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Abstract: The problem of detecting similar documents plays an essential role for many real-world applications, such
as copyright protection and plagiarism detection. To protect data privacy, the new version of such a problem becomes
more challenging, where the matched documents are distributed among two or more parties and their privacy should
be preserved. In this paper, we propose new privacy-preserving document similarity detection schemes by utilizing the
locality-sensitive hashing technique, which can handle the misspelled mistakes. Furthermore, the keywords’ occurrences
of a given document are integrated into its underlying representation to support a better ranking for the returned results.
We introduced a new security definition, which hides the exact similarity scores towards the querying party. Extensive
experiments on real-world data illustrate that our proposed schemes are efficient and accurate.
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1. Introduction
Detecting similar documents [1] is a hot topic that received a lot of interest. Particularly, the exponential
growth of digital data requires efficient file system management.Such a system can be improved when similar
documents can be grouped and indexed together. Similarly, the efficiency of web crawlers can be improved by
eliminating all pages that are similar to their indexed versions [2]. Furthermore, document similarity detection
constitutes a basic technology for detecting plagiarism and double submission in academic institutes.

Typically, document files are decentralized among several parties. So, evaluating document similarity
becomes a hard process, and even harder when data privacy should be preserved. In this paper, we focus on
this distributed setting and show how to evaluate document similarity without violating data privacy.

To see the importance of our work, consider the following examples. Health care offices need to find
similar attributes in the medical diagnosis information of their patients’ records. To do so, a secure protocol
is required to perform such a task. Otherwise, patients’ privacy could be compromised severely. In the same
matter, intelligence agencies may be asked to identify suspected persons who have similar attributes under
different names in their collections. Disclosing persons’ records to the other parties also involves privacy risks.
To handle such an issue, the participating agencies run a secure protocol that identifies the closed records for
the provided query, and only the most similar records are revealed. Another application, to the setting of our
problem, is detecting the double submission of scientific articles to multiple venues simultaneously. For example,
to check whether the submitted article violates the submission policy, the conference committees want jointly
to detect similar articles without revealing their confidential contents.
∗Correspondence: ayad.abdulsada@uobasrah.edu.iq
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To solve the mentioned problems, the privacy-preserving similar document detection (PPSDD) technique
is utilized, which is a subbranch of the general secure two-party computation problem [3]. In its overall setting,
PPSDD considers the execution of a secret computing protocol among two parties, each one holding a confidential
textual collection. Both parties want to identify any similar documents within their particular collections. The
original version of this problem is used commonly to detect duplicate files [4] in the web environment or the
distributed setting. To preserve data privacy, no party wants to disclose its private textual files to the other
party.

Documents are represented in the existing solutions of PPSDD in three different ways: vectors, sets, and
multisets. Vector-based schemes [5–9] generate a binary vector for each textual document, where the inner prod-
uct or the Jaccard similarity measures are adopted to capture similarity scores between two vectors.   However,
such schemes incur high computational and communication costs as the size of vectors increase. Furthermore,
existing schemes require the two involved parties to identify a global vocabulary of either keyword [5, 6] or
N -gram sets [7].

Set-based schemes, such as [10], extract from each document a descriptive set. A secure intersection
protocol is required to identify the intersection size of two private sets without breaking data privacy. However,
such schemes do not consider keyword frequencies and thus show poor relevance ranking.

Documents under multiset-based schemes are transformed either into long binary vectors or descriptive
sets [11], which also inherit the disadvantages of those schemes.

In this paper, we describe a new method based on local sensitive hashing LSH [12]. LSH is a hashing
technique that hashes similar items into the same buckets (i.e hash values) with a higher probability than the
dissimilar items. The keyword set of a given textual document is translated into bigram vectors. LSH technique
is utilized to hash keyword vectors into a constant size vector, where hash values are used to determine the
vector locations that store keyword frequencies. This allows us to (i) evaluate the similarity over small vectors
rather than large ones, and (ii) render the similarity calculation to execute a secure dot product protocol over
two private vectors. To further improve the security, we enhance the basic scheme to protect the similarity
scores of the matched documents. In fact, our enhanced scheme returns only the index of the best-matched
document, without revealing the remaining similarity scores. This is the first PPSDD scheme that achieves this
goal.

To overcome the deficiencies of the previous schemes, we can summarize the design goals of our schemes
as follows:

1. Efficiency: Our proposed schemes employ a new document transforming method that customizes the
vector size according to the requirement of our schemes without identifying a shared vocabulary.

2. Accuracy improvement: The proposed schemes are designed to ensure better satisfaction for the relevant
documents to the provided query by integrating keyword occurrences into the generated vectors.

3. Privacy-preserving: Our schemes are designed to perform PPSDD between two parties without compro-
mising the privacy of the underlying documents. The privacy requirements are described in the following:
 

• Collection privacy: The contents of documents that are to be matched should be protected from the
querying party.
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• Query privacy: The underlying query information including keywords and their occurrences should
not be revealed to the other party.

• Similarity scores: Our enhanced scheme is designed to prevent the querying party from identifying
the similarity scores of the matched documents.

Our main contributions can be summarized as follows:

1. In contrast to existing vector-based schemes [5–7], which generate long vectors, our schemes utilize the
LSH technique to release efficient PPSDD with changeable size vector regardless of the number of keywords
within the document. Users can customize vector sizes according to their preferences.

2. A new method is designed to represent documents effectively, where misspelled keywords can still generate
a vector that is highly similar to the correct one.

3. Our schemes enhance the security of some previous schemes [5–7], where the need for sharing the global
vocabulary is eliminated.

4. Document similarity calculation is efficient, where a secure inner product protocol is sufficient to compare
two numerical vectors.

5. A real-world data set is used to investigate the effectiveness and efficiency of our proposed schemes.

The remainder of this paper is organized as follows. Section 2 surveys previous work on PPSDD schemes.
Section 3 demonstrates the basic methods and the cryptographic tools utilized during our schemes. Section 4
provides a formal description of the PPSDD problem along with its security definition. Section 5 shows, in
detail, the basic steps of our basic scheme, Section 6 presents the enhanced scheme that returns the index of the
best matching document. Section 7 introduces the security proof of our proposed schemes. Section 8 reports
the results of our experiments and Section 9 concludes our work.

2. Related work
Related works can be divided into the following topics.    

2.1. Vector space-based PPSDD schemes

The first solution for the PPSDD problem is presented in [5], where each document is transformed into a
numerical vector, where its size is determined by the total number of vocabulary keywords. To generate correct
vectors, the two participant parties need to run a secure protocol to determine the vocabulary, which includes the
common keywords of their collections. Document vector stores at the entry of each keyword its corresponding
normalized term frequency. The similarity of two vectors is evaluated using a cosine similarity measure, which
requires a secure inner product protocol to maintain data privacy.

The performance of [5] is further improved in [6], where document vectors are grouped into k clusters using
clustering algorithms. Once providing a document query, its nearest cluster is identified, and only the similarity
scores of nk documents within that cluster are computed. The performance of [5, 6] degrades dramatically as
vocabulary space increases. Vector space-based schemes have the disadvantage of missing the local similarities,
such as the overlapped segments of texts. To handle such a problem, Jiang et al. [7] utilized the N -gram
approach, which has the advantage of detecting local similarities. The N -gram set of a given document includes
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all of its substrings of size N . Specifically, they used a 3-gram set. This scheme reveals the global N -gram set to
the other parties, which is a security risk since one party can utilize this leak to check the existence of a given word
in the collection of the other party. Buyrukbilen and Bakiras [8] reduce the communication and computational
costs of the previously mentioned schemes using SimHash [13] method, where a short binary vector (usually
of 64 bits) is generated for each document, and a secure Hamming distance protocol is developed to measure
the similarity between two binary vectors. Furthermore, such a work introduced a new security definition for
their enhanced scheme, where only the binary scores are returned to the querying party. The study in [9]
has utilized the oblivious garbled Bloom filter protocol [14] to capture the intersection of two vectors. Under
such a work, each document is represented as a garbled Bloom filter, which is a fixed size vector. However,
oblivious transfer-based solutions [15] incur a high computational cost as the number of documents increases.
Recently, Schoppmann et al. [21] have proposed a secure scheme for classifying collaborated documents, where
a k-nearest neighbor classifier is applied to compute the secure similarity of textual documents.

2.2. Set-based PPSDD schemes

Blundo et al. [10] developed an efficient yet secure scheme to evaluate the similarity of two sets. The intersection
carnality of two sets is evaluated privately using the protocol of De Cristafaro et al. [16]. The authors applied
such a scheme to detect similar documents, where a Q 3-gram set is generated for each document. The size of
this set is reduced by MinHash method [1] into a fixed number υ of elements. Jaccard similarity of two sets S1

and S2 is approximated as JC(S1, S2) =
|S1∩S2|

υ .    

2.3. Multiset-based schemes
The set-based PPSDD schemes are only suitable for traditional sets, where frequencies of the N -gram elements
are ignored. However, ignoring such valuable information sacrifices the ranking functionality. So, the new
version of PPSDD has shifted towards multiset-based schemes, where the occurrence of each element is preserved.
Forman and Samanthula [11] proposed a secure yet efficient scheme to compute the intersection cardinality of
two multisets, which is considered as a subproblem of PPSDD. They utilized Bloom filter to handle multiset
data. To do so, documents are transformed into several sets with different frequency levels as follows. Set one
includes all keywords that appear at least one time, set two includes all keywords that appear at least two times,
etc. Each set is hashed using some predefined hash functions into its corresponding Bloom filter [17]. Bloom
filters for different frequency levels are concatenated together for producing a long multiset Bloom filter. The
number of intersected bits among two Bloom filters and the size of each one are utilized to approximate the
intersection size of their respective documents. Unfortunately,  this scheme represents each document as a long
vector to consider the term frequencies. On the other hand, our proposed schemes introduced a new method
for aggregating document terms and their corresponding frequencies into a short vector.

However, all of the abovementioned schemes, except the enhanced scheme of [8], are vulnerable to reveal
the actual similarity scores of the compared documents for the queried party. Specifically, our enhanced scheme
hides such information and returns only the index of the most matched document. Furthermore, our work
customizes the size of document vectors via a tuning parameter, which provides a better balance between
system complexity and accuracy results according to the users’ preferences. A comparison of our schemes with
existing works is given in Table .
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Table . Comparison with existing schemes. Rep. is the underlying document representation method. Leakage is the
information leaked to P2 party. Matching comm. is the size of trapdoor sent from P2 . n is the number of documents
in the collection of P1 . Σ is the global vocabulary of keywords in collections P1 and P2 . ∆ is the N-gram set of P1 . ζ
is the size of SimHash vector, which is much smaller than |Σ| and |∆| . α1, ..., αn are the actual similarity scores, while
 β1, ..., βn are binary similarity scores. t̂ is a user defined threshold. υ is the size of MinHash set, where υ < |∆| . γ is
the size of vectors for our proposed schemes, where γ < |Σ| . c is the number of frequency levels.

Scheme Rep. Leakage Doc.
size

Matching
time/Comm.

Term vector (TV) [5] Numerical
vector

α1, ..., αn |Σ| O(n), O(|Σ|)

Enhanced term vector (ETV) [6] Numerical
vector

α1, ..., αk, α1, ..., αnk
|Σ| O(knk), O(|Σ|)

N-gram [7] Binary vector α1, ..., αn, ∆ |∆| O(n), O|∆|)
Basic SimHash [8] Binary vector α1, ..., αn ζ O(n), O(ζ)

Enhanced SimHash [8] Binary vector β1, ..., βn ζ O(n(t̂ + 1)),
O(n(t̂+ 1))

EsPRESSo [10] Set α1, ..., αn υ O(n), O(υ)
Multiset [11] Multiset α1, ..., αn c.γ O(n), O(c.γ)  
Our basic scheme Numerical

vector  
α1, ..., αn γ O(n), O(γ)

Our Enhanced scheme Numerical
vector  

maxind{αi : ∀i = 1, ..., n} γ O(n), O(γ)

3. Background
This section introduces a brief description of the local sensitive hashing method and the basic cryptographic
tools adopted during our designs.

3.1. Local sensitive hashing LSH
LSH is a hashing technology used for solving the problem of nearest neighbor search, where high-dimensional
items are hashed into low-dimensional items without compromising their relative distance. Interestingly, unlike
traditional hashing functions, LSH hashes similar items into the same buckets with high probability.     Given
the hash family H , the distance metric dist , two probabilities p1 and p2 s.t. p1 > p2 , and two distances r1

and r2 s.t. r1 < r2 then the hash family H is (r1, r2, p1, p2) -sensitive if for any two points x , y , and any
h ∈ H it satisfies:

if dist(x, y) ≤ r1 : Pr[h(x) = h(y)] ≥ p1 (1)

if dist(x, y) ≥ r2 : Pr[h(x) = h(y)] ≤ p2 (2)

where dist(x, y) is the distance measure between x and y .
The (r1, r2, p1, p2) -sensitive hash family H can be amplified into a new (r1, r2, 1−(1−pr1)d, 1−(1−pr2)d) -

sensitive hash family G . First, a new (r1, r2, p
r
1, p

r
2) -sensitive hash family F is generated, where its hash

functions f ∈ F are constructed by randomly choosing r different hash functions h1, h2, ..., hr , where f(x) =

[h1(x), ...., hr(x)] . Under such a construction f(x) = f(y) if hi(x) = hi(y) for i = 1, ..., r .   Next, the family F
is amplified into the (r1, r2, 1− (1− pr1)

d, 1− (1− pr2)
d) -sensitive hash family G . Each hash function g ∈  G is
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defined by randomly selecting d hash functions f1, ..., fd from F , where g is defined as g(x) = mix(f1, ..., fd)

mod γ , where γ is a user defined parameter used to tune the number of buckets. Under such a construction,
 g(x) = g(y) if fi(x) = fi(y) for at least one value of i = 1, ..., d . The proper selection of r and d pushes p1

and p2 to be close to 0 and 1, respectively.
Stable distributions: Hashing families can be constructed according to the distance metric dist . In this
work, we adopted Euclidean metric distance. For this metric, the hash function h(a,b)() : Rt → N can be

defined as h(a,b)(x) = ⌊ax+b
W ⌋ , where a is a t dimensional vector, whose elements are chosen randomly from a

stable distribution [18] (Gaussian distribution is used here), b is a real random number belongs to [0, ...,W ] ,
and W is a fixed integer that determines the number of bins.  

3.2. Cryptography tools
Below we describe briefly the basic cryptographic tools utilized in our schemes.

3.2.1. Homomorphic encryption
Homomorphic encryption allows anyone to perform certain arithmetic operation op on the encryption of
plaintexts m1 and m2 , by evaluating an efficient operation on their corresponding ciphertexts c1 and c2

without knowing the private key. The popular RSA encryption scheme supports multiplicative homomorphic
operation (i.e. op is multiplication operation). When the encryption scheme supports any op , we refer to it as
fully homomorphic, that was designed first by Gentry [19] and improved later by many works [20, 22]. See [23]
for more information.

In this paper, we are interested in additively homomorphic encryption schemes. Paillier encryption [24] is a
well-known public key cryptographic scheme that implements additive homomorphic and constant multiplication
homomorphic properties. Let E(.) denote the encryption operation, E(.)−1 denote the multiplicative inverse,
the homomorphic properties of this scheme can be illustrated as follows:

E(m1 +m2) = E(m1).E(m2)

E(m1 −m2) = E(m1).E(m2)
−1

E(m1m2) = E(m1)
m2 .

Note that, Pillier’s scheme is semantically secure, i.e. there is no probabilistic polynomial time (PPT)
adversary that can distinguish its ciphertext from truly random numbers. Its security is based on the decisional
composite residuosity assumption. The ciphertext of the message m1 is referred as [[m1]] , which can also be
refreshed using a new random value r ∈ Z∗

N as [[m1]].r
N .

3.2.2. Secure multiparty computation

In secure multiparty computation [3], several parties compute jointly a function of their private inputs without
violating the privacy of their inputs. Yao [25] proposed the garbled circuit technique to solve the millionaires
problem in the case of two-party. Using this technique any function can be evaluated privately by using the
Boolean circuit description of that function. In particular, the truth table of each logic gate in the circuit
is encrypted and garbled by one party and outsourced to the other party. The latter evaluates the circuit
by using inputs from the garbling party. Unfortunately, this technique is not efficient when the circuit has a
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large number of inputs and logical gates, since each input requires the execution of an oblivious transfer (OT)
protocol [15], which consumes more computation overhead. On the other hand, the size of the circuit determines
the communication cost. Yao’s technique was extended later [26] to multiparty computation. Over the past
years, many improvements have been developed to enhance the efficiency of garbled circuits [27, 28]. Despite
these improvements, garbled circuits are still impractical solutions for multiparty computations. Participant
parties can be corrupted by adversaries of two types.

1. Semihonest adversaries: In this type, the corrupted parties follow precisely the protocol steps. How-
ever, the adversary utilizes the messages received to the party to learn further private information.

2. Malicious adversaries: In this type, the active adversary asks the corrupted parties to deviate from the
protocol steps. Therefore, the correctness of the results should be ensured.

3.2.3. Secure comparison protocols
Secure comparison protocols are interactive cryptographic tools that allow two parties with private inputs x , y
to determine whether x > y or not while preserving their respective inputs. Such protocols constitute building
blocks for several real-world applications such as secure classification [29]. Veugen [30] designed an efficient
protocol to compare two encrypted integers [[x]], [[y]] s.t. [[0]] < [[x]] and [[y]] ≤ [[2ℓ]] without decryption.
Such protocol, in turn, employs DGK comparison protocol [31] to compare two private unencrypted integers.

The basic idea of this solution is to compute [[z]] = [[2ℓ]]− [[x]]+ [[y]] of (ℓ + 1)-bit and inspect its most
significant bit zℓ . If it is 1, then [[x]] ≥ [[y]] , otherwise [[x]] < [[y]] . Thus it is enough to compute the bit zℓ

 for deciding whether [[x]] ≥ [[y]] or not. Note that zℓ can be calculated by dividing [[z]] by 2ℓ .
Veugen’s protocol assumes two parties: P1 and P2 . The inputs of P1 are two encrypted numbers [[x]]

and [[y]] , its output is [[δ]] = ([[x]] < [[y]]) = [[1 − zℓ ]]. The security definition of this protocol prevents P2

from knowing the original values x , y , and prevents P1 from knowing the comparison result δ . Figure 1 shows
the basic steps of  Veugens [30] protocol.  

4. Problem description and security definition
4.1. Problem description
Our proposed schemes considers two parties: P1 , which holds a collection of n textual documents D =

{d1, d2, ..., dn} . Each document di ∈ D is described as a set of keywords and their corresponding occurrences
{(wi, tfi)} . P2 holds a collection of m textual documents Q = {q1, q2, ..., qm} , which are described in the same
way. At each time, P2 chooses one of its documents qi and wants to evaluate its similarity scores against all
documents of P1 ’s collection in a privacy-preserving manner.

4.2. Security definition
In this work, we designed two schemes with different security levels. Our basic scheme has a security level that
is identical to the security supported by all previous PPSDD schemes, that is: P2 knows all the similarity scores
{αi : ∀ = 1, ..., n} between its query q and the collection D of P1 , while P1 knows nothing. The security of our
enhanced scheme supports a stronger level for P1 , where the only index of the maximum score is returned to
P2 . Formally speaking, P2 knows maxind{αi : ∀i = 1, ..., n} . Like all the existing PPSDD schemes, we assume
that both parties are semihonest.
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Figure 1. Comparing two encrypted integers.

5. Basic scheme
In this section, we describe our basic scheme that discloses similarity scores for each one of P1 ’s documents to
P2 . Our scheme generates a constant vector Vi per document di . The vector Vi represents all the keywords
of di and their corresponding occurrences as a numerical vector of size γ . To allow for similarity matching,
we first transform each keyword wj into a bigram vector and then utilize LSH hash functions to hash this
vector for determining the locations of Vi that store the keyword frequency tfj corresponding to wj . The basic
operations are demonstrated in Figure 2 and described below:

1.   Data Preprocessing: Before generating document vectors, each party executes a preprocessing step
to describe each of its documents as a set of keywords and their corresponding occurrences{(wj , tfj)} .
This step includes some operations borrowed from the information retrieval field [32], such as lower case
conversion, stop word elimination, and stemming. Stemming operation converts each keyword to its
basic stem. For example, all the keywords compute, computing, and computation are all converted to the
word compute. Such operation ensures the best matching between the provided query and the stemmed
documents.

2.  Bigram vector generation: Recall that LSH functions hash the close vectors to the same integer value
with high probability. Thus, we need to transform string keywords into vectors, such that LSH functions
can use them. A bigram set is extracted from a given keyword, which includes all the contiguous sequences
of 2 characters that appeared in that keyword. For instance, the bigram set of the keyword cryptography is
{cr,ry,yp,pt,to,og, gr, ra, ap, ph, hy}. Typically, such a set requires a vector of 262 -bits to be represented.
If the bigram element exists in the bigram set, and then its corresponding entry in the binary vector is
set to 1. Otherwise, it is set to 0. Such a representation can recover the misspelled keywords and still be
able to generate keyword vectors that are very similar to the vector of the correct keyword. The bigram
vector is the key idea that enables the direct application of the LSH technique.
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Figure 2. The proposed basic scheme for PPSDD, query encryption is omitted for better presentation.

3.   Document vector construction: In this paper, we utilize LSH functions to construct document vectors.
LSH functions will hash similar items into the same buckets with high probability. The use of LSH
functions in constructing the per document based vectors is the key to support similarity matching.
Therefore, documents and queries now are described as numerical vectors instead of string keywords. We
use k hash functions {g1, ..., gk} form the hash family G as explained in subsection 3.1. Each document
vector Vi is initialized as γ zero elements ⟨v0, ...., vγ⟩ . When document keywords are transformed into
their respective bigram vectors, they are ready to be hashed into the document vector. Each keyword wj

is hashed using the k hash functions to get k locations {l1, ...., lk} . Then we set keyword frequency tfj

to the locations vl1 , vl2 , ...., vlk . When different keywords are mapped into the same locations, the average
value of their term frequencies is stored.  

4.   Documents matching: As Figure 2 illustrates, the final document vector is a constant numerical vector
that describes all of the string keywords appearing in that document. Since query and document vectors
are constructed in the same manner, a similarity score between them can be evaluated. If a given document
contains the same keyword(s) of the query, then their corresponding vectors will include closed frequencies
at the same locations, thus the inner product between them will be high. So, we can use this measure to
evaluate the similarity between the two documents.

5.   Query encryption: The document vector hides the underlying keyword set and its size. This is because
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each element of that vector is calculated by multiplying the bigram vector for each keyword with a set
of random vectors and then mapping the results to a set of bucket numbers. However, the document
vector is constructed in a deterministic way. Therefore, the same collection of b hash functions are used
for generating all document vectors. Deterministic construction enables the adversary party to learn if
the same keywords are included in the provided query by utilizing a keywords-chosen attack. To protect
the query vector, we encrypt it before its revealing. However, since the other party is asked to perform
a similarity matching, a homomorphic encryption method is adopted. Specifically, Paillier encryption
scheme is used to encrypt individually all the elements of the query vector.   Hence, the other party can
calculate the encrypted similarity scores using a secure dot product between the encrypted query and each
one of its document vectors.   Note that the dot product is just the addition of the partial multiplications
of two numerical vectors.

To protect its trapdoor, P2 encrypts every element of its query vector QV and sends γ ciphertexts to P1 .
P1 is not able to decrypt these ciphertexts but it can blindly compute the required multiplication and addition
operations. Particularly, for each textual document di in its collection, P1 initializes the ciphertext of the
similarity score to 0. Next, it proceeds over the γ elements of the corresponding document vector Vi . At each
iteration, it simply utilizes the multiplication property of Paillier cryptosystem to multiply two elements, then
it adds the result to the encrypted score. After the computation of all documents, P2 returns the encrypted
scores to P2 . Finally, P2 employs its private key to get the exact matching scores and determine the best
matching documents to q . Construction 1 illustrates the details of our basic scheme.

Discussion: Our proposed method for transforming document keywords uses the bigram vector. Such a method
has the ability to handle the following mistakes:

1. Misspelled letters: For example, the keywords secure and secude are transformed into {se, ec, cu, ur, re}
and {se, ec, cu, ud, de}, respectively, where they differs only in two bigrams.

2. Anagram keywords: In this case, two different keywords are formulated by the same letters but with
different orders. For example, our method can distinguish between the keywords dessert and stressed,
since they have completely different bigram sets.

3. Keywords in the same root: Our scheme can distinguish between computing and compute, since it utilizes
stemming operation during the preprocessing step.

Notice that if document di is seen in the retrieved results R of the search query q , then we have five
cases: Case1: when the exact keywords of q are a subset of the keywords of di , then di would appear in R ,
since we use the same LSH functions g1, ..., gk during the index construction step of both di and q . Therefore,
the corresponding indexes of di and q will share 1 at the same positions leading to a maximum dot product,
and hence di will be included in R . Case2: when keyword w′ of q is misspelled and differs slightly from
keyword w of di (i.e. d(w,w) ≤ r1 ), and gi(w) = gi(w

′),∀i = 1, ..., k , then the dot product will reach also
the maximum value. Case3: when d(w′, w) ≤ r1 but gj(w

′) ̸= gj(w) , then the inner product will be affected.
Recall that each gj function is designed using d internal functions f1, ..., fd , thus the probability of occurring
the event gj(w

′) ̸= gj(w) will decrease when d increases. Case4: when keyword w′ of di differs significantly
form keyword w of di (i.e. d(w′, w) > r1 ), then there is a low probability that w and w′ will be hashed to
the same locations. Thus, the inner product will be low. Case5: when d(w′, w) > r2 but their corresponding

618



Abdulsada et al./Turk J Elec Eng & Comp Sci

Algorithm 1: Basic scheme.
Input : λ : security parameter, D = {d1, ..., dn} document collection of P1 , q document query of

P2 .
Output: P2 gets α1, α2, ..., αn similarity scores.
Setup.
P2 : Uses λ to generate the key pair (pk, pr ) for Paillier cryptosystem, chooses k random hash
functions {g1, g2, ..., gk} form the sensitive hash family G , and selects γ : the size of the resulted
document vectors. Shares (pk, g1, g2, ..., gk, γ ) with P1 .

Document embedding.
P1 :
for i← 1 to n do
{(w1, tf1), (w2, tf2), (wz, tfz)} ← Preprocessing(di )
for j ← 1 to z do

Bvj = Bigram_vector(wj) ;
end for
Vi=LSH (Bv1, ..., Bvz, γ, g1, ..., gk, tf1, ..., tfz) ;

end for
Trapdoor generation.
P2 :
{(w1, tf1), (w2, tf2), (wz, tfz)}  ← Preprocessing (q );
for j ← 1 to z do

Bvj =Bigram_vector (wj) ;
end for
QV =LSH (Bv1, ..., Bvz, γ, g1, ..., gk, tf1, ..., tfz) ;
for j ← 1 to γ do

cj = Encpk (QVj) ;
end for
Sends ⟨c1, ...., cγ⟩ to P1 .
Secure matching.
P1 :
for i← 1 to n do

[[αi ]] = Encpk (0)
for j ← 1 to γ do

[[αi ]] = [[αi ]].(cj
Vij ) ;

end for
end for
Sends [[α1]] , [[α2]] , ..., [[αn]] to P2 .
P2 : uses pr to decrypt [[α1]], [[α2]], ..., [[αn]] .

hashes are matched. This case is defined as false positive (FP) and it is introduced in our schemes due to two
reasons: the locality sensitive hashing functions (introduces pk2 FP) and the vector representation (introduces
(1− 1

γ )
ks FP, where s is the number of inserted keywords, k is the number of LSH functions, γ is the size of

produced vector for each document).

6. Enhanced scheme
The basic scheme allows P2 to learn the exact similarity scores for every document di in P1 ’s collection. The
security definition of such a scheme is equivalent to the definition of all the current PPSDD schemes. However,

619



Abdulsada et al./Turk J Elec Eng & Comp Sci

providing P2 with this information may allow it to build some fake queries that reveal more information about
P1 ’s collection. Even though such an attack is not trivial with document vectors, it is still important to hide
the actual similarity scores for preventing any potential attacks. For this reason, in this section, we present our
enhanced scheme that protects similarity scores and returns only the index of the best matched document. This
is the first PPSDD scheme in the literature that supports this strong security level. Particularly, the two involved
parties P1 and P2 agree on a similarity threshold τ , which determines whether the provided query is relevant
to a given document or not. Documents are considered relevant only when their inner products are greater
than τ . Our enhanced scheme returns only the index ind of the best matching document, where αind > τ .
Observing that larger threshold implies returning the most similar document. Construction 2 illustrates the
details of the secure matching of the enhanced scheme.

To achieve this goal, we utilized the protocol of [33], where it preserves a linear number of comparisons.
First, P1 applies a random permutation π on the encrypted similarity scores to prevent P2 from learning the
order of such values. Then both parties start to compare the first encrypted score [[αi]] with the encryption
of τ using Veugen’s protocol (see subsubsection 3.2.3). The result is that P2 knows the index ind of the
two compared values. They proceed to compare [[αind]] with [[α2]] . The iteration of such a process over all
encrypted scores allows P2 to know the permuted value of ind . Finally, P1 performs π−1(ind) to get the
right result. Note, P1 still be able to learn the minimum of every two compared scores. To handle such a
security issue, P2 utilizes the refresh property of Paillier cryptosystem to reencrypt the minimum value after
each comparison.

7. Security analysis
Our schemes are designed under the setting of secure two-party computing and their security is defined according
to the model of semihonest parties (see subsection 4.2). We need to show that such schemes perform private
computation. To do so, we use the simulation approach [34], which is a popular approach for proving the
security of two-party computing protocols. The key idea of this approach is illustrated as follows: Let the view
of any party be the received messages during the execution of the protocol. We say that the protocol is secure if,
for each party, there exists a simulator (a PPT algorithm) that can simulate efficiently the messages it receives
from other parties, given only the inputs and outputs of that party. This means that if the view of a given party
can be simulated only from its input and output, then no additional information is leaked from the received
messages.

Formally speaking, a two-party protocol π evaluates securely a deterministic polynomial function Func

for two parties with the security parameter λ . The function Func receives two inputs: x ∈ {0, 1}∗ from the
first party and y ∈ {0, 1}∗ from the second party, and generates two outputs: Func1 for the first party and
Func2 ∈ {0, 1}∗ for the second party.

The notation View1(x, y)(resp., View2(x, y)) is used to describe the view of the first party (resp., the
second party) during the execution of π , where Viewi(λ, x, y) = (1λ, z,mesi1, ...,mesit, r

i) where z ∈ (x, y) ,
mesij ,∀j = 1, .., t are the t messages that party i receives, and ri is the random tape of party i .

We say that π computes Func securely in the presence of static semihonest adversaries if there exists
PPT algorithms S1 and S2 such that

{S1(x,Func1(x, y))}x,y ≡c {View1(x, y)}x,y

{S2(y,Func1(x, y))}x,y ≡c {View2(x, y)}x,y
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Algorithm 2: Secure matching of the enhanced scheme.
Secure matching.
P1 :
for i← 1 to n do

[[αi ]]=Encpk (0);
for j ← 1 to γ do

[[αi ]] = [[αi ]].(cj
Vij ) ;

end for
end for
Pick a random permutation π over {1, ..., n} ;
Set [[max]] ← Encpk (τ) ;
for i← 1 to n do

[[δ]]← Secure_Comparison([[απ(i)]], [[max]]) ;
Choose two random integers ρi, ϱi ∈ (0, 2ℓ) .  
Set [[max′]]← [[max]].[[ρi]] ;
Set [[ω]]← [[απ(i)]].[[ϱi]]  
Send [[ω]] and   [[max′]]  to P2  
P2 : if δ = 1 then

ind← i  
  [[v]]← Refresh ([[ω]])

end if
else

[[v]]← Refresh ([[max′]])
end if
Send [[v]] to P1

P1 : Compute   [[max]]← [[v]].([[δi]].[[1]]
−1])ρi .[[δi]]

−ϱi

end for
P2 :  Send ind to P1

P1 : Set ind← π−1(ind) , and return ind to P2

The notation ≡c means that for all PPT adversaries, the two sides are computationally indistinguishable.
For simplicity, λ will be omitted from views and security proof. We apply this approach to prove our basic
scheme. In our basic scheme, the input of P2 is a numerical vector QV of size γ and its output is n similarity
scores: α1, ...., αn . The view of P2 is View2 = {QV, γ, [[α1]], [[α2]], ..., [[αn]], pk, pr, rc} , where rc is the random
tape for Paillier encryptions. The simulator S2 knows the public key and the output of P2 . Thus, S2 can
simulate the real view of P2 bu utilizing the inputs ( [[α1]], [[α2]], ..., [[αn]], pk, pr ) as follows:

1. Uses pk to encrypt α1, α2, ..., αn to obtain [[α̂1]], [[α̂2]], ..., [[α̂n]]

2. Generate r̂c as a γ random tape for Paillier encryptions

3. Returns {QV, γ, [[α̂1]], [[α̂2]], ..., [[α̂n]], pk, pr, r̂c}

Notice that [[α̂1]], [[α̂2]], ..., [[α̂n]] and [[α1]], [[α2]], ..., [[αn]] are indistiguishable since Paillier is semantically
secure cryptosystem.

The inputs of P1 are numerical vectors: V1, ..., Vn of size γ and its output is nothing. The real view
of P1 is View1 = {V1, ..., Vn, pk, γ, c1, ..., cγ , rc} . The simulator S1 uses (pk, γ, c1, ..., cγ ) to simulate View1 as
follows:
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1. Encrypts 0 by Paillier γ times: ĉ1, ĉ2, ..., ĉγ

2. Generate r̂c as a γ̂ random tape for Paillier encryptions

3. Returns {V1, ..., Vn, pk, γ, ĉ1, ..., ĉγ , rc}

The enhanced scheme utilizes a subprotocol to identify the index of the document that has the best
matching. The security of such a protocol is explained in [33].

8. Experimental results
In this section, we estimate the performance of our proposed schemes in terms of matching accuracy and indexing
efficiency.   A real-data collection from Wikipedia articles is used to test our two schemes. In fact, 100 main
pages are selected from various topics.   For each topic, we picked 10 of its history versions. Thus, the total
number of textual documents in the collection is 1000. First, the documents are prepossessed by: stop words
removal, lower case conversion, and stemming with Porter algorithm [35]. The total number of keywords in the
entire collection is 4733, and the average number of keywords per document is 102. We set r = 8 , and d = 30

for LSH, and set γ = 700 for document vector size. Our schemes were implemented using a machine of 2.7 GHz
Intel corei7 CPU, with a 64-bits Windows 7 operating system and 8 GB of RAM. We used JAVA programming
language. Big numbers are handled using BigNumber Java library. Security parameter of λ = 1024 -bits is
used for Paillier and DGK cryptosystems. We used ℓ = 22 -bits to represent the compared integer values. We
compared our scheme with the following state-of-the-art schemes: The term vector (TV) [5], enhanced term
vector (ETV) [6] (we used k -means algorithm for document clustering and set the number of clusters k = 5),
and SimHash [8].

8.1. Efficiency  investigation
We investigate the efficiency of our proposed schemes in terms of time and communication costs.

1. Document vector construction cost: Note that document vector construction involves three basic op-
erations: data preprocessing, bigram vector generation, and document vector construction. Figure 3a
illustrates the CPU running time for generating document vectors for the entire collection with variable
vector sizes γ . As expected the running time grows as the vector size increases.

2. Trapdoor generation cost: Trapdoor is generated in the same way as for document vectors. The exception
is that it includes an encryption step to protect the privacy of its underlying document. Figure 3b reports
the CPU running time for encrypting a single document trapdoor with variable sizes.  

3. Matching time: We measure the matching time for our basic scheme, which compares the provided
trapdoor through secure dot product operation against the whole documents of the other party. Figure 4a
reports the matching time costs for variable document size values γ . Notice that longer document vectors
require immediately, as expected, more computational time.

We also measure the matching cost for our enhanced scheme, which requires matching the provided
trapdoor against all documents and then selecting the index of the most matched one securely.   For this
experiment, we set the parameters to their default values. Figure 4b shows the CPU execution time of
our enhanced scheme. Notice that this scheme incurs more matching time, mainly due to the additional
cryptographic operations involved during the maximum index selection step.    
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Figure 3. Generation and encryption time. (a) Document vector generation time. (b) Trapdoor encryption time.
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Figure 4. Document matching time. (a) Our basic scheme. (b) Our enhanced scheme.

4. Computation cost comparison: In this experiment, we compare the time cost of our scheme against
previous schemes. Specifically, we measure the average CPU time of the cryptographic protocols for the
100 unique document queries. Each run includes the time needed to describe the document query, encrypt
it, and match it against all documents n . We set the size γ of generated vectors in our scheme to 800, the
size |Σ| of TV scheme to 5000 (since it has the best execution time), and the size ζ of SimHash binary
vector to 64. Figure 5a reports the CPU time required to compare one document against a collection of
variable size n . SimHash incurs the lowest computation cost among all competitors, mainly due to its
short vectors. TV demands a very high computational cost since it requires the encryption and matching
of longer numerical vectors. ETV requires less computational cost than TV since it uses clustering method
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for improving matching efficiency. Our method is significantly faster than the TV and ETV because it
involves the computation of shorter vectors.

5. Communication cost: Figure 5b shows the communication cost for various schemes. Obviously, SimHash
outperforms both competitor methods considerably, incurring a communication cost that is at least 18
times smaller under all settings. For example, to compare one document against a collection of n = 1000
documents, requires 0.26 MB of data communication for SimHash,  0.44 MB for our basic scheme, 1.27
MB for ETV, and 1.46 MB for TV.
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Figure 5. Resources comparison. (a) CPU running time. (b) Communication cost.

8.2. Effectiveness evaluation
Effectiveness is investigated in terms of document retrieval accuracy for the proposed document representation
method. Particularly, we employed the precision metric to observe the accuracy of the results. Notice that our
scenario requires sending back the top-K relevant documents instead of returning all the relevant documents.
Thus, our concern is on precision rather than recall. Let F denotes the set of relevant documents for the provided
query, and R denotes the set of retrieved documents, then precision is equal to |R∩F |

|R| . Our experiments use
every article in the collection as a query, and relevant documents are those documents in the same topic as the
query. The size of R is controlled by retrieving only the top-K documents, where K ranges from 5 to 15.

1.  Effect of LSH hash functions:   In the following experiment, we test the effect of the number of hash
functions b on the result accuracy for variable γ values.   Figure 6a depicts that the average precision
increases as b increases. This is because more LSH functions lead to more variety in generated document
vectors, and so few nonrelevant documents in the collection are returned, which leads to high precision.
The retrieval accuracy of the proposed scheme is higher than 40% for all settings.
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Figure 6. Precision comparison.

2.  Document retrieval comparison:  We compare the document retrieval accuracy of our proposed scheme
against some of the previous schemes. The goal is to test the underlying document description method
of our scheme. The retrieval accuracy of the involved schemes is evaluated for variable K values. The
values of γ and b parameters of our scheme are set to 700 and 35, respectively. For SimHash scheme the
size of the vector is set to 64. Figure 6b shows the average retrieval accuracy for various schemes. In all
schemes, the accuracy of results decreases when K increases. As expected, the TV scheme has the best
overall accuracy since it uses the standard method, in the literature of information retrieval, for describing
documents. Notice that using the clustering method reduces slightly the precision of ETV. Our scheme
sacrifices some accuracy for better computation and communication overheads, but it performs very well
for K values lower than 20. SimHash shows the worst accuracy since it utilizes significantly shorter binary
vectors to describe documents.

3.  Fuzzy matching: One important feature for comparing the underlying description methods of various
schemes is to test their ability to recover the misspelled (fuzzy) keywords in the document query. To
generate fuzzy document queries, we randomly pick several unique keywords and slightly modify them
to get the fuzzy keywords. For each keyword, we replace all its occurrences, in the query document,
with the corresponding fuzzy keyword. Figure 6c shows the precision of the fuzzy matching for different
schemes with a variable number of fuzzy keywords. In this experiment, we set K to 5. For all schemes,
the precision decreases as the number of fuzzy keywords, in the query, increases. This is because the
nonrelevant retrieved documents will be accumulated when the number of fuzzy keywords grows. Clearly,
the precision of our proposed scheme outperforms the other schemes, since it uses a better method for the
keyword transformation, which is based on the bigram set. On the other hand, TV, ETV, and SimHash
schemes could not tolerate fuzzy keywords well, since they use high-level representation methods that deal
with whole keywords instead of bigram sets, making them unsuitable to distinguish fuzzy keywords.  

To prove the effectiveness improvement of our proposed scheme in terms of handling the fuzzy keywords we
utilized statistical significance testing, which is a popular method to estimate how well an improvement in
a new system reflects a real improvement between two systems, as opposed to fake improvement because
of the selection of samples. Specifically, we used Student’s paired t-test as an instance of significance test
since it is used extensively by IR researchers[36]. We consider the TV scheme as the baseline scheme and
set the significance level to 0.05, which is the default value. During this test, we ran 25 queries for the
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two schemes. At each scheme, we compute 10 average precision (AV) values (one value for each number
of misspelled keywords). The two schemes are compared in two flavors: one-tailed test (we got 0.0.039)
and two-tailed test (we got 0.000014). Notice that the results of both tests are lower than the significance
level, so we have an actual improvement in the performance of our proposed scheme.

9. Conclusion
In this paper, we address the challenging scenario of matching documents from two distinct parties without
violating their privacy.   Our proposed schemes utilize LSH hashing functions to construct numerical vectors
that provide an efficient solution for handling the misspelling mistakes efficiently. In addition, a secure inner
product method is developed to calculate similarity scores. Moreover, our proposed schemes consider the
keyword occurrences during results ranking. We proposed two schemes with different security levels. The
practical value of our schemes is demonstrated through an extensive experimental evaluation using a real-world
collection.

As part of future work, we plan to investigate another keyword transforming method to handle more
misspelling mistakes like adding or removing letters from the original keywords. We also try to use semantic
document representation to catch the semantic similarity between textual documents. Another direction for
future work would be to shift our work into the malicious security model, where the involved parties are no
longer assumed to follow the steps specified by the protocol. Specifically, in this case, one party would check
the computations of the other party.
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