MEG and ECoG datasets and explains the
signal preprocessing methods. Subsequently, the developed wavelet transform-based feature extraction and
classification method is introduced. Section 4 presents the experimental results in comparison to the literature.
Section 5 concludes the study by presenting improvements to be made to the proposed approach, as well as
recommendations for future research.

2. Related works

Feature size in EEG signal analysis refers to the number of features extracted or selected from raw EEG data for
subsequent analysis. Feature size directly affects the dimensionality of the data and can have an impact on com-
putational complexity, interpretability, and the performance of machine learning algorithms. Feature extraction
methods aim to transform raw EEG data into lower-dimensional representations by calculating specific features
that capture relevant information. Commonly used features include spectral power in different frequency bands,
statistical measures (e.g., mean, variance), wavelet transform (WT), and time-domain characteristics. Dimen-
sionality reduction techniques aim to reduce the number of features while preserving important information.
Techniques like principal component analysis (PCA) and LDA can be used to reduce dimensionality. Yu et
al. analyzed the success of a motor imagery classification task in a 2014 study using PCA [18]. In another
study in which epilepsy detection from EEG signals was performed, PCA, independent components analysis
(ICA), and LDA were used to reduce the size of the data [19]. In the literature, there are other studies that
have achieved successful classifications with the optimum number of features. For example, a very successful
drowsiness detection system for drivers with a feature vector was obtained by Belakdar et al. with only five
features from a single EEG channel [20]. In another study, spectral power-based effective feature extraction
was proposed [21]. The feature vector size, or the number of features used in classification, plays a crucial role
in determining the performance and efficiency of classification algorithms.
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3. Materials and methods
The method proposed in this study was tested on two different datasets of psychophysiological signals, the details
of which are presented below. All simulations were realized on a computer that had i7 2.8 GHz processors and
16 GB RAM using MATLAB 2022b.

3.1. Dataset
The presented method was tested on the two different datasets given in the following subsections.

3.1.1. MEG dataset
This dataset was obtained from two healthy subjects in total by experiments using 10 electrodes placed on
the motor cortex of each subject. Each subject had to move his/her wrist in four different directions in the
horizontal plane (left-right-forward-backward). All EEG signals were recorded at a sampling frequency of 625
13 Hz. Each trial was resampled at 400 Hz. Trials were cut to contain a total of 1-s data between 0.4 s before
and 0.6 s after the movement. In the competition, participants were asked to classify the unlabeled evaluation
data of 74 and 73 trials for Subject 1 and Subject 2 using labeled training data containing a total of 160 trials
(40 trials per class) for each subject.

3.1.2. ECoG dataset
The ECoG dataset consisting of ECoG signals from BCI Competition III was recorded with a 1000-Hz sampling
rate using 64 electrodes. In the experiment, the subject was asked to imagine the movement of her or his tongue
or left little finger. Brain activity was picked up as a time series of 3 s during several trials using a platinum
electrode grid (approximately 8 × 8 cm), which was located on the motor cortex invasively. The training dataset
contains labeled data for the tongue (139) and finger (139) classes. Participants tried to predict correctly the
labels of the test dataset with 100 trials [15, 22, 23].

3.2. Wavelet transform (WT)

WTs are mathematical analysis methods often used in mathematics and engineering to analyze data where sig-
nals vary at different scales. The continuous wavelet transform (CWT) provides continuous-time and continuous-
frequency information in the time-frequency domain. It allows for precise localization of frequency components
at each point in time. In contrast, the DWT provides discrete-time and discrete-frequency information. It
achieves this by dividing the signal into successive time intervals and analyzing each interval at different scales.
WCoefficients refers to the coefficients obtained from this calculation method. The first step of the proposed
method is based on a WT that allows modeling the signal in the scaled time domain. The WT formulated as in
Eq. (1) was used to reduce the size of the signal. The WT, which represents the signal with the different scale
and position of the main wavelet used in the conversion, also preserves the time and frequency information of
the signal. Here x represents n signal and ψ represents the main wavelet.

WCoefficients(Scale, Pos) =

∫ +∞

−∞
S(t)ψ(Scale, Pos, t)dt (1)

When the scales and shifts are chosen as powers of 2, the wavelet form is expressed as the DWT given in
Eq. (2).
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DWT (a, b) =
∑
a

∑
b

x(b)2−a/2ψ(2−an− b) (2)

The DWT was calculated from 5th-order and 7th-order WTs using the Daubechies (db2) mother wavelet
for the MEG and ECoG datasets, respectively. Table 1 and Table 2 show the signal decomposition levels and
the frequency bands in each level for the MEG and ECoG datasets. The levels used in the classification are
highlighted.

Table 1. DWT decomposition levels and frequency bands for the MEG dataset.

Level Frequency range (Hz) EEG
App1 0–200
App2 0–100
App3 0–50
App4 0–25
App5 0–12.5 Delta (0–4)–Theta (4–8)
Det1 200–400
Det2 100–200
Det3 50–100 Gamma (32–64)
Det4 25–50 Beta (16–32)
Det5 12.5–25 Alpha (8–16)

Table 2. DWT decomposition levels and frequency bands for the ECoG dataset.

Level Frequency range (Hz) EEG
App1 0–500
App2 0–250
App3 0–125
App4 0–62.5
App5 0–31.5
App6 0–15.63
App7 0–7.81 Delta (0–4)–Theta (4–8)
Det1 500–1000
Det2 250–500
Det3 125–250
Det4 62.5–125
Det5 31.25–62.5 Gamma (32–64)
Det6 15.63–31.25 Beta (16–32)
Det7 7.81–15.63 Alpha (8–16)

The obtained wavelet coefficients were used to calculate the correlation of the class averages with the
wavelet outputs.

3.3. Pearson correlation coefficient
The Pearson correlation coefficient (PCC), which expresses the linear correlation between two variables such as
A and B, is calculated as follows:
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P (A,B) =
COV (A,B)

σAσB
(3)

The function COV (A,B) is the covariance of A and B . σA and σB are the deviations of A and B.
P (A,B) ranges from +1 to −1 . A value of +1 implies that A is completely positively linearly correlated to
B while a value of 0 indicates that A is not linearly correlated to B at all. A value of −1 implies that A is
completely negatively linearly correlated to B. The correlation coefficient matrix of two random variables is the
matrix of correlation coefficients given in Eq. (4) for each pairwise variable combination [24].

R =

(
P (A,A) P (A,B)
P (B,A) P (B,B)

)
(4)

Since A and B are always directly correlated to themselves, the diagonal entries are just 1, as follows:

R =

(
1 P (A,B)

P (B,A) 1

)
(5)

In this paper, the PCC is used to generate feature vectors by calculating the correlation of each trial with
the average of the training classes separately.

3.4. Signal processing

We analyzed the average of the training data for both datasets to observe the pattern of each class in the time
domain. The averages of the training data of each class that makes up the MEG and ECoG datasets are given
in Figure 1 and Figure 2, respectively.
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Figure 1. Average of training data for all classes (MEG dataset, Subject 1, Channel 3).
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Figure 2. Average of training data (ECoG dataset, Channel 12).

Figure 1 and Figure 2 show the differences between the classes of the MEG and ECoG datasets. We
applied the WT to class averages, both to reduce data size and to more clearly observe interclass differences.
In Figure 3 and Figure 4, the class averages of the MEG and ECoG datasets and the approximate (Appn )
components obtained as a result of the WT of these averages at different levels are given, respectively. It is
seen that the wavelet approximation components of the 5th level for the MEG dataset and the 7th level for the
ECoG dataset, which include the delta and theta frequencies, given in Figure 3f and Figure 4h, have a pattern
that reflects the general characteristic of the signals in the time domain. Starting from this point, 5th-level WT
was applied to the MEG dataset and 7th-level WT was applied to the ECoG dataset. In addition, there are
studies in the literature in which alpha and theta bands of psychophysiological signals such as EEG are used
[29]. For MEG dataset-Subject 1, all class means and WT approximation coefficient 5 outputs of these averages
are given in Figure 5, and for the ECoG dataset, all class averages and WT approximation coefficient 7 outputs
of these averages are given in Figure 6.

From Figure 5 and Figure 6, the differences between classes are clearly seen with both the class averages
and the WT outputs of the class averages.

3.5. Feature extraction
As mentioned before, it was seen in the tests performed that wavelet approximation components containing
the delta and theta frequencies of the EEG signal can exhibit better classification results. Therefore, for both
datasets, feature vectors were created by calculating the PCCs, which determine the correlation of wavelet
components that include delta and theta frequencies with each class average. The flow chart of the proposed
feature extraction method is given in Figure 7. As seen in Figure 7, the correlation of the WT of each trial was
scaled in the range of [–1,+1] and the WT of each class mean was calculated. In this way, a feature vector was
created by calculating 1 PCC per class for each trial signal. In the training phase, the correlation of each trial in
the training data with each training class average was calculated, and in the evolution phase, the feature vector
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(b) App1 , Level 1 approximation coefficients of average of Class-I; (c) App2 , Level 2 approximation coefficients of average
of Class-I; (d) App3 , Level 3 approximation coefficients of average of Class-I; (e) App4 , Level 4 approximation coefficients
of average of Class-I; (f) App5 , Level 5 approximation coefficients of average of Class-I ).
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Figure 4. WT of the average training data of Class-I for the ECoG dataset (channel 38: (a) Class-I average; (b)
App1 , Level 1 approximation coefficients of average of Class-I; (c) App2 , Level 2 approximation coefficients of average of
Class-I; (d) App3 , Level 3 approximation coefficients of average of Class-I; (e) App4 , Level 4 approximation coefficients
of average of Class-I; (f) App5 , Level 5 approximation coefficients of average of Class-I; (g) App6 , Level 6 approximation
coefficients of average of Class-I; (h) App7 , Level 7 approximation coefficients of average of Class-I ).
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Figure 5. WT of the average training data of Subject 1 for each class in the MEG dataset for channel 7: (a) Class-I, (b)
Class-II, (c) Class-I level 5 WT approximation coefficients, (d) Class-II level 5 WT approximation coefficients, (e) Class-
III, (f) Class-IV, (g) Class-III level 5 WT approximation coefficients, (h) Class-IV level 5 WT approximation coefficients.
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Figure 6. WT of the average training data for each class in the ECoG dataset for channel 38: (a) Class-I, (b) Class-II,
(c) Class-I level 7 WT approximation coefficients, (d) Class-II level 7 WT approximation coefficients.

was produced by calculating the correlation of each trial in the evolution data with each training class average.
In summary, the similarity of each trial with the training class averages constitutes feature vectors. In order to
obtain the wavelet components containing the delta and theta frequencies of the signal, k (in Figure 7), which
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represents the WT level, was chosen as 5 and 7, respectively, for the MEG and ECoG datasets. Feature vectors
were calculated with wavelet approximation components that only included delta and theta frequencies.
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Figure 7. Generating the feature vector.

3.5.1. Analysis of time complexity
The pseudo-code of the proposed feature extraction approach that we suggest is also given in Algorithm 1.
The time complexity of the proposed approach can be given as approximately O(kst), with s representing the
number of classes, c the number of channels, and t the number of training data trials. The MEG dataset’s
training and test practice computation times were determined as 3.88 s and 2.02 s, respectively. In addition,
we would like to note that the feature vector for space complexity changes in direct proportion to the number
of classes.

4. Classifier
4.1. Support vector machine (SVM)

x(i)ϵRdim being the training data, yiϵ{−1,+1} and dim represent the class labels and dimension of the
hyperplane, respectively, as follows:

(x1, y1), (x2, y2), . . . (xk, yk) (6)

The purpose of the SVM is to determine the optimal hyperplane (w ∗x+ b = 0) that divides the training
data into two classes, maximizing the margin. F (t) determines which class t belongs to in {−1,+1} with
optimal values of w and b expressed by Eq. (7) [5, 25].

F (t) = sgn((ŵ, t) + b̂) (7)
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Algorithm 1 Feature extraction method.

Input:
signal : EEG Signal(s,c,t);
s : Number of Classes;
c : Number of Channels;
t : Number of Trials;

Output:
FV : Feature Vector (s,c,t)
s : Number of Classes;
c : Number of Channels;
t : Number of Trials;

Description:
1: Define parameters: s, c, t
2: for ((s = 1; s < class_number; s++) do
3: for ((c = 1; c < channel_number; c++) do
4: class_average(s, c) = mean(signal(s, c))
5: Wavelet_coeff_class(s, c) =WT (class_average(s, c))
6: end for
7: end for
8: for ((c = 1; c < channel_number; c++) do
9: for ((t = 1; s < trial_number; t++) do

10: Wavelet_coeff_trial(s, c, t) =WT (signal(s, c, t))
11: for ((s = 1; s < class_number; s++) do
12: FV (c, t, s) = corrcoef(Wavelet_coeff_class(s, c),Wavelet_coeff_trial(s, c, t))
13: end for
14: end for
15: end for
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SVM algorithms use mathematical functions such as linear, nonlinear, and polynomial, which are defined
as the kernel. These functions transform input data to the required form. The kernel function of the SVM is
chosen as linear in this study.

4.2. Evaluation parameters

Evaluation metrics with formulas given below were used in this study, including overall accuracy (Acc), recall
(Re), precision (Pr), F1 score (F1), and Cohen’s kappa coefficient (K). The accuracy of the multiclass problem
was evaluated as follows:

Acc =
TP + TN

TP + TN + FP + FN
(8)

Here, TP , FP , TN , and FN denote the true positives, the false positives, the true negatives, and the
false negatives, respectively. Accuracy (Acc) represents the ratio of the correctly classified instances to the total
number of instances [26]. The other performance metrics were calculated as follows:

Re =
TP

TP + FN
(9)

Pr =
TP

TP + FP
(10)

F1 =
2× Pr ×Re

Pr +Rr
(11)

Cohen’s kappa coefficient is usually utilized for consistency testing and measurement of classification
accuracy.

k =
po − pe
1− pe

(12)

In Eq. (12), po represents the sum of the number of samples that are correctly classified within each
category. This metric provides the overall classification accuracy obtained by dividing the total number of
samples. pe given in Eq. (12) is calculated by Eq. (13). a1, a2, ..., ac and b1, b2, ..., bC express the predicted
number of samples in each category and the total number of samples (N ), respectively.

pe =
a1xb1 + a2xb2 + ...+ acxbc

NxN
(13)

Kappa is a consistency measure that can be between 0 and 1. Values of kappa close to 1 indicate high
consistency and accuracy [27].

5. Experimental results
In the time domain, trials of the MEG and ECoG datasets, expressed as 400 and 1000 points, respectively, were
represented by 15 and 26 points as a result of WT. The most successful classification results, dataset, signal
segment, channel subset, and classification accuracy with metrics supporting that accuracy such as kappa,
precision, recall, and F1 score are given in Table 3.
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Table 3. Best classification results with PCC feature vectors.

Dataset Subject Signal Channel Eval. Eval. Eval. Eval. Eval.
segment subset Acc. Kappa Precision Recall F1 score

%
MEG Subject 1 1–15 2,3,4,5,6 68.92 0.58 0.69 0.69 0.68
MEG Subject 1 1–15 1,2,3,4,5,6 68.92 0.58 0.72 0.69 0.68
MEG Subject 2 1–15 1,4,8,9 45.21 0.26 0.46 0.45 0.45
MEG Subject 2 1–15 6,8,9 45.21 0.24 0.46 0.43 0.43
ECoG Subject 1–26 4,11,22 81 0.62 0.81 0.81 0.81
ECoG Subject 1–26 4,7,12,31 82 0.64 0.82 0.82 0.82
ECoG Subject 1–26 4,12,14,22,37 84 0.68 0.85 0.84 0.84

When the results given in Table 3 are evaluated, it is seen that quite satisfactory classification accuracies
were obtained with the datasets used compared to previous studies. These results are 68.92%, 45.21%, and 84%
for MEG dataset-Subject 1, MEG dataset-Subject 2, and the ECoG dataset, respectively. More importantly,
these results were obtained with feature vectors of much smaller size than those previously used in studies with
these datasets. The mentioned classification results were achieved with vectors consisting of only 1 feature per
class. For example, while the feature vector size for the 4-class MEG dataset is channel×4, the feature vector
size for the 2-class ECoG dataset is channel×2. The results are supported by four different evaluation metrics
including kappa, precision, recall, and F1 score. In addition, distinctive features for classes may be hidden
in different temporal segments of the signal. In a previous study it was shown that the features obtained by
shifting the parts of the signal in the time domain increased the classification success [28]. With this approach,
signal segments with all possible starting points and lengths on the approximation component of the WT of the
signal are selected, and feature vectors created by calculating similarities of these segments with class averages
are classified according to all possible channel combinations. In this way, the most effective part of the signal
is tried to be determined.

We present the classification results of the MEG dataset obtained from the coefficients of the WT at
different levels (A4, A6) in Table 4. When Table 4 is compared to Table 3, it is seen that more successful
classification results were obtained from WT components corresponding to the delta and theta bands.

Table 4. Best classification results with PCC feature vectors using A4 and A6 coefficients of WT.

Dataset Subject Signal Channel Eval. Eval. Eval. Eval. Eval.
segment subset Acc. Kappa Precision Recall F1 score

%
A4 Subject 1 1–27 2,3,4,5,6 59.46 0.44 0.59 0.59 0.59
A4 Subject 1 1–27 1,2,3,4,5,6 58.11 0.44 0.61 0.58 0.58
A4 Subject 2 1–27 1,4,8,9 27.40 0.34 0.31 0.27 0.28
A4 Subject 2 1–27 6,8,9 38.36 0.18 0.39 0.38 0.38
A6 Subject 1 1–9 2,3,4,5,6 54.05 0.38 0.55 0.54 0.54
A6 Subject 1 1–9 1,2,3,4,5,6 50.00 0.33 0.52 0.50 0.50
A6 Subject 2 1–9 1,4,8,9 35.62 0.12 0.37 0.36 0.36
A6 Subject 2 1–9 6,8,9 35.62 0.14 0.38 0.36 0.36
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The classification accuracies of Subject 1 and Subject 2 for all possible signal segment lengths and origins
for the MEG evaluation dataset are given in Figure 8 and Figure 9, respectively. The x-axis represents the
origin of the signal segment and the y-axis its length.
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Figure 8. Classification successes according to different signal lengths and starting points for Subject 1 on evaluation
dataset.
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Figure 9. Classification successes according to different signal lengths and starting points for Subject 2 on evaluation
dataset.
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As seen from Figure 8, the highest classification accuracy for Subject 1, 74.32%, was obtained by using
the part of the signal containing only points 8–15 of the 5th-level WT. Similarly, as can be seen in Figure 9, the
highest classification accuracy for Subject 2 was obtained as 58.90% by using the part of the signal containing
only points 9–14 of the 5th-level WT. It can be said that these signal segments are the signal segments that
carry the most information for each subject. In Table 5, these classification results for Subject 1 and Subject 2
are given in more detail. The best classification results are highlighted. The dataset, signal segment, channel
subset, and classification accuracy with metrics supporting this accuracy including kappa, precision, recall, and
F1 score are presented in Table 5.

Table 5. Best classification results with PCC feature vectors.

Dataset Subject Signal Channel Eval. Eval. Eval. Eval. Eval.
segment subset Acc. Kappa Precision Recall F1 score

%
MEG Subjec t1 8–15 1,3,4,7,8,9 74.32 0.65 0.76 0.74 0.74
MEG Subject 1 6–14 2,3,4,5,9,10 72.97 0.63 0.76 0.73 0.73
MEG Subject 1 5–13 2,4,5,7 72.97 0.63 0.74 0.73 0.73
MEG Subject 2 9–14 1,2,5,6,7,8,10 58.90 0.44 0.59 0.59 0.59
MEG Subject 2 7–14 6,7,8,9,10 57.53 0.42 0.59 0.58 0.57
MEG Subject 2 6–13 2,3,5,6,7,8,9 57.34 0.43 0.62 0.58 0.57

Similarly, the classification successes of the training datasets are given in Figure 10 and Figure 11 for
Subject 1 and Subject 2, respectively. It is seen that the signal segments from which the most successful
classification results were obtained for the evaluation and training datasets given in Figure 8 and Figure 10 for
Subject 1 are highly similar. In addition, for Subject 2, the signal segments from which the most successful
classification results for the evaluation and training datasets in Figure 9 and Figure 11 were achieved appear to
be highly similar. We predict that this similarity rate will increase in direct proportion to the number of trials
in the dataset.

When the signal segments from which the maximum classification result was obtained are examined, it is
seen that different signal segments are effective in classification for all three subjects. This result is evidence that
motor imagery movements are encoded in a subject-specific way in the brain, unlike studies in which the same
feature vectors are used for each subject. Table 6 summarizes the comparison of the results of previous studies
and our study. NF represents the total number of features used in classification. As seen from Table 6, the
highest classification success was achieved for both subjects when we compared the proposed practical method
with those of the literature, except for the last study [14]. Moreover, this work also presented the highest
classification successes achieved with the lowest dimensional feature vectors for both subjects. The results of
our study in Table 6 were obtained with only 24 and 28 numerical features in total for Subject 1 and Subject 2,
respectively. When we evaluate the findings on the basis of the subjects, it is also seen that the results achieved
are in harmony with the previous studies, except for the last study [14] in the literature with this dataset. In
the mentioned study, it is seen that the obtained results were achieved by transferring the signal in the time
domain to the image space and selecting the image properties in an ambiguous manner. Our results are also
supported by four different evaluation metrics as given in Table 5. Attention should be paid to the NF column,
where the number of features used in classification is given.

ROC curves for the best classification results obtained with the MEG dataset for Subject 1 and Subject
2 are given in Figure 12.
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Figure 10. Classification successes according to different signal lengths and starting points for Subject 1 on training
dataset.
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Figure 11. Classification successes according to different signal lengths and starting points for Subject 2 on training
dataset.

6. Conclusion

In this work, a new and practical feature extraction method based on WT and PCC has been analyzed. With
this method, which can produce low-dimensional feature vectors by WT, the most effective parts of the signal
could be detected. With the proposed method, WT is first applied to the signal to use the approximation
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Table 6. Comparison of the results of previous studies and our study.

Subject 1 Subject 1 Subject 2 Subject 2 Avr.
Studies NF Acc. Kappa Acc. Kappa Acc.

% % %
Sardouie et al. 4788 59.50 - 34.30 - 46.9
Li et al. 1024 31.10 - 19.20 - 25.1
Montazeri et al. - 16.20 - 31.50 - 23.9
Wang et al. 1024 23.00 - 17.80 - 20.4
Goni et al. 270 64.00 - - - -
Hatipoğlu et al. 500 78.09 - 79.88 - 78.99
Our study 24-28 74.32 0.74 58.90 0.59 66.61
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Figure 12. ROC curves for MEG dataset: A) Subject 1, B) Subject 2.

coefficients that have the overall pattern of the signal in the time domain. Thus, the size of the signal to be
processed is reduced. Secondly, the segment of the signal that best represents the general character of the
signal is determined by calculating all possible probabilities. Finally, the feature vector is created by calculating
the correlation of this signal part with the corresponding signal part of the WT output of each class average.
In this way, feature vectors created by calculating only one feature per class are classified by the SVM. The
proposed analysis method was tested on two different datasets with three subjects. The best classification
accuracies of 74.32% and 58.90% for the MEG dataset with Subject 1 and Subject 2 were respectively achieved.
The classification successes for both subjects were supported by the highest evaluation metrics in the literature
of 0.74 and 0.59, which represent high and medium classification harmony. The proposed approach produces
low-dimensional feature vectors. These feature vectors are obtained with just one PCC calculated from each
signal segment for a class. For example, classification success accuracy of 86% with kappa of 0.72 for the ECoG
dataset was obtained by calculating only one PCC value of the signal per class. However, the best classification
results of Subject 1 and Subject 2 for the MEG dataset were obtained with different channel subsets. This
may be evidence that the regions in the brain where motor imagery tasks are encoded may differ from subject
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to subject. In addition, the presented study has also shown that the alpha and theta signal bands contain
distinctive cognitive information in terms of classification [29, 31]. In this paper, it has been shown that there
is a subject-specific signal pattern formed as a result of motor imagery tasks in the brain and this pattern
can be successfully classified with a low-dimensional feature vector. Our study, in contrast to complex feature
extraction methods, encourages more studies on the mentioned pattern. As future work, the suggested feature
extraction approach can be improved for automatically detecting the subject-specific signal segments.
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