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Abstract

In this paper, a discretization-oriented describing function is derived for nonlinear devices combining

backlash and quantization (resolution) while being subject to discretization through a sampler and zero-

order hold. Such a describing function is frequency-dependent so that the overall nonlinearity, which

includes both resolution and backlash, is interpreted as possessing nonlinear inertia. That nonlinear

inertia is generated by the sampling process, since it does not appear if the system is continuous. The

presence of nonlinear sustained oscillations (limit cycles) is investigated through simulations.

Keywords: Backlash, describing function, resolution.

1. Introduction

Describing function techniques for the analysis of nonlinear devices are based on harmonic linearization
(Gibson and Prasanna-Kumar 1961; Gelb and Vander Velde 1974). Their most attractive feature is that
they allow the substitution of the nonlinear devices by signal-dependent gains which can be easily introduced
in descriptions based on block decompositions in the frequency domain. Several types of describing functions
have been derived. For instance, the case of multiple input nonlinearities was discussed in Gelb and Vander
Velde (1974), while describing functions were obtained in Taylor (1976) for the case of random inputs. A
basic application of such techniques is the determination of self-oscillations through the intersections of
the frequency-response hodographs of the linear devices and the critical locus (i.e., the minus inverse of
the describing function) of the nonlinear ones in the Nyquist plane (Gelb and Vander Velde 1942; Soto
and De la Sen 1984, 1985; Williamson 1976). The linear devices have to be of sufficiently large relative
order so that they will be adequate low-pass filters. If the control loop does not possess good low-pass
filtering properties, the results can be subject to significant errors when determining self-oscillations (limit
cycles) or stability conditions (Bergen et.al. 1982). Those results can be improved by using higher-order
harmonic corrections in the describing function (Gibson and Prasanna-Kumar 1961). An additional drawback
related to the describing function techniques appears when sampling is used, since sampling introduces in
a natural way in the steady-state a displacement of the frequencies as well as their associated higher-order
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harmonics appearing in the continuous-time domain. In Dormido and Mellado (1975) and De la Sen and Soto
(1984, 1985), an adaptive sampling law based on a sampling criterion of constant amplitude difference (i.e.,
sampling occurs when the absolute value of the sampled signal varies a prescribed threshold) was studied
from a describing function viewpoint. It was shown that the given adaptive sampling law is fully equivalent
to a multiple relay with hysteresis. However, the analysis was performed in the continuous-time domain
since the overall adaptive sampling law was substituted by the multiple relay with hysteresis because of the
equivalence within both physical devices.

The main objective of this paper is to focus on this problem indirectly by including the sampling
and hold effect in the shape of the periodic signal used for the analysis of the self-sustained oscillations.
Thus, all the harmonics are included in the analysis prior to the filtering effect of the linear part of the
plant. In the various describing functions, which have been derived in the usual applications, there is a gap
related to their applicability to discrete systems. In this paper, the problem of stability and presence of
self-oscillations in a system including backlash and resolution (see, for instance, Gibson 1963, Taylor and
Lu, 1995, Oldak et.al., 1994) acting on a third-order linear plant is studied under sampling with zero-order
hold. The associate (discretization - oriented) describing function is obtained by using the output of the
zero-order hold as input to the composite (i.e., backlash plus resolution) nonlinearity when its input is
periodic. The periodic wave considered for analysis purposes is a sampled sinusoid under a zero order hold
as a natural way to describe the steady-state behavior. In this way, the sampling effect is automatically
included in the analysis without requiring the use of the extra frequencies generated by the sampling and hold
device that would modify a pure sinusoid (i.e., the fundamental frequency of a self-sustained oscillation in
the absence of sampling). Since the describing function is shown to be frequency-dependent, it is concluded
that the sampling process causes a nonlinear inetria. This technique of analysis minimizes, in addition, the
drawbacks that arise from the use of the classical (continuous-time) describing function approach when a
long sampling period is used. The linear part of the plant has to possess sufficiently large relative order
to attenuate the high-order harmonics. The paper is organized as follows. Section 2 describes the physical
process empirically. Section 3 is devoted to obtaining the discretization-oriented describing function for the
composite nonlinearity. Numerical simulations are discussed in Section 4, including the case of presence of
limit cycles and the results are compared to the real values of those limit cycles obtained from a phase-space
numerical investigation of trajectories in the time domain. Finally, conclusions are drawn.

2. Process Description

2.1. Preliminary Heuristical Ideas

Backlash (or mechanical hysteresis) is due to the difference in motion between an increasing and a decreasing
output, usually caused by mechanical gearing (see, for instance, Gibson 1963). The two switching surfaces
between the backlash and linear zones are the separation surface (Linear zone → Backlash zone) and the
‘pickup’, or recombination surface, (Backlash zone → Linear zone). The resolution (quantifier) is shown in
Figure 1.a, the backlash is shown in Figure 1.b and the composite of the two with the backlash device in
Figure 2. The system is subject to sampling under a zero-order-hold. The trajectory switchings between the
linear and backlash zone and vice versa do not occur at the theoretical separation and recombination surfaces
but at the next time instants where sampling occurs (i.e., those sampling points located after the continuous
switching curves have been crossed). This potential delay in the switching instants between zones is the
natural consequence of the presence of the zero-order-hold, which reduces the information in the control
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function to that which is available at the sampling instants.
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Figure 1. (a) Quantization (Resolution). (b) Backlash
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Figure 2. Composite nonlinearity with resolution and backlash.

The composite nonlinearity studied in this paper is that of Figure 2. The overall nonlinear discrete
scheme is shown in Figure 3. Its continuous counterpart was studied in Rama and Deekshatulu (1966) for
second-order plants so that the associate scheme did not posses either inertia or switching delays caused by
sampling. These phenomena are dealt with in this paper and interpreted as being inherent to the sampling
and hold process. The role of the zeros in the forward loop is that of modifying both switching surfaces
with respect to their counterparts associated with the plant without zeros. This analysis is addressed by
incorporating the dynamics of the zeros to the switching process between linear and backlash zones.

0 + e(z)
ZOH G(s)

v(t) r(t) u(t)

-

u(z)

Figure 3. Discrete system with composite nonlinearity and linear plant.
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2.2. Finite-State Automaton

The above-mentioned switching delays generating nonlinear inertia are dependent on the a priori switching
points on the theoretical switching surfaces of the continuous case, which are obtained in the absence of
sampling. As a result, the switching curves between the backlash and linear zones are, in general, time-
varying. This means that they can become relocated with different delays at successive intersection points
of the phase-trajectory with the theoretical switching surfaces of the continuous case. The motion in the
state-space can be described by the four-state automaton of Figure 4.

I.C

δ>0 δ<0

δ>0δ<0v>vib

I.B δ'≤−2σ
δ'≥−2σ

RB

DR

v<vib

RR

Figure 4. Automaton with the states generated by the composite nonlinearity.

Its four states are:

(I) Rising ramp (RR)

(II) Descendent ramp (DR)

(III) Backlash to the left (LB)

(IV) Backlash to the right (RB)

The motion in backlash zone is described with two states of the automaton to take into account a
possible trajectory backlash zone which can occur near the equilibrium. The transitions among automaton
states are governed as follows:

(a) The state-space trajectory enters the backlash zones from the rising and descendent ramps when
v′(t) = dv/dt (see Figs. 1-2) changes its sign at some t = kT, k being a positive integer and T being the
sampling period. For a sufficiently small T , that test can be performed with the sign of the increment
δk = vk+1 − vk if a sign change is detected, and then vih stores vk .

(b) The trajectory leaves the left backlash zone moving to the descendent ramp if δ′k+1 = vk+1−vib ≤
−2σ (σ being the semi-backlash length. See Figs. 1 and 2) and it inverts its motion (backward motion)
when vk+1 > vk .

(c) The right backlash zone is left if vk+1 < vib (towards the descendent ramp) or if δ′k+1 ≥ 2σ (towards
the rising ramp). Note that all those state transitions occur at sampling points so that the switching delay
causing nonlinear inertia appears as a phenomenon inherent to the discretization process.
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3. Discretization - Oriented Describing Function

3.1. Outputs of the Nonlinearities

Assume that a periodic oscillation exists in the scheme of Figure 3. Neglecting higher-order harmonics, the
following equations describe the various parts of the system (see Figures 1-2 for the nonlinearities and the
composite nonlinearity) for a short sampling period.

Sampling and Hold Device

e(t) = A sin(ωt) (prior to sampling and hold) (1a)

e(t) = A sin(ωt); ek = A sin(ωkT ), for t = kT, for t ∈ [kT, (k + 1)T )

u(t) = uk = u(r(t)); uk = −A sin(ωkT ), all t ∈ [kT, (k + 1)T ) (1b)

where A and ω are, respectively, the amplitude and frequency of the fundamental harmonic of the potentially
existing tested self-oscillation prior to sampling. r(t) is the backlash function. The fundamental harmonic
of the tracking error prior to sampling is e(t), which becomes e(t) = ek after sampling. This sampled signal
is in fact used for obtaining the discretization-oriented describing function proposed in this paper.

Backlash Nonlinearity

a) Linear zone (i.e., the only nonlinearity in the composite device of Figure 2 is the quantization
effect):

rk = Kb[KA sin(ωKT ) − σsgn(vk − vk−1)]

= Kb[KA sin(ωkT ) − σsgn(sin(ωkT ) − sin((k − 1)ωT ))] (2a)

where sgn(·) is the sign function and K and Kb are, respectively, the high-frequency plant gain and the
backlash gain in linear zone.

rk = rk−1, if the system was in backlash zone at t = (k − 1)T (2b)

b) Backlash zone

rk = Kb[vk − σsgn(vk − vk−1)], if the system was in linear zone

at t = (k − 1)T. (3)

The plant input is from Figures 1-3:

uk = D.Int(vk/h) + (1/2)sgn(vk)]

= D.Int[KKbA sin(ωkT )/h + (1/2)sgn(rk)− σsgn(vk − vk−1)]. (4)

The subsequent developments are related to the quantization of Figure 1.a and the composite nonlinearity
of Figure 2 in the closed-loop system of Figure 3, with extensions for the quantifier of Figure 1.b and a
reverse order quantization backlash in the scheme of Figure 3. This alternative scheme can be relevant if the
quantifier operates on the output of the linear plant, which occurs, for instance, if a linear controller involving
a computer is placed at such a point. In the following, we use sets of sampling points Pi, Qi(i = 1, 2) to
complete the analysis of self-oscillations under a new discretization-oriented describing function. The set
Q = Q1 ∪Q2 is the whole set of samples over one oscillation period of the tentatively searched limit cycle.
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Such a set is formed by the disjoint union of indexations for samples of quantified signals corresponding to
both the linear and backlash zones on the mechanical backlash plus quantization composite nonlinearity by
accounting only once for each set of consecutive samples for which the output of the composite nonlinear
device remains constant. Q1 is the set of samples qk over one cycle of oscillation in the linear zone such that
the output of the composite nonlinearity remains constant over the next (pk − 1) samples. The meaning
of the set Q2 is similar to that of Q1 except for the backlash zone. Sets P1 and P2 are the number of
consecutive samples over which uk = uqk in linear and backlash zones, respectively. Since the condition
qk ∈ Q2 iff qk 6∈ Q1 has been imposed, then Q1 ∩ Q2 = ∅ , i.e., each last sampling point in linear zone
preceding the system entrance in backlash zone is considered as a point within backlash zone. These above
sets of points are used to compute analytically the proposed describing function in the sequel.

3.2. Describing Function

The describing function of the composite nonlinear characteristics of Figure 2 is calculated by including the
sampling effect. It is assumed in the closed-loop scheme of Figure 3 that a steady-state periodic motion
exists, the fundamental harmonic of which is assumed to be present in signal v(t), which is parametrized
in with its amplitude and frequency. Such a describing function is given, for a periodic input signals in the
scheme of Figure 3, by

N(α,A, ω) = q(α,A, ω) + jq′(α,A, ω) (5)

where j is the imaginary complex unity and α is a parameter related to the nonlinear inertia associated with
sampling. The α -parameter establishes a measure of the inertia associated with the sampling effect in the
sense that the describing functions are dependent on frequency. The coefficients of harmonic linearization
q and q′ are parametrized by the real parameter α ∈ [0, 1) , and are calculated as follows

q(α,A, ω) =
1
πA

∫ 2π

0

u(A sin(ωt), Aω cos(ωt)) sin(ωt)d(ωt)

=
1
πA

∫ 2π+γ

γ

u(A sin(ωt), Aω cos(ωt)) sin(ωt)d(ωt) (6a)

and, similarly,

q′(α,A, ω) =
1
πA

∫ 2π

0

u(A sin(ωt), Aω cos(ωt)) cos(ωt)d(ωt)

=
1
πA

∫ 2π+γ

γ

u(A sin(ωt), Aω cos(ωt)) cos(ωt)) cos(ωt)d(ωt) (6b)

where γ is any real number. Eqns. (6) with (4) lead to

q(α,A, ω) =
1
πA

[
1−1∑
k=0

(
uk

∫ ω(k+α+1)T

ω(k+α)T

sinβdβ

)
+ u1

∫ 2π+ωαT

ω(1+α)T

sinβdβ

]

=
D

πA

∑
j∈Q

pj(Int[(K1/h)|KA sin(jωT ) − sgn(sin(jωT )

− sin((j − 1)ωT )|] + 1/2)sgn[KA sin(jωT ) − σ(sin(jωT ) − sin((j − 1)ωT ))]

×[cos((j + α)ωT )− cos((j + α+ 1)ωT )]

+Int[(K1/h)(KA sin((1− j1)ωT − σ(sin(jωT ) − sin((j − 1)ωT ))]

×[cos((1 + α)ωT )− cos(ωαT )]} (7a)

54



SEN, PENA, ESNAOLA: Analysis of Nonlinear Sustained Oscillations in Discrete Systems with Backlash and Resolution

where 1 = Int[2π/(ωT )] and pk is the number of consecutive times that uqk is repeated; and

q′(α,A, ω) =
1
πA

[
1−1∑
k=0

(
uk

∫ ω(k+α+1)T

ω(k+α)T

cosβdβ

)
+ u1

∫ 2π+ωαT

ω(1+α)T

cosβdβ

]

D

πA

∑
j∈Q

pjInt[(K1/h)|KA sin(jωT ) − σ(sin(jωT ) − sin((j − 1)ωT |] +
1
2
)

sgn[KA sin(jωT ) − σ(sin(jωT ) − sin((j − 1)ωT )][sin((j + α+ 1)ωT )

− sin((j + α/ωT )] + Int[(K1/h)(KA sin((1− j1)ωT ) − σ(sin(jωT ) − sin((j − 1)ωT ))]

×[sin(ωαT )− sin((1 + α)ωT )]}. (7b)

Note that in (7) the plant input depends on v and on its time-derivative. This is obvious from the fact that
the composite nonlinearity possesses memory due to the presence of backlash.

3.3. Nonlinear Inertia and Limit Cycles

The critical locus associated with the discretization-oriented describing function (5)-(7), i.e., the minus
inverse of N , is

C(α,A, ω) = − 1
N(α,A, ω)

= − q(α,A, ω)− jq′(α,A, ω)
q2(α,A, ω) + q′2(α,A, ω)

(8)

which depends on ω (i.e., there exists nonlinear inertia) and it is parametrized in the α -parameter. The
amplitude A and frequency ω of possible sustained oscillations (limit cycles) in the scheme of Figure 3 for a
linear plant of transfer function G(s) = B(s)/A(s) are given by the intersection of C(α,A, ω) and G(jω) for
a given α related to such steady-state-sustained oscillations. The errors in the calculation of ω and A with
respect to the real ones increase as the low-pass filtering performances of G(jw) deteriorate (Gibson 1963,
Bergen et.al. 1982). Such cycles are stable if, according to Loeb’s criterion, (dG(jω)/dω ∧ dC(α,A, ω)/dA)
is positive. It has been discovered through numerical computation that if δ = ωT < δ0 = 12.56× 10−3 or,
equivalently, 1 in (7) (i.e., the number of samples per cycle in steady-state) is greater than 500, then the
critical locus is, in practice, independent of the α -parameter and the frequency so that C0(A) = C(0, A, 0) ≈
C(α,A, ω), all α ∈ [0, 1) and all ω ∈ [0, δ0T−1] . Thus, the nonlinear inertia can be neglected for ω ≤ δ0T−1 ,
namely, for a range of frequency which increases as sampling period T decreases. For 1 < 500, the critical
locus can be considered as dependent on the frequency with this dependence being more relevant as 1
decreases. The critical locus moves to the right as frequency ω increases. If δ is of the order of 50 δ0 i.e.,
the number of samples per cycle is of the order of 10, then the dependence of the critical locus becomes
apparent. For a limit cycle to exist, the intersection of G and C must be available in the Nyquist plane
for all α ∈ [0, 1) leading to very close values of (ω,A) for any α . That means by trivial frequency-response
analysis, that a periodic steady-state mode appears in the closed-loop scheme, which is the standard condition
of the existence of oscillation in the continuous-time domain. Note that in the current context of obtaining
discretization-oriented describing functions, the effect of sampling has been included by assuming that the
first-order (fundamental) harmonic of the steady-state input to the nonlinear device is a piecewise periodic
signal. The step-type discontinuities of that signal appear at sampling instants corresponding to the linear
zone of the backlash to include the effect of sampling and hold provided that the linear part of the plant is
a low-pass filter that attenuates sufficiently the higher-order harmonics. In other words, for any distinct
α1, α2 ∈ [0, 1), the equations G(jω1) = C(α1, A1, ω1) and G(jω2) = C(α2, A2, ω2) have to be satisfied
for very close pairs (ω1, A1) and (ω2, A2). The parameters of the limit cycle (ω,A) [i.e., the frequency
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and amplitude of the first harmonic of the sustained oscillation] are calculated with the averages of the
intersections G(jω) = C(α,A, ω), all α ∈ [0, 1). If for a subset of admissible values of α , no intersection
exists, then it is claimed that no limit cycle exists since obviously for two close but distinct initial conditions
in the state-space, the two trajectories would asymptotically converge to the same sustained oscillation (if
any), with this convergence being practically effective, in general, with different initial sampling points (and
thus, different values of α), as stated in Section 3.2. In this case, the influence of the nonlinear inertia is very
significant. In fact, the influence of N on ω (but not on α) is significant even in the range 1 ∈ [100, 300]
while this nonlinear inertia is negligible, as stated before, for 1 > 500. In the above-mentioned case of 1 being
of the order of ten, the loop-filtering properties are poor since the sampling rate is large and higher-order
harmonics have large amplitudes. Thus, unsuitable errors can appear in the calculation of limit cycles from
the describing function approach.

4. Numerical Examples

4.1. Nonlinear Devices and Sampling Effects

The resolution or quantization and backlash are those of Figures 1-2 with parameters h = 0.1, d = 0.1, σ =
0.2, Kb = 1 and vs = 1.05. It follows from the discussion of Section 3.3 that for small sampling periods of
the order of 10−2, 1 > 500 in Eqns. (8)-(9) for a range of ω increasing as the sampling period decreases. If
T is of the order of 10−4 , the critical locus is independent of ω for frequencies increasing up to orders of
102 , the critical locus being a one-to-one mapping ω− > N(A, ω) and the nonlinear inertia being negligible,
as shown in Figure 5.a for nonlinearity with and without resolution. As the sampling period increases the
nonlinear inertia becomes apparent for larger ranges of frequency, as shown in Figure 5.b. Note in Figure
5.a that the critical locus is serrated in shape due to the resolution action from the comparison of critical
locus nonlinearity with and without resolution. Note also that, as input amplitude A increases, the locus
tends to be less serrated in shape.
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ω2
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A

Img
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_

_
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G(jω)

Img

N(α, A,ω)

A

ω
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0

-0.5
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-0.5-1-1.5-2-2.5 0
Real

(c)

Figure 5. Discretization-oriented critical locus in the Nyquist plane for, a) the composite nonlinearity and

nonlinearity without resolution for T = 0.0001 sec.. b) T = 0.1 sec., ω1 = 0.1, ω2 = 1, ω3 = 10 and ω4 = 20

rad/sec (nonlinear inertia is relevant).

4.2. Linear Plant

The third-order linear plant has the transfer function

G(s) =
K(s+ z1)

(s+ p1)(s+ p2)(s+ p3)
(9)

with the following parameters: p1 = 0.1, p2 = 0.5, p3 = 2, z1 = 1.6 K = 1 and T (sampling period) = 0.01
sec. The α -parameter is zero in the critical locus unless otherwise stated. A stable limit cycle is detected
with A = 0.258, ω = 0.530 rad/sec. The nonlinear inertia for this frequency and the given sampling period
is irrelevant (see Section 3.3). The real values obtained from the state-space analysis are A = 0.257 and
ω = 0.529 rad/sec. Thus, the absolute values of the relative errors in the results are 0.39 % for the amplitude
and 0.21 % for the frequency. The intersection of the linear hodograph and the critical locus is shown in
Figure 6.a. In Figure 6.b a state-space portrait is shown.

Modification of the Plant Zero. If z1 is moved to z1 = 1, extensive simulations have shown that
the limit cycle disappears. If, at the same time, T increases, new limit cycles do not appear, although
the nonlinear inertia becomes important. Thus, the stabilization effect associated with stable zeros is more
important, for this class of plants, than the instability associated with high sampling rates in the sense that
once a limit cycle has been eliminated by an appropriate choice of the zeros, a possible sampling period
increase does not create new limit cycles. It has been found that if z1 is increased up to z1 = 3, then four
stable limit cycles appear.

Modification of the Plant Gain. A gain increase generates a loss in the relative stability, as is well-
known even in the linear case. A maximum of four limit cycles can appear if the high-frequency plant gain
is increased sufficiently.
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Resolution Modification. Limit cycles can disappear when h and d decrease sufficiently while keeping
the values of all the remaining parameters if the critical locus of the nonlinearity without resolutio and the
hodograph of the linear plant do not have any intersection. This is due to the negligible influence of small
quantization in the system, as has been pointed out by Ramu and Deekshatulu (1966) for the continuous
case.

Sampling Period and α-Parameter. The calculations deteriorate as T increases, as stated in Section
3.3. The example was also simulated with several sampling rates. Simulation details and graphics were
omitted for reasons of space. It is found that for T = 0.1 sec. and (A, ω) = (0.262, 0.528), the parameters
of a stable limit cycle of real values are 0.259 and 0.528, respectively. The respective absolute values of
the relative errors arising from the method application are 1.2 % for amplitude and 0 % for frequency. For
T = 0.5 sec., one stable limit cycle is detected with (A, ω) = (0.270, 0.520). The real values of that limit
cycle are 0.269 and 0.524, so that the relative errors between the true values and the computed ones are very
small. According to the comments of Section 3.3, the reasons for the increasing errors related to the true
registered data are:

- The sampling period is long and the filtering capability of the plant to the generated (high-amplitude)
higher order harmonics is poor. This implies that a first-order harmonic approximation fails to provide
good results.

- In addition, the number of samples over one input oscillation is very small and the switching delays
(with respect to the theoretical switching surfaces) of the current switching surfaces of the discrete
problem generate a significant nonlinear inertia.
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Figure 6. (a) Nyquist plane. Critical locus and Plant hodograph for T = 0.01 sec. and ω1 = 0.530 rad/sec.. b)

Time-domain plots for T = 0.01 sec.. State-plane for the coordinates x(t) (horizontal) and dx(t)/dt (vertical) with

the recombination line and the projection of the stable limit cycle on that plane.
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5. Conclusion

A new discretization-oriented describing function has been theoretically obtained and discussed for a com-
posite nonlinear device including both backlash and resolution. Such a describing function, and thus the
instantaneous gain of the nonlinear device, is frequency-dependent so that the overall composed nonlinearity
described is interpreted as one possessing nonlinear inertia. It has been found that resolution and sampling
are instability factors in the sense that limit cycles either appear or increase their frequencies and amplitudes
as quantization thresholds and sampling rates become more apparent.
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