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Abstract: Explainable AI (XAI) improved by a deep neural network (DNN) of a residual neural network (ResNet) and
long short-term memory networks (LSTMs), termed XAIRL, is proposed for segmenting foot infrared imaging datasets.
First, an infrared sensor imaging dataset is acquired by a foot infrared sensor imaging device and preprocessed. The
infrared sensor image features are then defined and extracted with XAIRL being applied to segment the dataset. This
paper compares and discusses our results with XAIRL. Evaluation indices are applied to perform various measurements
for foot infrared image segmentation including accuracy, precision, recall, F1 score, intersection over union (IoU), Dice
similarity coefficient, mean intersection of union, boundary displacement error (BDE), Hausdorff distance, and receiver
operating characteristic (ROC). Compared to results from the literature, XAIRL shows the highest overall performance,
achieving accuracy of 0.93, precision of 0.91, recall of 0.95, and F1 score of 0.93. XAIRL also displays the highest IoU,
Dice similarity coefficient, and ROC curve and the lowest BDE and Hausdorff distance. Although U-Net performs well
for most metrics, Mask R-CNN shows slightly worse performance but still outperforms the random forest and support
vector machine algorithms. By building a high-quality foot infrared imaging dataset, machine learning-based algorithms
can accurately analyze foot temperature and pressure distribution. These models can then be used to customize shoes
for individual wearers, improving their comfort and reducing the risk of foot injuries, particularly for those with high
blood pressure.

Key words: Convolutional neural networks, deep learning, explainable AI, image recognition, long short-term memory
networks

1. Introduction
An infrared sensor is a type of sensor that detects infrared radiation. Any object in nature, as long as its
stability is above absolute zero, will radiate infrared energy. Therefore, an infrared sensor is called a very
practical sensor [1, 2]. By observing the optical system and the infrared detector, an optical mechanical scanning
mechanism scans the infrared thermal image of the measured object and focuses on the unit or spectral detector.
The detector converts the infrared radiation energy into electrical signals, which are amplified, converted, or
standard video signals displayed through a television screen or a monitor [3, 4].
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In the preprocessing of infrared images, image segmentation is a very important step in early processing.
Researchers have achieved a large number of results in the field of image segmentation, which stem from the
utilization of different features in images, such as the similarity of features within a region, connectivity between
pixels, and discontinuity between targets and backgrounds. However, to date, there is no segmentation algorithm
that can be used for all image segmentation, which also promotes continuous research on image segmentation
by researchers. Convolutional neural networks (CNNs) have achieved state-of-the-art performance in automatic
medical image segmentation. However, the poor interpretability of the existing CNNs limits their application
in clinical decision-making. It becomes crucial to explain the results of the algorithm output to the user [5, 6].
The interpretability of artificial intelligence (AI) refers to the ability of people to understand the choices made
by AI models in their decision-making processes, including the reasons for making decisions, the methods, and
the contents of the decisions.

The biggest problem with current AI systems based on big data and deep learning is their lack of
explainability and understanding, leading to reduced performance when faced with dynamic environments and
incomplete or false information and preventing human–machine interaction and collaboration. This black-
box problem is crucial because users will not trust AI if they do not understand how AI makes its decisions.
Explainable AI (XAI) is a crucial area of study and may become the core of future machine learning, but
as models become more complex, it becomes increasingly difficult to determine simple, explainable rules.
New machine learning systems will be able to explain their basic principles, represent their advantages and
disadvantages, and convey an understanding of how they will perform in the future. This goal will be achieved by
developing new or improved machines with more explainable models, which will then be combined with cutting-
edge human–machine interface technology to provide interpretable explanations to end users. Our strategy is
to adopt various techniques to generate a range of methods and provide a range of design options for future
developers that can offer a balance between performance and explainability. Despite the good performance of
deep CNNs in medical image processing, the lack of explainability of the black box impedes the development of
intelligent medical diagnosis. Despite deep learning having made significant progress in medical diagnosis, its
lack of interpretability has become a significant hindrance to its broad adoption in the medical domain [7].

There are several reasons why XAI and deep neural networks (DNNs) work well for infrared sensor
imaging dataset segmentation. First, they have the ability to learn complex features; DNNs are capable of
learning and representing complex and advanced attributes. In the case of infrared sensor imaging, this enables
the network to extract meaningful features from the image that aid in accurate segmentation. Second, by using
large amounts of data, a DNN requires a significant training dataset, and the availability of large datasets for
infrared sensor imaging enables the network to learn robust and accurate representations of the data. Third,
with their nonlinear mapping, DNNs can learn intricate relationships between inputs and outputs that can be
nonlinear in nature, which is essential for the accurate segmentation of infrared sensor imaging data that have
complex and nonlinear relationships between input features. Finally, the XAI techniques for interoperability
may help explain how the DNN arrived at its segmentation results, making it easier for experts to validate and
improve the segmentation performance [8]. Conventional machine learning models, which rely on statistical
analysis, are generally easier to interpret than their deep learning counterparts. For example, linear models
enable interpretation of the significance and implications of parameters in neural networks by analyzing their
weights and ranges of fluctuation. Decision tree models also offer user-friendly decision-making criteria by
presenting a sequence of decision points. Variable selection criteria based on information theory assist in
identifying the variables that have a more significant impact on the models. Rule-based expert systems utilize
domain-specific knowledge bases and strategy libraries to interpret contextual logic relationships [9].
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As the complexity of deep learning models continues to grow, unraveling the decision-making processes
within multilayer neural networks that consist of multiple nonlinear functions and comprehending their neural
pathways has become progressively intricate. Consequently, the pursuit of interpretability in the domain of AI
can be categorized into two principal domains: model-driven and user-driven. The realm of AI is intricately
constructed to optimize behaviors predicated upon mathematical target systems. For instance, a directive may
be set to “maximize the accuracy of positive movie reviews within the test dataset.” While AI has the capability
to deduce overarching patterns from the test set, such as discerning that “reviews containing the term ‘horror’
tend to be associated with negativity,” it might also internalize less desirable associations, as exemplified by the
inference that “reviews mentioning ‘Daniel Day Lewis’ are generally indicative of positivity.” The latter type of
learned associations could potentially lack the capacity to extend to future real-world data beyond the confines
of the test set or might be viewed as instances of “unfairness” or “cheating” in nature. In such cases, these
acquired rules could be regarded as undesirable outcomes. XAI emerges as a transformative approach that
empowers human auditors to critically examine these learned rules. The overarching aim of this approach is to
assess the viability of the system’s ability to generalize its acquired insights to forthcoming real-world data that
exist outside the realm of the test set. By employing XAI, humans gain the ability to scrutinize the system’s
underlying decision-making mechanisms, evaluating the likelihood of its applicability beyond controlled test
conditions [10].

An explainable deep neural network (xDNN) is a model that can provide insight into its decision-making
processes through various methods such as attribution maps, saliency maps, and layerwise relevance propagation
[11, 12]. These methods aim to make the model’s decisions more transparent and understandable, allowing for
improved trust and interpretability of the model’s predictions. There are several different types of xDNN models,
including:

a) Gradient-based methods: These methods use the gradient of the model’s output with respect to its
input to generate attribution maps that highlight the most important areas of the image for prediction [13].

b) Input perturbation: Taking the LIME model as an example, input perturbation can explain the output
of the input image by generating random perturbations of input x and training an interpretable model (usually
a linear model).

c) Relevance score propagation layer by layer: This a technology that integrates interpretability into
highly complex deep learning neural networks. The prediction results are backpropagated in the neural network
through a specially designed backpropagation rule [14].

The best method may depend on the specific application and the type of data being analyzed. This
research aims to create a feasible framework for XAI applied in foot infrared imaging segmenting.

2. Modeling

A simple and easily interpretable regression or decision tree model can no longer fully meet technical and
business needs. More and more people are using ensemble methods and DNNs to achieve better predictions
and higher accuracy [15, 16]. However, those complex models are difficult to explain, debug, and understand.
Researchers and machine learning practitioners have designed many model interpretation techniques. In this
study, we provide a high-level overview of eight popular model interpretation techniques and tools, including
Shapley additive explanations (SHAP), LIME (explaining individual predictions of machine learning models),
explainable boosting machine (EBM) (interpretable augmentation machine), saliency maps, testing with concept
activation vectors (TCAV) (a new linear interpretability method), distillation, counterfactuals, and lnterpretML

1023



LIAO et al./Turk J Elec Eng & Comp Sci

(which provides developers with multiple ways to experiment with AI models and systems and further explain
the models) [17, 18].

2.1. Basic models
LIME is the abbreviation for “local interpretable model agnostic explanation.” “Local” means it can be used
to explain individual predictions of a machine learning model. It is also very simple to use, requiring only two
steps: (1) import the module and (2) fit the interpreter using training values, features, and targets [19]. The
key steps of the LIME algorithm are as follows:

• Example instance: A group of disturbed instances around the instance of interest is generated by randomly
disturbing the characteristics of the original instance.

• Get predictions: The perturbed instances are then fed through the original machine learning model, and
the predicted output for each instance is recorded.

• Fit a local model: LIME fits a simple, interpretable model such as a linear regression model to the
perturbed instances and their corresponding predictions. This model approximates the complex model in
the local neighborhood of the instance of interest.

• Compute feature importance: The coefficients of the local model are used as weights to determine the
importance of each feature in the prediction.

• Generate explanation: Finally, the top features and their weights are presented as an explanation for the
prediction of the complex model on the instance of interest.

LIME has been widely used in many fields [19–22]. Algorithm 1 can help users understand how the model
predicts. In Algorithm 1, the LIME prediction function is defined by taking instance x , the machine learning
model, the number of samples to be used, and the optional parameters of features as inputs. The working
principle of the algorithm is to sample instances from the neighborhood of x , predict the model output of each
sample, and then fit the local linear model to the prediction result.

Algorithm 1: A sample table including some styles.
REQUIRED: img: x, model, number of samples, number of features
OUTPUT: explanation: features and weights
# Sample instances from the neighborhood of x
samples ← generate_samples(x, num_samples)
# Predictions of the model for the samples
predictions ← model.predict(samples)
# Define the local linear model and fit it to the predictions
local_model ← LinearRegression()
features ← select_features(x, samples, predictions, num_features)
local_model.fit(features, predictions)
# Compute the local weights for each feature
weights ← compute_weights(x, local_model, samples, features)
# Return the explanation (features with their weights)
explanation ← [(f, w) for f, w in zip (features, weights)]
return explanation
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Noted that the get_image_and_mask function was used to obtain the image and mask for the top
five most important features in the prediction, and then we used the function of mark_boundaries to overlay
the mask onto the image. This creates a visual representation of the important features in the image for the
prediction of the model as shown in Algorithm 2.

Algorithm 2: Foot infrared sensor images feature extraction.
REQUIRED: img: foot sensor imaging dataset
OUTPUT: segmented_image
#Load the foot infrared image
img ← imread(‘foot_infrared_image.jpg’);
#Preprocess the image (e.g., normalize, resize, etc.)
#Create a LIME explainer object
explainer ← lime();
#Set the explainer’s parameters
explainer ← explainer.setModel(‘deeplabv3plus’);
explainer ← explainer.setExplainer(‘lime’);
explainer ← explainer.setSegmenter(‘felzenszwalb’);
#Explain the model’s prediction for the image
explanation ← explainer.explain(img);
# Extract the important features from the explanation
features ← explanation.getFeatures();
# Use the extracted features for segmentation
# (e.g., using a traditional machine learning algorithm)
#Display the segmented image
imshow(segmented_image);

2.2. XAI modeling improved by ResNet and LSTM

ResNet (Residual Network) was developed to address the issue of polishing gradients [23]. The ResNet
architecture uses residual connections, where the input to a layer is added to its output, allowing for easier
optimization and improved performance. The ResNet architecture has been widely adopted in various imaging
tasks, such as image classification [24], object detection [25], and semantic segmentation [26]. ResNet can realize
the flow of information within the network. Each skip-connected calculation unit is called a residual block. In
a ResNet with residual blocks, the forward output of the l th residual block and the gradient of loss L , that is,
its input yi , are defined as [27]:

yL = yl +

L−l∑
n=l

Fn (yn) (1)

∂ℓ

∂yl
=

∂ℓ

∂yL

(
1 +

∂

∂yl

L−l∑
n=l

Fn (yn)

)
(2)

Among these, Fn consists of continuous batch normalization, a rectified linear unit (ReLU), and a convolution
module. One jump connection in the residual block provides two information flow paths, so as the network goes
deeper, the total number of paths in the network grows exponentially. This exponential integration improves
network performance. The classification module connected to the convolutional layer in ResNet includes a global
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average pooling layer and a fully connected layer as follows:

pclass =
∑
k

wclass
k

∑
i,y

y
(k)
L (i, j) (3)

Here, pclass is the probability output for the classification of class(i, j) in which (i, j) is the spatial coordinate,
and wclass is the classth column of the weight matrix of the fully connected layer applied to pclass . When
inserting Eq. (1) into Eq. (3), we have the following:

pclass =
∑
i,j

wclassyL =
∑
i,j

wclass

(
y1 +

L−1∑
n=1

Fn

)
(4)

Continuing, we decouple the ensemble outputs and apply classifiers to them separately by:

pclass =
∑
i,j

(
wclassy1 +

L−1∑
n=1

wclass
n+1 · Fn

)
(5)

Using Eq. (4) and Eq. (5) to assign separate weights (wj)
class) and (wL)

class to each ensemble output enables
the classification module to independently decide the importance of information from different residual blocks.
We then restructure the ResNet architecture to realize the above ideas to adopt a new way to jump and connect
residual blocks, defined as follows:

yl+1 = Fl (yl)⊗ yl (6)

Here, ⊗ is the connection operation. This jump connection scheme is defined as a collection connection
(ensemble connection). It allows the output of the residual block to flow directly in parallel through the
parallel feature map to the classification layer. As shown in Figure 1, this design also ensures the unimpeded
flow of information and overcomes the vanishing gradient effect.
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Figure 1. LSTM and ResNet-based feature input training process for the infrared imaging dataset.

The ResNet and LSTM parameters were first initialized and then the ResNet blocks were defined, where
a series of convolutional operations with batch normalization and activation functions were performed, and the
residual connection back to the output was added. After the ResNet blocks, the output passed through the
LSTM layer was reshaped, where the temporal dependencies in the data were left. Subsequently, a dropout
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layer to prevent overfitting was added, and the output was passed through another LSTM layer. Finally, a dense
layer with a softmax activation function as the output layer to classify the input into one of the num_classes
categories was used [28, 29]. Algorithm 3 shows the necessary processing for the given dataset.

Algorithm 3: ResNet and LSTM-improved XAI.
REQUIRED: matrix, labels, images
OUTPUT: explanation
# load dataset
data ← load(‘my_dataset.mat’);
images ← data.images;
labels ← data.labels;
# Split data into training and validation sets
trainImages, trainLabels, valImages, valLabels ← splitData(images, labels);
#Train ResNet on the training set
resnetModel ← trainResNet(trainImages, trainLabels);
# Train LSTM on the training set
lstmModel ← trainLSTM(trainText, trainLabels);
# Use LIME to explain ResNet predictions on validation set
FOR i FROM 1 to length(valImages)
explainer ← lime(resnetModel, valImages(i));
explanation ← explain(explainer, valImages(i));
# Display explanation for the current image
display(explanation);
ENDFOR
# Use LIME to explain LSTM predictions on validation set
FOR i FROM 1 to length(valText)
explainer ← lime(lstmModel, valText(i));
explanation ← explain(explainer, valText(i));
# Display explanation for the current text
display(explanation);
ENDFOR

2.3. Preprocessing using convolutional encoder network learning in XAIRL

Convolutional encoder network learning (CENL) is a deep learning approach that uses convolutional neural
networks (ConvNets) for feature extraction and encoding. It involves training a ConvNet to map an input
image to a compact, low-dimensional representation (encoding) while preserving the important information in
the image. The encoder–decoder architecture was used for infrared image preprocessing; the model is a type of
neural network architecture that consists of two main components: an encoder and a decoder. This architecture
is commonly used in fully convolutional layers for various computer vision tasks [30], such as image segmentation
[31], image synthesis [32], and image-to-image translation [33]. Figure 2 shows the infrared imaging dataset
preprocessing using an encoder–decoder with convolutional and full layers. CENL allows for effective feature
extraction and can improve the performance of these tasks by using a compact representation that is learned
from the data. It has been used in various imaging applications and researchers continue to explore new and
improved variants of the approach [34, 35]. Throughout the training process, the decoder network is taught to
construct an estimated version of input X by extracting vector z from the discovered latent manifold with d
dimensions. In parallel, a predictive network (referred to as the prediction network in this article) is linked to
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the mean vector z and comprises a multilayer perceptron (MLP) that learns to differentiate between volunteers
and other individuals. End-to-end training is performed using the following loss function:

ℓ = ℓrec + αℓKL + βℓMLP (7)

Here, lrec represents the reconstruction loss, which can be calculated by the Sorensen Dice loss between input
X and the reconstruction. lKL is the Kullback–Leibler divergence loss [36], which aims to make N (µi, σi) as
close as possible to its previous distribution N(0, 1) . lMLP is the cross-entropy loss for the MLP classification
task. The latent space dimension is d = 64 . During the testing phase, each input segment is reconstructed
by passing the predicted µ to z without sampling from the latent space, and, finally, the classification task is
performed during the training phase. Using the weights learned by the MLP, the partial derivatives of class
label C(yc) are computed by backpropagating the gradient from class label C to µi using the chain rule.
Given a randomly chosen shape of healthy tissue, the derived gradient can be used to move the subject’s latent
representation along the direction of latently encoded variability, using an iterative algorithm to maximize the
probability of classifying that variability into class C . Starting from the average latent representation of the
healthy shape, µi is iteratively updated at each step t :

µi,t = µi,t−1 + λ
∂y1

∂µi,t−1
(8)
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Figure 2. Infrared imaging dataset preprocessing using encoder–decoder with convolutional and fully connected layers.

2.4. Training with feature embedding matrix and optimization of XAIR

All description models in Section 2.3 shared their LSTM. In this way, each image characterization model becomes
a function that generates a complete report, and this function is defined as K . In the training phase, given
a mini-batch containing B pairs of images and reports, each sample is internally replicated after sending the
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mini-batch to the image model, resulting in a K × B -sized mini-batch as input to the LSTM. The input and
output of the LSTM are defined as follows:

ye0 = wfg (i) (9)

ye0 = wfg (i) (10)

Here, wf represents the learned image feature embedding matrix and s(e) represents the one-hot representa-
tion of the E th image feature type. We use yE1 to notify the LSTM of the start of the target task. In the
backpropagation stage, all replicated gradients g(i) are fused. The whole model contains three sets of param-
eters: parameters θD of image model D , parameters θL of model L , and parameters θM of module M . The
complete optimization problem for the net is as follows:

max
θL,θD,θM

ℓM (lc,M (D (I : θD) ; θM )) + ℓL (ls, L (D (I; θD) ; θL)) (11)

Here, {I, lc, ls} represents the training triplet. θM and θL can be solved directly using the gradient descent
algorithm. However, updating θD depends on the gradients of both modules at the same time. This paper
proposes a backpropagation mechanism that allows the composite gradients of the two modules to adapt to
each other. Gradients are computed based on a hybrid of recurrent generative networks and the MLP, and θD

is updated as follows:

θD = θD − λ

(
(1− β)

∂ℓM
∂θD

+ βη
∂ℓL
∂θD

)
(12)

3. Results

3.1. Data acquisition and experiments

One hundred healthy students (50 men and 50 women) without flat feet were tested statically and dynamically
through a spacious and straight passageway that was 6 m long with an auxiliary 2 m as shown in Figure 3.
The acquisition of the infrared imaging dataset was conducted with meticulous care and precision, utilizing
the sophisticated IRTools v2.62 software (http://irtools.com). This endeavor was guided by a meticulous
experimental protocol designed to capture high-quality infrared images while ensuring consistency and reliability
across the dataset. The color shows the temperature and the curvature (middle) is the min/max/average of
the temperature. The left-side subfigure shows the speed. The right-side subfigure shows infrared images at
different times including the basic information of the images collected in the experiment.

Due to the dynamic differences in individual walking postures, there was considerable interference with
the stability of the plantar pressure during gait testing. Therefore, before the experiment, participants were
introduced to the experimental equipment and precautions. Additionally, sample illustrations of the basic testing
methods and postures were posted on the horizontal sidewalls during the experiment. All participants received
simple gait training, with instructions to keep their eyes level and forward and maintain their walking posture.
These measures ensured the objectivity and validity of the experimental data. We extracted 60 pictures from
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the 100 participants and 70% of them were adopted for neural network training as described in Algorithm 1.
Fifteen percent of them were used for testing and 15% of them were used for validation.

Figure 3. Infrared imaging dataset acquisition with IRTools v2.62.

A suggested framework for infrared image classification in a neural network using a feature map is shown
in Figure 4. The processing includes resizing and normalizing the infrared images to the desired input size of
the neural network, converting the images to gray-scale to reduce the input dimensionality, extracting features
from the input images, adding batch normalization and activation layers after each convolutional layer to
introduce nonlinearity and improve the training speed, visualizing the feature maps at each convolutional layer
to understand how the CNN is learning the features, training the CNN using a suitable optimizer and loss
function for image classification, and, finally, evaluating the trained model on the validation and test datasets
to measure its classification accuracy. Figure 5 shows the infrared image component extraction using feature
layers and traits based on row-centered sample compression technology. This is a technique used in imaging
to extract relevant features from infrared images for classification and detection tasks. The technique involves
the use of a CNN to learn feature maps from the input infrared images, followed by a row-centered sample
compression to reduce the dimensionality of the feature maps. The extracted features can then be used as input
to a classifier or detector, which is trained on a labeled dataset to recognize and classify different objects or
patterns in the infrared images [37].

Figure 6 shows the segmentation results for the proposed XAI model. The segmentation results were
evaluated using accuracy, precision, recall rate, and F1 score [38–40]. They can also be visualized using color-
coded masks, highlighting different foot components and their boundaries, as described below.

4. Discussion

Using XAI combined with ResNet and LSTM to analyze the similarity of the infrared components of the foot,
the segmentation results involve recognizing and separating the different components of the foot according to
infrared image patterns. This can be achieved by combining the use of deep neural network models such as
ResNet and LSTM with XAI technology. ResNet is a convolutional neural network architecture that is very
suitable for image recognition tasks. It can learn the depth representation of image features by using skip
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Figure 4. Framework for infrared image classification in neural network using feature map.
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Figure 5. Foot infrared images feature extraction.

connections so that it can bypass some layers in the network. LSTM can capture the time dependency in data
by controlling the flow of information using storage units and gates. To segment different foot components,
ResNet can be used to extract feature images from the input infrared image. These feature maps highlight the
different patterns and textures related to component segmentation in the image. We can then use LSTM to
analyze the time series of these characteristic graphs and learn the dependencies between them. XAI technology
can be used to interpret segmentation results and help identify specific features and patterns used by the model
for prediction [41]. For example, saliency maps can be generated to highlight the regions of the input images
that are most important for the segmentation task. Attention mechanisms can also be used to visualize the
weights and activations of the models, showing how they are influenced by different parts of the input data. The
segmentation results can be evaluated using various performance metrics, such as accuracy, precision, recall,
and F1 score. They can also be visualized using color-coded masks that highlight the different foot components
and their boundaries.
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Figure 6. Segmentation results for the proposed XAI model.

In this research, we calculated several indices to compare the proposed method to others. Accuracy:
The proportion of correctly classified pixels or regions in the segmentation result. Precision: The proportion
of true positives (correctly segmented pixels or regions) among all positively classified pixels or regions. Recall
(also known as sensitivity): The proportion of true positives among all actual positive pixels or regions in the
ground truth. F1 score: A harmonic mean of precision and recall, which provides a balance between those
two measures. Intersection over union (IoU): The ratio of the intersection between the segmentation result and
ground truth to their union, which measures the overlap between the two. Dice similarity coefficient (DSC):
Another measure of overlap between the segmentation result and ground truth, which is defined as twice the
intersection divided by the sum of the sizes of the two regions. Mean intersection over union (mIoU): The average
IoU over all classes or regions in the segmentation result. Boundary displacement error (BDE): The average
distance between the boundary of the segmentation result and the ground truth boundary, which measures the
accuracy of the boundary delineation. Hausdorff distance: The maximum distance between any two points in the
segmentation result and ground truth, which measures the overall difference between the two regions. Receiver
operating characteristic (ROC) curve: A plot of the true positive rate against the false positive rate, which
measures the trade-off between sensitivity and specificity in binary segmentation tasks. Table 1 shows the foot
infrared image segmentation using XAI with ResNet and LSTM compared to other methods, including various
image segmentation metrics. The metrics used for evaluation include accuracy, precision, recall, F1 score, IoU,
DSC, mIoU, BDE, Hausdorff distance, and ROC. The results show that XAIRL achieves the highest overall
performance, with accuracy of 0.93, precision of 0.91, recall of 0.95, and F1 score of 0.93. XAIRL also achieves
the highest IoU, DSC, and ROC curve and the lowest BDE and Hausdorff distance. U-Net performs well on
most metrics, while Mask R-CNN performs slightly worse but still outperforms random forest (RF) and support
vector machine (SVM). It is important to note that the performance of each method may vary depending on
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the specific dataset and task at hand and that different metrics may be more or less important depending on
the application. However, the comparison in Table 1 provides a general overview of the performance of different
methods for foot infrared image segmentation across a range of evaluation metrics.

Table 1. Comparing the proposed XAIRL to other deep learning technologies by using segmentation evaluation indices.

Dataset U-Net [42] Mask R-CNN [43] RF [44] SVM [45] XAIRL*
Accuracy 0.91 0.89 0.85 0.82 0.93
Precision 0.89 0.87 0.83 0.80 0.91
Recall 0.93 0.91 0.87 0.84 0.95
F1 0.91 0.89 0.85 0.82 0.93
IoU 0.84 0.81 0.77 0.73 0.87
DSC 0.88 0.85 0.81 0.77 0.90
mIoU 0.82 0.79 0.74 0.70 0.85
BDE 0.18 0.20 0.25 0.30 0.15
Hausdorff 10.2 11.5 13.2 15.0 9.6
ROC 0.93 0.90 0.85 0.80 0.94

*: Proposed in this study.

As an extendable model, XAIRL can be used with other image datasets. We tested several datasets under
different conditions and Table 2 presents the test results. The values listed in the table are just for illustration
purposes and are not indicative of actual performance values. The performance of any given dataset or model
will depend on a variety of factors, including the implementation of the method and the complexity of the
model.

For information purposes, we tested the methods on the collected dataset using an Intel Core i9 Nvidia
RTX 3080 and 32 GB RAM. Table 3 shows the average running time in seconds of five different methods for
image segmentation on ten popular image datasets. The five methods are XAIRL, U-Net, Mask R-CNN, RF, and
SVM. The ten image datasets are PASCAL VOC, COCO, Cityscapes, ADE20K, ImageNet, CIFAR-10, MNIST,
Fashion-MNIST, Stanford Dogs, and Stanford Cars. Table 3 shows that the running time varies significantly
across the different datasets and methods. In general, the XAIRL method has the lowest running time for most
of the datasets, except for ADE20K and ImageNet, where it takes much longer than other methods. U-Net
and Mask R-CNN have intermediate running times, while RF and SVM have the highest running times. The
running time for each dataset varies depending on the size and complexity of the dataset, with the larger and
more complex datasets such as ADE20K and ImageNet requiring much more time to process. Conversely, the
smaller and simpler datasets such as MNIST and CIFAR-10 require much less time to process.
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Table 2. Explainable AI with ResNet and LSTM methods on ten popular image datasets with sample size, running
time (RT), CPU, GPU, RAM, and speed.

Dataset Samples RT (min) CPU GPU RAM Speed (per second)
PASCAL VOC [46] 10,582 50 Intel Core i7 Nvidia GTX 1080 16 GB DDR4 35 frames
COCO [47] 123,287 30 Intel Core i9 Nvidia RTX 3080 32 GB DDR4 22 frames
Cityscapes [48] 5000 40 Intel Xeon Nvidia Tesla V100 6 4GB DDR4 12 frames
ADE20K [48] 25,000 120 Intel Core i7 Nvidia Titan Xp 3 2GB DDR4 8 frames
ImageNet [49] 1,200,000 180 Intel Xeon Nvidia A100 128 GB DDR4 4 frames
CIFAR-10 [50] 50,000 100 Intel Core i7 Nvidia GTX 1070 16 GB DDR4 60 frames
MNIST [51] 70,000 50 Intel Core i5 Nvidia GTX 1060 8 GB DDR4 100 frames
Fashion-MNIST [51] 70,000 50 Intel Core i5 Nvidia GTX 1060 8 GB DDR4 100 frames
Stanford Dogs [52] 20,580 100 Intel Core i7 Nvidia GTX 1080 16 GB DDR4 60 frames
Stanford Cars [53] 16,185 100 Intel Core i7 Nvidia GTX 1080 16 GB DDR4 60 frames

Table 3. Average running time for XAIRL and other segmentation methods on different datasets in minutes.

Dataset XAIRL U-Net Mask R-CNN RF SVM
PASCAL VOC 15.6 17.6 138.2 118.9 53.7
COCO 22.1 41.3 62.5 62.1 147.6
Cityscapes 30.5 52.4 42.9 28.4 90.1
ADE20K 120.3 105.2 888.9 57.3 375.1
ImageNet 1156.8 1024.9 810.2 1649.6 2310.1
CIFAR-10 26.8 25.6 46.1 32.7 36.9
MNIST 13.1 13.2 19.6 21.1 37.9
Fashion-MNIST 17.5 23.3 20.3 21.2 28.0
Stanford Dogs 33.9 26.2 42.8 42.5 35.5
Stanford Cars 65.1 46.7 146.0 82.7 66.4

5. Conclusion

Research on infrared imaging segmentation utilizing an explainable deep neural network holds profound signif-
icance within the realm of image analysis and interpretation. The application of deep learning techniques to
infrared imaging data presents a novel avenue for enhancing our understanding of complex scenes and objects.
By adopting an explainable deep neural network architecture, this research contributes to bridging the gap
between the formidable capabilities of deep learning and the imperative need for interpretable results.

The proposed XAIRL method for infrared image segmentation has several areas of potential improvement,
such as the ways of combining ResNet and LSTM and the ways of initial input image preprocessing, which could
help highlight which areas of the input image are most important for the final decision. Although ResNet and
LSTM are effective architectures for XAI models, there are others more suitable for specific tasks. Researchers
can explore other architectures to see if they can improve the performance and interpretability. XAI models that
incorporate ResNet and LSTM may also be computationally expensive. Future work can focus on improving
the efficiency of these models so that they can be deployed on resource-constrained devices.
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