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Abstract: Transmission network planning problem (TNPP) is one of the pertinent issues of the planning activities in
power systems. It aims to optimally pick out the routs, types, and number of the new installed lines to confront the
expected future loading conditions. In this line, this study proposes a new economic model to the TNPP. The aim of
the model is to find the optimal transmission routes at least investment and operating costs. Three recent algorithms
called grey wolf optimization algorithm (GWOA), spotted hyena optimization algorithm (SHOA) and whale optimization
algorithm (WOA) are developed to solve the TNPP. The concept of these algorithms is based on encircling prey operation.
The competitive methods are investigated to find the optimal TNPP solution for two realistic Egyptian networks. The
first tested network is the 66 kV West Delta Region (WDR) system while the second one is the extra high voltage
(EHV) 500 kV system. Their demand forecasting is extracted forward to 2030 dependent upon the adaptive neuro-
fuzzy inference system (ANFIS). Tremendous technical and economic advantages through application of the encircling
prey-based algorithms to handle the TNPP.

Key words: Transmission network expansion planning, encircling prey based algorithms, investment cost minimization,
realistic Egyptian networks

1. Introduction
Transmission network planning problem (TNPP) depends on information of long-term forecasts of the con-
sumers’ needs and electric power flows from and to other networks. It seeks to optimally pick out the routs,
types, and number of the new inserted transmission lines in order to confront the expected future condition with
the least investment cost [1–3]. In terms of the time horizons, there are Long-, medium- and short-term horizon
planning categories as in [2]. These categories are characterized with different levels of uncertainty according
the considered period. The planning time horizons are varied as follows: the long-term transmission expansion
time horizon is greater than ten years , the time horizon for the medium transmission expansion is in the range
from 5 to 10 years, and the last short term horizon planning has the least uncertainty level and time horizon
less than 5 years. Also, the security of the power system must be counted in the TNPP. Mathematically, it is
mainly treated as an optimization problem that belongs to non-convex, non-linear, mixed-integer family that is
∗Correspondence: skamel@aswu.edu.eg
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difficult to be settled for large-scale realistic transmission systems.
For handling the TNPP, various algorithms have been presented like mixed integer linear programming

[4] and [5], greedy randomized adaptive search methodology [6], genetic algorithm [7], tabu search technique
[8], heuristic technique [(HT) [9], particle swarm algorithm [10] and [11], evolutionary algorithm [12], and
harmony search technique [13]. In [14], firefly algorithm has been presented for the TNPP where its application
has been extended for Iran 400-kV transmission grid as a realistic network. Assessment of the performance
of meta-heuristics to solve the multi-stage TNPP was proceeded in [15]. Also, in [2], an integer based PSO
(IBPSO) were utilized in handling the TNPP. In [16], a multi-verse optimizer (MVO) has been adopted to solve
the TNPP, while a binary coded structure of backtracking search optimization (BBSO) and an integer coded
BSO (IBSO) algorithms have been applied for the TNPP [17]. In those papers, [2], [16] and [17], two realistic
Egyptian transmission systems of 66 and 500 kV have been utilized. In [18], numerous variants of differential
evolution optimizer were carried out for static and multistage TNPP and for the allocations of VAR devices in
transmission networks [19] and [20].

Grey wolf optimization algorithm (GWOA), spotted hyena optimization algorithm (SHOA) and whale
optimization algorithm (WOA) are three recent algorithms [21–23]. They are similar behaviours of these
algorithms based on encircling prey operation. GWOA has been presented by Mirjalili et al. [21] in 2014, which
simulate the technique of hunting and the social stratum of grey wolves [24]. In [25], a modified GWOA has
been applied to the conventional model of the TNPP to handle the future load growth and ignoring the related
operational fuel costs. GWOA was efficiently extended to different power system optimization problems such
as integrated power and heat dispatch [26], economic load dispatch [27], reactive power dispatch problem [28],
frequency control in multi-area power systems [29], MPPT design for photovoltaic system [30] and sizing and
siting of automatic voltage regulators [31] static var compensators [32] in electric distribution network.

SHOA was presented by G. Dhiman and V. Kumar [22] in 2017, which simulates the hunting behavior of
laughing hyenas. SHOA is hassling to GWOA, SHOA amended the three best leaders into a cluster of N leaders.
In [33], SHOA was expanded to handle multi-objective optimization for engineering problems. In [34], SHOA
has been successfully applied to optical buffer and airfoil design problems. In [35], SHOA was utilized for solving
the scheduling problem of economic load power. In [36], SHOA was effectively developed for optimal allocation
of distributed generators (DGs) with network reconfiguration in distribution systems. WOA has been presented
by Mirjalili et al. [21] in 2016, which mimics the technique of hunting of humpback whales in nature. WOA is
hassling to GWOA and SHOA in the direction of encircling the prey, but WOA has a unique behavior via the
spiral bubble-net feeding to hunt their preys. In [37], WOA has been carried out for minimizing the losses in
radial distribution systems. WOA has been applied for solving the installation problem of DGs in distribution
networks, reactive power dispatch and unit commitment problem in [38–40], respectively. An overview of the
various WOA applications to solve different optimization problems has been introduced in [41]. Another effort
for planning and identifying the location of distribution transformer by modifying their location and power
ratings are discussed in [42].

These algorithms are not novel since the GWOA, WOA, and SHOA have been presented in 2013, 2016 and
2017 [21–23], but they are similarly based on encircling prey operation. Despite the high resemblance between
the previous algorithms in the encircling behavior, they are greatly different in the hunting and attacking
operations. Added to the similar nature, these algorithms have significant competitive advantages as simple
structure, adaptive control parameter, and no derivative requirement. They are distinguished with several
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features and successful applications in different engineering optimization problems [24–40]. In view of the above
effective applications, it gives the motivation in this paper to adopt them in a comparative manner and applied
for handling a developed model of the TNPP. Besides finding the minimum cost of new transmission lines, this
model searches for the most economic operating point via dispatching the generators output. GWOA, SHOA
and WOA are adopted in a comparative analysis for solving the TNPP. They are applied to solve the TNPP for
two realistic Egyptian networks. The first is the 66 kV transmission systems of WDR system and the second is
transmission network 500 kV of EHV system.

The salient contributions of the current work with respect to previous works in the area can be summarized
as follows:

• An investigated planning model based on the long-term planning and operation criteria.

• Considering technical as well as economical aspects with preserving security constraints at lowest overall
costs.

• Assessing the performance of the competitive algorithms in terms of statistical indices and convergence
rates.

• Application of GWOA, SHOA and WOA in a comparative manner for solving the TNPP in two realistic
networks from the Egyptian grid.

This paper is arranged as pursues: Section 2 extends the model of the TNPP. Section 3 puts in the
adopted GWOA, SHOA and WOA for solving the TNPP. The application results are discussed in Section 4.
The outcome of the application results is concluded in the last section.

2. TNPP model
Typically, the TNPP goal in electricity grids aims to minimise the construction costs of new transmission lines,
which satisfy the expected demands of the power sector. It also includes configuration of coming generations.
The solution to the issue includes the determination of the additional circuits to be constructed in electrical
networks for the sake of satisfying the predicted load requirement at the cheapest rates and complying with the
specified technological, reliability and budgetary requirements. It can be described as follows:

MinF =
∑
i,j∈N

CijNij (1)

This objective function, in Eq. (1), is subjected to:
S · Pf + g = d (2)

|Pfij | ≤ (Noij +Nij)Pfmax,ij (3)

Pfij =
Noij +Nij

xij
(θi − θj) (4)

lb ≤ Nij ≤ ub (5)

0 ≤ Pgslack ≤ Pgmax
slack (6)

In this TNPP model Eqs. (1–6), the generated from power all the generators except slack unit are enforced as
fixed generation. Thus, they are treated as non-dispatchable generators with 100% renewable power penetration
[42].
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Another model is presented by integrating the minimization of the fuel cost related to the generated
power, which is traditionally modeled as polynomial quadratic function [45] and [46]. Therefore, the fitness
function of Eq. (1) is augmented with the total fuel cost function related to the generated power (F ∗ ) that is
defined in Eq.(7) as:

MinF ∗ = Min

 Ng∑
g=1

agPg2g + bgPgg + cg

 (7)

For managing this fitness function, the power output from the generators are augmented as control
variables as well. Thus, the inequality constraint of Eq. (6) is expanded as follows:

0 ≤ Pgg ≤ Pgmax
g , g = 1, 2, .....Ng (8)

Also, the difference between the bus voltage angles at the line sides is bounded to act as a representative for a
transient stability limit as in Eq. (9):

0 ≤ θij ≤ θmax
ij (9)

This model of TNPP has the advantage of searching for the most economic operating point besides finding the
minimum cost of new transmission line to the system. Not only that but searching for minimizing the fuel costs
by dispatching the generators output will have a great effect on minimizing the added lines to the systems.

Therefore, the current paper considers two models for solving TNPP as shown below:

• The first model of TNPP considers Eqs. (1–6) as similar as previous methods in the literature [2], [15]
and [16].

• The second model of the TNPP considers Eqs. (1–9). This investigated model combines both objectives
in (1) and (7) as augmented function.

For instance, the standard Garver system can be utilized for TNPP. Fig. 1 displays its single line diagram
(SLD). It has 6-buses and 6 exit routes where each route represents one circuit [2]. As is shown, there are 15
new possible routes where five circuits can be installed in each route based on the solution of the TNPP. Based
on this test system, the control variables for the first model are the circuit routes of the added transmission lines
which is within range of 1–15, and the number of circuits for each selected line, which is within the range of
0–5 where zero means that no circuit is installed in that line. In this model, only the objective of the expansion
costs of the new lines in Eq. (1) is to be minimized. For the second model, the outputs of the three generators,
as well, are optimally dispatched to minimize the fuel operational costs of Eq. (7) for each configuration. In
both models, the equality limitations of the load flow in Eq. (2), and the inequality limitations of Eqs. (5), (6),
(8) and (9) should be preserved.

3. TNPP procedure

3.1. Adopted encircling prey based algorithms for the TNPP

Grey wolf optimization algorithm (GWOA), spotted hyena optimization algorithm (SHOA) and whale opti-
mization algorithm (WOA) are encircling prey based algorithms, which simulate the technique of hunting and
the social stratum of grey wolves, laughing hyenas and humpback whales, respectively. Searching for the prey,
encircling and finally attacking it are the basic processes for these optimization algorithms. These algorithms
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Figure 1. Single line diagram of the Garver system.

are based on encircling the prey where the search agents update their positions with respect to the target prey
(the best solution). This behavior is mathematically represented as below:

D⃗i =
∣∣∣C⃗X⃗p − X⃗i

∣∣∣ (10)

X⃗i = X⃗p − A⃗D⃗i (11)
where, A and C are co-efficient vectors which are calculated as follows:

A⃗ = 2a⃗r − a⃗ (12)

C⃗ = 2r (13)
Despite the high resemblance between GWOA, SHOA and WOA in the encircling behavior, they are greatly
different in the hunting and attacking operations.

3.1.1. Grey wolf optimization algorithm

In GWOA, alpha (α) is regarded to be the most dominant participant. Beta (β ) and delta (δ ) are the
remaining subordinates who help regulate the large proportion of wolves regarded by omega w . Alpha, beta,
and delta have greater awareness of possible locations of preys. Consequently, first ever 3 top members are
specified from the whole wolves pack which has a number (Nw) whilst the others in the pack would adjust their
locations in the context of the top 3 members. These actions could be expressed in the form (21):

D⃗α =
∣∣∣C⃗1 − X⃗α − X⃗

∣∣∣ (14)

D⃗β =
∣∣∣C⃗1 − X⃗β − X⃗

∣∣∣ (15)
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D⃗δ =
∣∣∣C⃗1 − X⃗δ − X⃗

∣∣∣ (16)

X⃗1 = X⃗α − A⃗1 − D⃗α (17)

X⃗2 = X⃗β − A⃗2 − D⃗β (18)

X⃗3 = X⃗δ − A⃗3 − D⃗δ (19)

X⃗new =
X⃗1 + X⃗2 + X⃗3

3
(20)

In GWOA, the co-efficient vector (a) is linearly declined from 2 to 0 through the following equation:

a⃗ = 2 ·
(
1− iter

Maxiter

)
(21)

3.1.2. Spotted hyena optimization algorithm

In SHOA [22], the hunting operation can be described by Eqs. (10) and (11). Then, a cluster of a specified
number (N) of optimal solutions (CH) is taken away as follows:

C⃗H = X⃗i + X⃗i+1 + X⃗i+2 + .....X⃗i+N (22)
where, N refers to the spotted hyenas umber that is computed as:

N = c⃗ountnos

(
X⃗i + X⃗i+1 + X⃗i+2 + .....

(
X⃗i + M⃗

))
(23)

where, nos refers to the number of all candidate solutions. M is a randomized vector within the range [0.5,
1]. Afterward, Eq. 24 updates the search agents positions to attack towards the prey as:

X⃗new =
C⃗H

N
(24)

In SHOA, the co-efficient vector a, which is integrated in Eq. (13), is linearly declined from 5 to 0 through
the following equation:

a⃗ = 5 ·
(
1− iter

Maxiter

)
(25)

3.1.3. Whale optimization algorithm

In WOA [23], the whales can update their positions to attack towards the prey via shrinking encircling and the
spiral model. Each whale selects one of these two approaches with a probability of 50%. The new positions of
the whales can be described as in Eq. (26):

Xnew =


(
X⃗p − X⃗i

)
· eb1 · cos (2πL)&if p ≥ 0.5.

X⃗p − A⃗ ·
∣∣∣C⃗X⃗p − X⃗i

∣∣∣ &if p < 0.5 and L > 1.

X⃗r − A⃗ ·
∣∣∣C⃗X⃗r − X⃗i

∣∣∣ &if p < 0.5 and L ≤ 1.

(26)

where, b is constant. L and p are random number within the ranges [–1, 1] and [0, 1], respectively. Xr refers
to a random search agent. Similar to GWOA, the co-efficient vector a, in WOA, is linearly declined from 2 to
0 as in Eq. (21).
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3.2. Fitness function evaluation
However, the control variables of TNPP is initialized satisfying their bounds. They might be violated during
the successive iterations. For this reason, random re-initialization is carried out to modify the violated variable
within its consideblack range. In case of the TNPP model considering 100% renewable power penetration, the
DC power flow is running each iteration to evaluate the fitness function. On the other side, the DC optimal
power flow (OPF) [47] is running to find the most economic operating point and estimate the fitness function.
For any violation in the constraints related to the dependent variables, the fitness function is set to a very high
level. The three adopted encircling prey based algorithms; GWOA, SHOA and WOA are employed to handle
the TNPP. Fig. 2 illustrates the flowchart of their employment.

Start

Specify Max iter and the number of the search agents

Generate theinitial agent group

Run the OPF and evaluate the fitness function

Print the best solution

Extract the best search agent (spotted hyena) 
specify N and find out the cluster CH

Update the position of spotted hyena 
(Eqs. (10). (11) and (22-24))

SHOA
Check iter <Maxiter

Start

Print the best solution

Yes

GWOA

Determine the inequality 
constraints and re-evaluate the 
fitness function

Extract the best 3 search agents (grey 
wolves) as alpha, beta, and delta

No

Check iter <Maxiter

Update A, C and a using Eqs. (12), (13) 
and (21), respectively

    Extract the best search agent (humpback)     
whale) and specify the constant b

      Update the position of humpback       
whales (Eq. (26))

WOA

Generate L randomly

(a) GWOA (c) WOA

Check iter <Maxiter

Start

Update the position of grey wolves 
(Eqs. (15-21))

Determine the range of each decision 
variable and regenerate the exceeded one

End

Print the best solution

Generate theinitial agent group Generate theinitial agent group

Run the OPF and evaluate the fitness function

Determine the inequality constraints 
and re-evaluate the fitness function Determine the inequality constraints 

and re-evaluate the fitness function

Run the OPF and evaluate the fitness function

Specify Max iter and the number of the search agents Specify Max iter and the number of the search agents

Determine the range of each decision 
variable and regenerate the exceeded one

Determine the range of each decision 
variable and regenerate the exceeded one

Update A, C and a using Eqs. (12), (13) 
and (25), respectively

Update A, C and a using Eqs. (12), (13)   
and (21), respectively

EndEnd

(b) SHOA

Figure 2. The phases of GWOA, SHOA and WOA for the TNPP.

4. Applications
4.1. Test systems

In this section, the implementation of the three optimization algorithms, GWOA, SHOA and WOA, is carried
out using MATLAB (MathWorks, Inc., Natick, MA, USA) on the standard Garver system that is shown in
Fig. 1. All the data of this test system is presented in [2]. Then, they are applied for two realistic systems.

83



SHAHEEN et al./Turk J Elec Eng & Comp Sci

The WDR system [48] and [49] and EHV system [50] are two transmission Egyptian networks of 66 and 500
kV, respectively. Figs. 3 and 4 display the one-line diagrams of WDR system and EHV system, respectively.
The WDR system has 8-generation stations and 52-buses [52, 53], that are linked via 55 dual circuits. The
second system is the EHV system, which consists of 18-buses linked via 19 transmission lines. The data of
the generations output, parameters of lines, potential route path and estimated demand forecasting forward to
2030 of both systems are taken from [15]. To search for the optimal configuration parameters of both systems,
GWOA, SHOA and WOA is carried out. The maximum iteration number are 300 and 100 for WDR and EHV
systems, respectively. The population size is 50 for both systems.

Figure 3. SLD of WDR [52].

4.2. Simulation results for load forecasting
The ANFIS technique is firstly applied for both systems to expect the load forecasting. Table 1 shows the ANFIS
parameter for load forecasting process that is applied for WDN and UEN. Table 2 shows the corresponding
results for WDR and EHV systems in the period 2018–2030 based on historical data reported in [17]. For the
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Figure 4. SLD for EHV system.

WDR system, it is organized that the load is varied from 1325 MW in 2017 to 2195.8 MW by an excess of
730 MW, which means that there will be a yearly average increase of 5%. For the EHV system, the load is
expected to increase from 9240.55 MW in 2017 to around 13176.9 MW. The evaluation test for ANFIS results
is reported in Table 3. The obtained results are very competitive and acceptable in the viewpoint of load
forecasting process.

Table 1. ANFIS parameters for tested systems.

Number of parameters WDR system EHV system
Nodes 16 64
Fuzzy rules 3 15
Training pairs of data 7 23
Checking pairs of data 1 1
Linear parameters 6 30
Nonlinear parameters 9 45

4.3. Standard Garver system

In this system, it is planned to face expected demand of 760 MW. Table 4 presents the new configuration of
Garver 6-bus network using the GWOA compablack with IBPSO [2] and HT [9]. For the first model, the findings
obtained from GWOA are similar to those of IBPSO [2] and HT [9]. All approaches have 13 directions with
a cost of $200 million. On the other hand, in the planned Model 2, the GWOA gains substantial advantages
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Table 2. Forecasting loads for WDRS and EHVS using ANFIS.

Year WDRS Loads (MW) EHVS Loads (MW)
2016 1260.18 9112.06
2017 1325 9345.07
2018 1390.56 9481.86
2019 1456.57 9631.38
2020 1522.98 9822.35
: : :
2027 1993.24 12010.36
2028 2060.73 12390.52
2029 2128.26 12779.86
2030 (Target year) 2195.80 13176.90

Table 3. Evaluation criteria for the tested networks.

Number of parameters WDR system EHV system
Test WDR EHV
R2 0.9961697 0.9999992
E 47.3 2
D.W 3.6282 3
MAE 5.912 0.087
MAE/E% 12.87 4.35
% MAPE 0.625717624 0.00033

when it identifies an economic operating point with a fuel cost of $10540.17 per hour with a decrease of 6.74 %
relative to a fuel cost of $11301.7905 per hour for model 1. However, it substantially decreases the construction
costs of the new installed lines, which cost $130 million, with a decrease of 35% relative to the investment cost of
$200 million for the model 1. These benefits declare the capability of the model 2 in minimizing the investment
costs of the new installed lines to the system besides finding an economic operating point.

4.4. West delta region system

In this system, it is expected to face the projected peak demand of 2195.8 MW whilst a new generator station
is designed to be installed at bus 53 where 31 additional routes are possible to be constructed.

4.4.1. Simulation results of model 1
In this model, the decision vector contains only the possible new lines to be constructed. Therefore, 31
dimensional variables in the decision vector are designed to minimize the costs of investment for the regarded
additional circuits. The encircling prey-based algorithms are adopted for solving the TNPP in the WDR system,
and the concerning outputs are staggeblack in Table 5. The minimum investment cost of 18.105 US million $
is achieved through the application of the GWOA that detected the new routs (57/1; 63/1; 77/1; 80/1; 81/2;
84/2) with 362.1 km for the corresponding length of these added lines for WDR system. Following to this,
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Table 4. Application of the GWOA for Garver system for models 1 and 2

Item Model 1 Model 2
HT [9] IBPSO [2] SHOA GWOA WOA SHOA GWOA WOA

Terminal
From-to
(line number)/
circuits number

1-3(7)/1 1-3(7)/1 1-3(7)/1 1-3(7)/1 1-3(7)/1 1-4(8)/1 1-3(7)/1 1-4(8)/1
1-2(9)/1 1-2(9)/1 1-2(9)/1 1-2(9)/1 1-2(9)/1 1-2(9)/1 1-2(9)/1 1-2(9)/1
2-5(10)/1 2-5(10)/1 2-5(10)/1 2-5(10)/1 2-5(10)/1 1-5(11)/1 2-5(10)/1 1-5(11)/1
3-4(12)/1 3-4(12)/1 3-4(12)/1 3-4(12)/1 3-4(12)/1 2-4(14)/1 3-4(12)/1 2-4(14)/1
3-6(13)/1 3-6(13)/1 3-6(13)/1 3-6(13)/1 3-6(13)/1 2-3(16)/1 3-6(13)/1 2-3(16)/1
1-4(15)/4 1-4(15)/4 1-4(15)/4 1-4(15)/4 1-4(15)/4 2-6(18)/3 1-4(15)/1 2-6(18)/3
4-5(17)/2 4-5(17)/2 4-5(17)/2 4-5(17)/2 4-5(17)/2 3-4(19)/1 4-5(17)/2 3-5(20)/3
3-5(20)/3 3-5(20)/3 3-5(20)/2 3-5(20)/2 3-5(20)/2 3-5(20)/2 3-5(20)/2 3-5(20)/3

Pg1 (MW) 50 50 50 50 50 150 150 150
Pg2 (MW) 165 165 165 165 165 310 346.54 310
Pg3 (MW) 545 545 545 545 545 300 263.46 300
Fuel cost
($/hr)

11301.7905 11301.7905 11301.7905 11301.7905 11301.7905 10497.73 10540.17 10497.73

Total costs
(Millions $)

200 200 200 200 200 189 130 130

the WOA achieves as investment costs of 18.805 US million $ while the SHOA achieves the highest cost of
20.905 US million $. Also, these acquired results via the GWOA, SHOA and WOA are matched with other
reported results for HT [9], IBPSO [15], MVO [16], IBSO [17] and BBSO [17] as demonstrated in Table 4 while
Figure 5 depicts the convergence characteristics of MVO [16], IBSO [17], BBSO [17] and the encircling prey
based algorithms. From the comparison in Table 6 and Fig. 5, the GWOA outperforms the other techniques
in solving the TNPP. Fig. 5 shows a higher capability of the GWOA over SHOA and WOA in exploring the
search space and improving their best search agent through the iterations.

Table 5. Application of the encircling prey based algorithms for WDR system for model 1.

GWOA SHOA WOA

Terminal
From-to
(line number)/
circuits number

5-7(57)/1 5-6(56)/1 6-34(63)/1
6-34(63)/1 5-22(59)/1 7-37(69)/1
22-53(77)/1 6-34(63)/1 22-53(77)/1
33-53(80)/1 7-32(65)/1 33-53(80)/1
5-53(81)/2 31-53(80)/1 5-53(81)/2
36-53(84)/2 5-53(81)/2 36-53(84)/2

36-53(84)/2
20-53(85)/1

Length (km) 362.1 418.1 376.1
Total costs (Millions $) 18.105 20.905 18.805

4.4.2. Simulation results of model 2
In this model, the minimization of the fuel cost related to the generated power is augmented with minimizing the
added circuits investment costs. Subsequently, the decision vector to be optimized is expounded by the output
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Table 6. Comparison of the simulation results for WDR system using different optimization algorithms.

Method Length (km) Total costs (millions $)
IBPSO [15] 443.8 22.19
HT [9] 424.8 21.24
SHOA 418.1 20.905
MVO [16] 412.9 20.645
WOA 376.1 18.805
IBSO [17] 372.1 18.605
BBSO [17] 369.1 18.455
GWOA 362.1 18.105

power from 9 generators besides 31 candidate new lines. The encircling prey-based algorithms are applied 10
times to handle this model for the WDRS associated with their best simulation records are staggeblack in Table
7.

The minimum investment costs of 7.72 US million $ that are acquired through the application of GWOA
and WOA that detected the new routs (59/1; 80/1; 84/1) with 154.4 km for the corresponding length of these
added lines for WDRS. The SHOA cannot achieve a competitive result since their best value of 10.07 US million
$ is bigger than GWOA and WOA. In comparison of both TNP models, the GWOA application for model 2
achieves great benefits. It finds out an economic operating point with fuel costs of 64688 $/hr with blackuction
of 6.44 % compablack to fuel costs of 69140 $/hr for model 1. Nevertheless, it greatly blackuces the investment
costs of the new installed lines which costs 7.72 US million $ with blackuction of 57.36 % compablack to the
investment costs of 18.105 US million $ for model 1. These merits assert the ability of the model 2 for minimizing
the new installed transmission lines investment costs to the system besides finding an economic operating point.
Fig. 6 displays the investment costs that are obtained using GWOA, SHOA, WOA, MVO and IBSO after 10
individual runs to handle the second model (Model 2) for the WDRS. The concerning results are in an ascending
order. This figure demonstrates the out-performance of the GWOA over the others since it acquires mostly
lower investment costs of the lines. Their statistical indexes are tabulated in Table 8. This table shows the
capability of the GWOA in solving TNPP by acquiring mostly the minimum objective of best, average and
worst indexes of 7.72, 8.215 and 10.195, respectively compared with the others. The SHOA gives minimum
standard deviation and error of 0.553 and 0.175, respectively. Despite SHOA’s higher stability, their best index
doesn’t exceed the average value related to the GWOA.

4.5. Extra high voltage system

4.5.1. Simulation results of model 1
In this system, it is expected to face the projected peak demand of 13176.90 MW at 2030 as shown in Table
2. For the first model, the investment costs are considerable as the primary objective function. For this target,
19 dimensional variables in each decision vector are optimized. The GWOA, SHOA and WOA are operated to
solve this model for 10 individual runs and the best concerning results are reported in Table 9. GWOA, SHOA
and WOA are successfully gaining the minimum investment costs of 279 US million $ where the new routes
are (36/1; 37/1). In addition, these achieved results via the encircling prey based algorithms are matched with
other reported results for IBPSO [15], MVO [16], IBSO [17] and BBSO [17] as demonstrated in Table 10.
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Figure 6. Acquired investment costs (Millions $) of MVO, IBSO and the competitive algorithms for WDRS (TNP
model 2).

This table illustrates the outperforms of the encircling prey-based algorithms over the other reported
techniques of the new installed lines, which cost 25 US million $ compablack to the investment cost of 279 US
million $ for TNP model 1. These benefits declare the capability of the proposed TNP model 2 in minimizing
the investment costs of the new installed lines to the system besides finding an economic operating point.

4.5.2. Simulation results model 2
In the second model, the TNPP considers an improved objective function that combines the costs investment
and operating costs at the target planning year. So, 27 decision variables (the output power from 8 generation
stations besides 19 candidate new lines), are involved in the decision vector to be optimized. The encircling
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Table 7. Application of the encircling prey based algorithms for WDR system(model 2).

Item Model 1 Model 2
GWOA SHOA WOA GWOA SHOA WOA

Terminal
From-to
(line number)/
circuits number

5-7(57)/1 5-6(56)/1 6-34(63)/1 5-22(59)/1 5-22(59)/1 5-22(59)/1
6-34(63)/1 5-22(59)/1 7-37(69)/1 31-53(80)/1 31-53(80)/1 31-53(80)/1
22-53(77)/1 6-34(63)/1 22-53(77)/1 36-53(84)/2 8-53(86)/1 36-53(84)/2
33-53(80)/1 7-32(65)/1 33-53(80)/1
5-53(81)/2 31-53(80)/1 5-53(81)/2
36-53(84)/2 5-53(81)/2 36-53(84)/2

36-53(84)/2
20-53(85)/1

Pg1 (MW) 200 200 200 250* 250* 250*
Pg2 (MW) 200 200 200 134.981 131.338 131.338
Pg3 (MW) 200 200 200 250* 250* 250*
Pg4 (MW) 156 156 156 250* 250* 250*
Pg5 (MW) 300 300 300 254.5607 219.1787 205.9214
Pg6 (MW) 100 100 100 250* 250* 250*
Pg7 (MW) 200 200 200 250* 250* 250*
Pg8 (MW) 200 200 200 250* 250* 250*
Pg53 (MW) 639.8 639.8 639.8 306.2584 345.2832 358.5406
Fuel cost ($/hr) 69140.012 69140.012 69140.012 64688 64751.64 64769.66
Length (km) 362.1 418.1 376.1 154.4 201.4 154.4
Total costs (Millions $) 18.105 20.905 18.805 7.72 10.07 7.72

[*] refers to strike the maximum limit.

Table 8. Statistics of the investment costs (millions $) of the GWOA, SHOA, WOA, MVO and IBSO for WDR (Model
2).

MVO IBSO GWOA SHOA WOA
Best 9.55 7.72 7.72 10.07 7.72
Average 13.62 11.07 8.215 10.9815 10.342
Worst 16.95 13.62 10.195 11.72 15.31
St. deviation 2.186 1.959 0.7381 0.5531 2.4412
St. error 0.691 0.619 0.2334 0.175 0.772

prey based algorithms are applied 10 times to handle this model for the WDR system, and their best results
are shown in Table 9. As shown, the minimum investment costs of 25 US million $ is acquired through the
application of GWOA that installed two single transmission lines (7–8 (31) and 8–9 (32)) while SHOA and
WOA achieve an investment costs of 32 US million $. In comparison of both TNP models, the application
of the GWOA for TNP model 2 achieves great benefits in minimizing the fuel costs of 522751.94 $/h with
blackuction of 19.17 % compablack to fuel costs of 646707.898 $/h for TNP model 1. Nevertheless, it greatly
blackuces the investment costs.
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Table 9. Application of the encircling prey based algorithms for EHV system for the models 1 and 2.

Variable Model 1 Model 2
GWOA SHOA WOA GWOA SHOA WOA

From-to line/no. of
routes

9–12 (36)/1 9–12 (36)/1 9-12 (36)/1 7–8 (31)/1 8-9 (32)/2 8-9 (32)/2
13–12 (37)/1 13–12 (37)/1 13–12 (37)/1 8–9 (32)/1

Pg2 (MW) 5091. 89 5091. 89 5091. 89 1446.86 1445.19 1445.19
Pg6 (MW) 570 570 570 2094.47 2089.42 2089.42
Pg8 (MW) 1200 1200 1200 2500* 2500* 2500*
Pg10 (MW) 1057 1057 1057 1469.23 1469.23 1469.23
Pg11 (MW) 1839 1839 1839 1897.36 1897.36 1897.36
Pg12 (MW) 719 719 719 905.9 910.97 910.97
Pg17 (MW) 2020 2020 2020 2500* 2500* 2500*
Pg18 (MW) 680 680 680 363.08 364.74 364.74
Fuel cost ($/hr) 646707.9 646707.9 646707.9 522751.9 522689.8 522689.8
Total costs (Millions$) 279 279 279 25 32 32

[*] Refers to strike the maximum limit.

Table 10. Assessment of simulation results for WDRS using different optimization algorithms.

Method Total costs (millions $)
GWOA 279
WOA 279
SHOA 279
BBSO [15] 288
IBSO [17] 288
MVO [16] 295
IBPSO [15] 308

4.5.3. Statistical analysis

The statistical indices of the encircling prey based algorithms are tabulated in Table 11. This table shows the
capability of the GWOA in acquiring mostly the minimum objective of best, average and worst indices of 279
and 25 US million $ for models 1 and 2, respectively. Not only that, but it has the greatest stability with zero
standard deviation and error for both models as well. The worst value of investment costs that obtained by
the WOA is the highest compablack than the best one related to SHOA and GWOA. For more clearance, Fig.
7 shows the convergence rate the competitive algorithms for EHV system (model 2). Also, Fig. 8 shows the
acquired investment costs (millions $) of the competitive algorithms for EHV system (TNP model 2). From
Table 11 and Figs. 7 and 8, it is clear that the GWOA has the best convergence rates and robustness compablack
with other two algorithms.

4.5.4. Validity of the EHV configurations

Based on previous sections, it was proven that GWOA has the best performance compablack with SHOA and
WOA methods. In this subsection, the validity is carried out by using the best optimization algorithm only as
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Table 11. Statistics of the investment costs (millions $) of the GWOA, SHOA, WOA for EHV system.

Model Statistical indices WOA SHOA GWOA

Model 1

Best 279 279 279
Average 290.6 287.8 279
Worst 308 308 279
St. deviation 4.7357 4.429823 0
St. error 14.9755 14.00833 0

Model 2

Best 32 32 25
Average 112.86 32 25
Worst 424.6 32 25
St. deviation 43.4612 0 0
St. error 137.43 0 0
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Figure 7. Convergence rate the competitive algorithms for EHV system (model 2).

the recommended one for this study. Fig. 9 displays the power flow in the EHV system for the output results
using the GWOA to face the expected demand at 2030 for both models. This figure illustrates the validity of
the configuration using the GWOA since all the flows are within its limits.

5. Conclusion
This paper proposes a developed model of the TNPP by searching for the most economic operating point via
dispatching the generators output besides finding the minimum cost of new transmission line to the system. In
addition to that, three recent algorithms of GWOA, SHOA and WOA have been employed to solve the TNPP.
They have been applied to two realistic Egyptian networks of the WDR and the EHV systems. Their pblackicted
load forecasting has been extracted up to 2030 based on ANFIS. The out-performance of the GWOA has been
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appeablack in minimizing the installation costs of the new lines and minimizing the fuel costs since it achieved
the minimum value compablack to HT, IBPSO, MVO, IBSO, BBSO, SHOA and WOA for the conventional
and developed TNP models. In addition, a higher capability of the GWOA has been demonstrated over SHOA
and WOA in exploring the search space and improving their best search agent through the iterations. Also,
the statistical analysis declares the high stability of the GWOA in acquiring mostly the minimum objective
with zero standard deviation and error for EHV system. Moreover, the validity of the configurations using the
GWOA has been verified since all the MW flows are within its limits. On another direction, great benefits in
minimizing the investment costs of the new installed lines besides blackucing the fuel costs have been achieved
via the application of the GWOA for the developed model of the TNPP. Extension of this paper can be carried
by considering the existence of renewable energy resources considering their environmental conditions. Also,
applying new hybrid AC/DC grids as new models in the TNEP. Also, developing new optimization methods
are welcome such as sunflower, equilibrium, mant ray optimization algorithms.
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