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Abstract: Cinchona alkaloid-derived sulfonamides and ester dimers containing chiral hyperbranched polymers have been successfully
synthesized and applied as catalysts in asymmetric reactions. Several hyperbranched polymers derived from cinchona alkaloids,
incorporating sulfonamides and esters, were synthesized through Mizoroki-Heck coupling polymerization. These polymers were
subsequently applied in enantioselective Michael addition reactions. As the prepared polymers are not soluble in frequently used
organic solvents, they act as efficient catalysts in the enantioselective reaction of B-ketoesters to nitroolefins, achieving up to 99%
enantioselectivity with good yields. The insoluble property allows them to better satisfy “green chemistry” requirements and be used
several times without losing the enantioselectivity.
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1. Introduction

Cinchona alkaloids are obtained from members of the plant family Rubiaceae, being derived from the bark of various
species of cinchona trees [1]. Cinchona alkaloids are chemical substances with a vivid past and there are many instances of
cinchona alkaloids being used today as chiral resolving agents [2-5]. The primary use of cinchona alkaloids in chemistry is
for expediting various enantioselective transformations in both homogeneous and heterogeneous catalytic systems. Bredig
and Fiske documented the first asymmetric reaction utilizing a cinchona base as early as 1912 [6,7]. The use of cinchona
derivatives in asymmetric catalysis has grown dramatically since the publication of many ground-breaking studies. It is
now understood that cinchona alkaloids and their derivatives are among the most prominent organic chirality inducers,
activating nearly all chemical processes in a highly stereoselective manner. Their chiral induction and discrimination
mechanisms were explained by structural analysis of cinchona alkaloids utilizing spectroscopic and computational
techniques [8,9]. The main reason for the widespread use of cinchona alkaloids by numerous researchers [10,11] in various
reactions, including hetero-[2+2] cycloadditions [12-14], phase-transfer catalyzed epoxidation [15-18], alkylation [19],
conjugate additions [20,21], and phosphonylation reactions of aldehydes [22,23], was to obtain chiral catalysts with the use
of these compounds in the 1970s and 1980s. Cinchona alkaloids have a variety of functions that are essential for producing
chirality in asymmetric products, either on their own or in chemically altered forms [24], because they contain both
acidic and basic sites that behave as dual-function chiral organocatalysts. A nucleophile and an electrophile can both be
activated and oriented by the hydroxyl moiety and tertiary amine, respectively [25]. Cinchona alkaloids and their analogs
are able to serve as catalysts that are chiral in four distinct types of transformations, including the formation of carbon-
carbon bonds, carbon-oxygen bonds, and carbon-hydrogen heteroatom bonds, as well as additional processes including
desymmetrization and hydrogenation. Bifunctional chiral catalysts, which can concurrently interact with and activate both
reacting sites, are reliable and efficient materials for the stereoselective production of significant asymmetric molecules.
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Sulfonamides, which can be produced from cinchona alkaloids, are among the most important catalysts. In contrast to
the tertiary nitrogen of quinuclidine, which in cinchona alkaloids may function as both a base and a hydrogen-bond
acceptor, the acidic NH component of sulfonamide is capable of functioning as a hydrogen-bond donor. Since cinchona
alkaloid-derived sulfonamides have both acidic and basic sites, they have the unusual ability of keeping a substrate in a
certain orientation, creating a chiral environment [26]. Additionally, C9 ester derivatives of cinchona alkaloids with free
OH [27], quinuclidine nitrogen [28-30], and a methoxy group adjacent to the C6 position of the quinoline molecule
have been extensively studied and effectively used in numerous asymmetric processes [31-33]. In addition to alternative
varieties like bifunctional cinchona alkaloid derivatives, natural cinchona alkaloids are commonly utilized as a flexible
source for organocatalysts in the field of catalytic enantioselective chemical synthesis [34,35]. Together with cinchona
alkaloids with 6’-OH groups [36], dual-function cinchona alkaloid catalysts have also been identified, such as cinchona
alkaloids with thiourea moiety [37] and cinchona alkaloids with 9-squaramide [38]. Sulfonamide catalysts based on
cinchona alkaloids have been used to carry out asymmetric Michael-type reactions successfully. For instance, according to
Luo et al,, the asymmetric Michael reaction of 1,3-dicarbonyl compounds with nitrostyrene demonstrated good catalytic
activity for quinidine-derived sulfonamide [39]. According to research by Itsuno and colleagues, the Michael addition
reaction between ketoester and nitrostyrene exhibited greater stereoselectivity when cinchonidine sulfonamides served as
bifunctional chiral organocatalysts [40].

Polymeric chiral organocatalysts are now used to great effect in the production of diverse chiral building blocks. A
chiral organocatalyst (such as cinchona squaramides, sulfonamides, quaternary ammonium salt, cinchona ester, etc.) can
be incorporated to produce a polymer that can be used as a chiral polymeric organocatalyst in many asymmetric reactions.
Chiral polymers can include helical polymers, side-chain chiral polymers, main-chain chiral polymers, chiral ligands
with dendritic molecules, and polymers with hyperbranched chirality. Polymeric chiral organocatalysts have attracted
considerable interest in the chemical synthesis of molecules that are optically active due to their ease of removal from
reaction mixtures and their capacity for multiple reuse. The design of chiral polymeric catalysts for hyperbranched chiral
polymer organocatalysts is the primary focus of this work. Chiral catalysts were produced by copolymerizing a variety
of chiral catalytic monomers with achiral monomers. A chiral catalyst was added to the main structure of the polymer
during polymer immobilization. In recent years, significant advancements have been made in chiral main-chain polymeric
catalyst synthesis processes. In addition, several polymer-immobilized catalysts have greater enantioselectivities compared
to the corresponding catalysts with low molecular weight [41]. Different kinds of synthetic polymers, both organic and
inorganic, have been employed as supports for chiral catalysts, and it has been documented which polymer network is
best for each reaction [27]. As a substrate for chiral catalysts, various polymers have been used, such as cross-linked,
branching, dendritic, and linear polymers. A functional polymer with a chiral ligand can be polymerized to create a
polymer-support chiral organocatalyst, and different monomers can be utilized depending on the type of polymerization.
Extremely branched three-dimensional macromolecules are known as hyperbranched polymers (HBPs) [42]. Due to
their advantageous physical characteristics compared to their linear analogs, such as lower inherent viscosity, a lower
glass transition temperature, and a larger number of terminal groups, HBPs attract significant attention [42-47]. They
are appropriate for a variety of uses, serving as lubricants, coatings, medication delivery systems, and catalysts [48-52].
Furthermore, HBPs are relatively simple to manufacture in single-step polymerization using single-monomer or double-
monomer methodology [53]. Our research team has already established that the Mizoroki-Heck coupling process is
reliable in forming C-C bonds to produce chiral polymers from cinchona alkaloid derivatives [31,54,55], and we are
now concentrating on this coupling reaction in the present study to synthesize HBPs. The olefinic double bond of the
sulfonamide dimer generated from cinchona alkaloids, the cinchona ester dimer, and the halide of the trifunctionalized
aromatic iodide were combined in the Mizoroki-Heck process to create chiral HBPs. With the asymmetric Michael
addition reaction, we employed these HBPs as chiral polymeric organocatalysts.

2. Results and discussion

2.1 Synthesis of cinchona-derived sulfonamide and ester dimers and their corresponding chiral hyperbranched
polymers

In this study, we focused on designing HBPs based on cinchona sulfonamide and cinchona ester dimers. These HBPs
contain rigid catalytic centers that are substantially more numerous, which may create a favorable microenvironment
at the catalytic sites and enable the systematic manipulation of their catalytic characteristics. We have synthesized
various polymers of chiral organocatalysts by ion-exchange polymerization, etherification polymerization, neutralization
polymerization, and quaternization polymerization. Sulfonyl chloride is highly reactive towards amine, giving sulfonamide
derivatives even in mild reaction conditions. Thus, sulfonamide dimers 3, excluding 3e, were designed and synthesized
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by the combination of C-9 aminated cinchona alkaloids 1 [3(R),4(S),8(5),9(S)] and disulfonyl chloride 2 (Scheme 1) at
room temperature. A reaction time of 24 h with an excess amount of 1 (roughly double the amount of 2) resulted in good
yield. C-9 aminated cinchona alkaloids 1 were synthesized from cinchona alkaloids 4 [3(R),4(S),8(S),9(R)] having the C-9
hydroxyl group using the reported procedure [56,57].

C-6" OH-carrying dimer 3e was procured by demethylation of 3d using BBr, (Scheme 1) at -78 °C for 2 days. On the
other hand, dimeric ester 6a was obtained from C-9 hydroxyl cinchona alkaloids 4 and hexa-acid chloride 5. Cinchona
ester dimer 6b was obtained from 6a as 3e was prepared by demethylation (Scheme 2).

Novel chiral HBPs with cinchona-based sulfonamide and ester dimers were designed by accumulating bifunctional
dimers and trifunctional aromatic halides (9). The two C3-vinyl groups in the structure of cinchona dimers make it possible
to carry out the polymerization process with aromatic iodides using a two-component approach, and the Mizoroki-Heck
coupling reaction is the most effective reaction among the numerous reactions that can proceed to a C-C bond with a
vinylic double bond [54,55]. In order to produce the polymers, we therefore used the Mizoroki-Heck reaction between
aromatic trilodides and divinylic compounds. Trifunctional aromatic iodide compounds 9a and 9b were respectively
prepared from trihydroxybenzene and tris-phenol with iodobenzoylchloride 8 at room temperature (Scheme 3) [58,59].
Tris-phenol and iodobenzylbromide 10 were used to produce another class of trifunctional compounds (9¢) with three
iodophenyl groups (Scheme 3) [58]. Repeated Mizoroki-Heck reactions take place in the presence of catalyst Pd(OAc),
when triiodo aromatic compounds 9 are combined with cinchona dimers 3 or 6, and the resulting chiral HBPs (Scheme 4)
are produced with high yield (up to 93%; Table 1, entry 6). One reaction route is shown in Scheme 4.

The reaction mixture was precipitated in ether after polymerization and then washed with ether and water to yield the
polymer powder. The desired polymers of entries 1-5 in Table 1 were prepared by Mizoroki-Heck polymerization using
cinchona alkaloid-based sulfonamide dimers 3 and entries 8 and 9 resulted from cinchona ester dimers 6 with triiodide 9a,
while entries 6 and 7 were procured from different types of trifunctional aromatic iodides (9b and 9¢) with sulfonamide
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Scheme 1. i) Synthesis of cinchona-based sulfonamide dimers. ii) Demethylation
of 3d dimer by 1 M BBr,,dry CH,Cl,, Ar gas, =78 °C to rt, 48 h.
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Scheme 2. i) Synthesis of ester dimers of cinchona. ii) Demethylation of 6a
dimer by 1 M BBr,, dry CHZCIZ, Ar gas, -78 °C to rt, 48 h.
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Scheme 4. Synthesis of chiral HBP P2-3b.
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Table 1. Synthesis of chiral hyperbranched polymers of different cinchona dimers and trifunctional aromatic iodides by applying
Mizoroki-Heck polymerization.

Pd(OAc),, 10 moL.%

Dimer + Triiodide » Hyperbranched polymer
DMF, 100 °C, 48 h

a a a

Entry Dimer Todides Chiral HBP Yield [%] M M M /M

1 3a 9a P1-3a 79 8000 13,000 1.65

2 3b 9a P2-3b 81 10,000 19,000 1.97

3 3c 9a P3-3¢c 70 24,000 63,000 2.63

4 3d 9a P4-3d 86 23,000 61,000 2.72

5 3e 9a P5-3e 55 16,000 23,000 1.43
6° 3b 9b P6-3b 93 - - -
7° 3b 9¢c P7-3b 88 - - -

6a 9a P8-6a 73 15,000 25,000 1.67

6b 9a P9-6b 77 18,000 27,000 1.52

% Determined by GPC with a flow rate of 1.0 mL per minute at 40 °C and DMF as the solvent (polystyrene standard). ®: Not soluble in
DME

dimers 3b. The HBPs that we obtained were soluble in DMF and DMSO, except P6-3b and P7-3b, which dissolved minimally.
All polymers were slightly dissolved in other prevalently used organic solvents, such as dichloromethane, methanol,
diethyl ether, ethyl acetate, THEF, and hexane, as well as acetone. The outcomes of the Mizoroki-Heck polymerization of
the aromatic triiodides and cinchona dimers are shown in Table 1. In all cases, chiral HBPs with higher molecular weight
of over 10,000 were found. However, we could not obtain the molecular weight for polymers P6-3b and P7-3b due to their
poor solubility in DME

2.2 Catalytic activity of cinchona alkaloid-derived dimers and hyperbranched polymers

We selected the asymmetric Michael addition of methyl 2-oxocyclopentanecarboxylate 11 to trans-p-nitrostyrene 12
as the model reaction (Scheme 5) to examine the catalytic function of the cinchona-based chiral HBPs. Initially, we
examined dimeric low-molecular-weight catalysts in the enantioselective Michael addition reaction in CH,CI, at room
temperature and the reaction proceeded smoothly, generating excellent enantioselectivity of up to 99% with good yields
(up to 96%), excluding 6a, which demonstrated only 44% ee (Table 2, entry 6). Table 2 provides a summary of the results
of the asymmetric Michael reaction of 11 and 12 using low-molecular-weight dimeric catalysts. We were encouraged by
those results to use the corresponding sulfonamide polymers as catalysts while applying the same procedure. The HBPs of
the respective dimers were then synthesized as polymeric organocatalysts and employed for the same reaction. In the first
instance, we investigated HBP catalyst P1-3a.

Although it was insoluble in CH,Cl, and gave a heterogeneous mixture, the asymmetric Michael addition of trans-
nitrostyrene 12 and methyl 2-oxocyclopentanecarboxylate 11 progressed without any cumbersome steps at room
temperature to provide the corresponding asymmetric product with up to 99% ee at 96% yield. However, a longer reaction
time was needed due to the heterogeneous system for polymeric catalysts. The results were similar compared to those for
a previously reported cinchona-based sulfonamide main-chain type linear polymer [59]. In this case, half catalyst loading
(5 mol.%) was required compared to the linear polymers.

Shorter reaction time was needed when P2-3b with a more flexible structure than P1-3a was used as the catalyst.
Chiral product 13 was obtained with nearly perfect enantioselectivity of the major diastereomer (over 99%) within 24 h
(Table 3, entry 2). Though it had better enantioselectivity compared to the corresponding dimer, its diastereoselectivity
was somewhat diminished. Acceptable performance was achieved with chiral HBPs in the particular asymmetric reaction,
which might be attributed to creating an appropriate microenvironment in the chiral polymer network. Other polymers
also demonstrated good enantioselectivity (94% to 99%), excluding the results obtained using P8-6a (Table 3, entry 8). It
was derived from quinine ester dimer 6a with a C6” methoxyl group, which gave lower enantioselectivity for the selected
model Michael reaction due to the lack of acidic protons. Poor enantioselectivity was also displayed by dimeric catalyst
6a. The enantioselective Michael addition reaction proceeded under the same conditions when chiral HBP P9-6b with
C6’-OH was used as a catalyst, yielding 13 with significantly better enantioselectivity (99% ee; Table 3, entry 9). Compared
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O
&COOCH;; + Ph/\/ NO, 5 mol% Cat.
Solvent, rt., time

11 12 13

Scheme 5. Asymmetric Michael addition of p-ketoesters (11) with trans-p-nitrostyrene (12).

Table 2. Asymmetric Michael addition® of p-ketoesters (11) with trans-p-nitrostyrene (12) using various dimers.

Entry Catalysts Reaction time [h] Yield® [%] dre[%)] eec [%]
1 3a 24 93 7.6:1 99
2 3b 24 96 15:1 99
3 3¢ 28 79 7.9:1 98
4 3d 42 62 4.7:1 99
5 3e 3 92 10:1 97
6 6a 32 72 0.6:1 44
7 6b 20 94 5.3:1 99

% At room temperature, asymmetric reactions involving 11 (0.50 mmol), 12 (0.55 mmol), and the dimeric catalyst (5 mol.%) were
conducted in 2.5 mL of CH,CL,. ": Isolated yield after purification by column chromatography. <: Enantioselectivity (ee) as assessed by
HPLC (flow rate: 1.0 mL/min on chiral Cel OD-H).

Table 3. Asymmetric Michael addition® of p-ketoesters (11) with trans-p-nitrostyrene (12) using different HBPs.

Entry Catalysts Reaction time [h] Yield® [%] dr [%] eec [%]
1 P1-3a 36 96 4.5:1 99
2 P2-3b 24 84 8:1 >99
3 P3-3¢c 30 86 6.4:1 98
4 P4-3d 36 81 6.4:1 98
5 P5-3e 24 75 5.5:1 99
6 P6-3b 36 63 10.5:1 94
7 P7-3b 36 67 11.3:1 96
8 P8-6a 24 59 1.1:1 64
9 P9-6b 24 73 5.9:1 >99

* At room temperature, asymmetric reactions involving 11 (0.50 mmol), 12 (0.55 mmol), and the polymeric catalyst (5 mol.%) were
conducted in 2.5 mL of CH,CL,. " Isolated yield after purification by column chromatography. *: Enantioselectivity (ee) as assessed by
HPLC (flow rate: 1.0 mL/min on chiral Cel OD-H).

to the results obtained using corresponding dimer catalyst 6b, the P9-6b catalyst required more time because of the
heterogeneous conditions. Using trifunctional aromatic compounds 9b and 9c instead of 9a, lower enantioselectivity and
yield were obtained with longer reaction times for HBPs P6-3b and P7-3b (Table 3, entries 6 and 7) compared to P2-
3b (Table 3, entry 2). We investigated the influence of the solvents on the catalytic activity by using HBP P2-3b. The
results of the Michael addition reaction for P2-3b are presented in Table 4 for diverse solvents. The reactions were highly
enantioselective, achieving values above 95% ee for all selected solvents with good yields. However, in the case of ethyl
acetate, only 27% yield was obtained with 97% ee (Table 4, entry 4). Acetonitrile, THF, and acetone gave somewhat lower
yields (Table 4, entries 2, 6, and 7) compared to dichloromethane but maintained good enantioselectivity. The most effective
solvent for this model Michael reaction was CH,CL, with over 99% ee and 84% yield, as determined after investigating the
impact of the solvent (Table 4, entry 1).

We subsequently applied chiral HBP P2-3b to monitor the asymmetric Michael addition reaction by changing
the Michael acceptor substituents as well as the Michael donors (Scheme 6), and the results are summarized in
Table 5. Higher enantioselectivity was observed upon using methyl 2-oxocyclopentanecarboxylate 11 and ethyl
2-oxocyclopentanecarboxylate 14 as Michael donors for all reactions (Table 5, entries 1, 3, and 4).
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Table 4. Asymmetric Michael addition® of B-ketoesters 11 to trans-B-nitrostyrene 12 using hyperbranched polymeric catalyst P2-3b in
different solvents.

Entry Solvent Yield® [%] dre[%] ee [%]
1 CH,CI, 84 8:1 >99

2 Acetone 60 6:1 98

3 MeOH 70 3.7:1 95

4 EtOAc 27 3.4:1 97

5 Hexene 81 7.9:1 97

6 THEF 52 6.6:1 96

7 CH,CN 55 4.9:1 98

% At room temperature, asymmetric reactions involving 11 (0.50 mmol), 12 (0.55 mmol), and the polymeric catalyst (5 mol.%) were
conducted in 2.5 mL of CH,CL,. " Isolated yield after purification by column chromatography. “: Enantioselectivity (ee) as assessed by
HPLC (flow rate: 1.0 mL/min on chiral Cel OD-H).

0
| % cat.
|:/§*COOR + A N0z _5Smol % cat.
CHyCly, 1t., 24 h
11: R=Me 12: Ar = CgHs
14: R = Et 15: Ar = FCgH4 13: R = Me, Ar = CgHjs
16: Ar = MeCgHy 18: R = Et, Ar = CgHs
17: Ar = 2-Thiophenyl 19: R = Me, Ar = FCgH,
20: R = Me, Ar = MeCgHy,
0 21: R = Me, Ar = 2-Thiophenyl
=
5 mol % cat.
CN_NC M» No Reaction
CHyCly, 1t., 48 h
22 23
0,
ONNC AN _Smol%eat_  \; Reaction
CHoCly, rt., 48 h
22 12

Scheme 6. Michael addition reaction of various Michael
donors and acceptors using polymer P2-3b as catalyst.

Table 5. Enantioselective Michael addition® reaction resulting from combinations of different donors and acceptors using polymeric
catalyst P2-3b.

Entry Michael donor  Michael acceptor Product Reaction time [h] Yield® [%] dre [%] eec [%]
1 14 12 18 42 77 14.4:1 92
2 11 15 19 48 87 9.3:1 73
3 11 16 20 46 82 1.7:1 >99
4 11 17 21 38 89 13:1 99

% At room temperature, asymmetric reactions involving 11 (0.50 mmol), 12 (0.55 mmol), and the polymeric catalyst (5 mol.%) were
conducted in 2.5 mL of CH,CL,. *: Isolated yield after purification by column chromatography. <: Enantioselectivity (ee) as assessed by
HPLC (flow rate: 1.0 mL/min on chiral Cel OD-H).

4-Fluoro-trans-nitrostyrene 15 and methyl 2-oxocyclopentanecarboxylate 11 interacted with P2-3b to produce
Michael adducts 19 with just 72% ee. However, chiral catalyst P2-3b was ineffective in catalyzing the reaction between
malononitrile 22 with chalcone 23 and trans-p-nitrostyrene 12 to respectively give a chiral product at room temperature.
The polymeric catalysts utilized in the asymmetric reaction were easily separated and recovered from the reaction mixture
by normal filtration since the chiral HBPs were insoluble in organic solvents frequently used to give suspensions. The
recovered HBPs were applied in the same asymmetric reaction multiple times. To confirm the authenticity of chiral HBP
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P2-3b used as a model catalyst in asymmetric reactions in dichloromethane at room temperature, this polymer was reused
in up to five cycles to monitor the catalytic activity. The yield in entry 3 is higher compared to entry 2 due to the increase
of the reaction time from 24 to 30 h. Other recyclability results are summarized in Table 6. Although catalyst P2-3b
maintained its original enantioselectivity and diastereoselectivity upon being reused, the yield decreased to some extent.

3. Experimental
3.1. Synthesis of cinchona-derived sulfonamide and ester dimers

3.1.1. Synthesis of compound 3b
Cinchonidine amine 1 (1099.0 mg, 3.7456 mmol; 2 equiv. or double amount of 2), a,a’-m-xylene sulfonyl chloride 2 (545.0
mg, 1.7977 mmol), triethyl amine (522 pL, 3.7456 mmol), and a magnetic stirring bar were added to a 20-mL volumetric
flask. Subsequently, 10.0 mL of dry CH,Cl, was added to the mixture and it was kept at room temperature while being
stirred. Reaction progress was observed by TLC. The crude compound was purified using silica gel (100-200 mesh) column
chromatography with a CH,Cl :MeOH = 9:1 eluent after 24 h, yielding target component 3b in 48% yield as a white solid,
mp: 151-153 °C. [a]26* = -7.53 (¢ 0.19 g/dL in DMF). 'H NMR (400 MHz, CDCl,, 25 °C) 6 8.95-8.92 (m, 2H), 8.23-8.28
(m, 2H), 8.10-8.12 (m, 2H), 7.68-7.45 (m, 2H), 7.50-7.63 (m, 4H), 7.32 (d, ] = 4.8, 1H), 7.02 (s, 1H), 6.83-6.92 (m, 2H),
6.59-6.92 (m, 2H), 6.59 (d, J = 11.2, 1H), 5.54-5.22 (m, 2H), 4.85-4.99 (m, 4H), 4.58 (d, ] = 8.8, 1H), 3.58-3.77 (m, 4H),
3.14-3.24 (m, 4H), 2.86-3.02 (m, 2H), 2.68-2.77 (m, 4H), 2.28 (br, 2H), 1.57-1.69 (m, 6H), 1.25-1.31 (m, 2H), 0.74-0.92
(m, 2H) ppm. “C NMR (100 MHz, CDCIL, 25 °C) § 150.3, 148.5, 145.9, 141.2, 132.3, 130.8, 130.4, 129.7, 128.9, 127.4,
124.9, 122.8,120.0, 114.8, 60.7, 59.8, 55.5, 52.7, 40.4, 39.5, 27.6, 25.5 ppm. IR (KBr) v 3213, 2938, 2865, 1708, 1590, 1509,
1455, 1424, 1319, 1222, 1149, 1128, 988, 764 cm™. HRMS (ESI) caled for C,_H_N O,S, [M+Na]*: 817.02, found: 817.3606.
Other cinchona-derived sulfonamide and ester dimers (3¢, 3d, and 3e) were prepared from different cinchona
derivatives and sulfonyl chloride using the same process as reported in the Supporting Information.

3.1.2. Synthesis of trifunctional aromatic triiodides

3.1.2.1. Synthesis of compound 9b

CH,CI, (50 mL) was used in mixing 4,4;4”-trihydroxyphenylmethane 7 (1.461 g, 5.0 mmol), 4-iodobenzoylchloride 8
(4.132 g, 15.5 mmol), Et,N (2.2 mL, 15.5 mmol), and DMAP (0.20 g). At room temperature, the resulting reaction mixture
was stirred constantly for 4 h. The layers were then separated after the addition of water. Additional CH,Cl, was used to
extract the aqueous phase, and the mixed organic layer was washed with brine, 10% aq. HCI solution, and 5% aq. NaOH
solution before being dried over anhydrous MgSO,. The crude product was obtained after filtration and solvent removal,
and the chemical was then refined using silica gel column chromatography with Hex:EtOAc = 9:1 to produce white solid
9b with 48% yield, mp: 104-107 °C. 'H NMR (CDCL,, 400 MHz, 25 °C) & 7.86-7.91 (m, 12H), 7.15-7.21 (m, 12H), 5.63
(s, 1H) ppm. *C NMR (100 MHz, CDCIl,, 25 °C) § 164.6, 149.2, 141.0, 137.9, 131.4, 130.4, 128.9, 121.5, 101.6, 55.0 ppm.

3.1.2.2. Synthesis of compound 9¢

In a 30-mL flask, 15.0 mL of CH,CN was employed to dissolve 4,4,4”-trihydroxyphenylmethane 7 (292.34 mg, 1.0 mmol)
and 4-iodobenzylbromide 10 (979.5 mg, 3.3 mmol). Cesium carbonate (Cs,CO,, 1075.2 mg, 3.3 mmol) was then added
to the mixture. Under an Ar environment, the mixture was stirred at 60 °C for 18 h. After that, 60 mL of CH,Cl, was
combined with the reaction mixture. A yellow solid product was formed and separated by filtering and evaporating the
organic solution under reduced pressure after it had been cleaned with water (2/30) and brine (2/30). The organic solution
was also dried over anhydrous magnesium sulfate. Compound 9c was obtained with 31% yield as a white solid after the

Table 6. Enantioselective Michael addition® of B-ketoesters 11 with trans-B-nitrostyrene 12 using HBP P2-3a to examine recyclability
performance.

Entry Cycle Reaction time [h] Yield® [%] dre [%] ee[%]
1 Fresh 24 84 8:1 >99

2 1 24 77 9.8:1 97

3 2 30 85 9.4:1 99

4 3 30 81 7.8:1 98

5 4 36 67 8.6:1 99

“ At room temperature, asymmetric reactions involving 11 (0.50 mmol), 12 (0.55 mmol), and the polymeric catalyst (5 mol.%) were
conducted in 2.5 mL of CH,CL,. *: Isolated yield after purification by column chromatography. ©: Enantioselectivity (ee) as assessed by
HPLC (flow rate: 1.0 mL/min on chiral Cel OD-H).
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crude product was refined using silica gel (100-200 mesh) column chromatography with Hex:DCM = 1:1. R;: 0.42 (DCM/
Hex = 5.0/5.0). Other experimental data are provided in the Supporting Information.

3.2. Synthesis of HBPs by Mizoroki-Heck polymerization reaction
For the synthesis of polymer P1-3a, compounds 3a (100.0 mg, 0.12674 mmol) and 9a (104.0 mg, 0.12674 mmol) were
combined in a 30-mL flask with triethyl amine (double the amount; 35 pL, 0.2535 mmol). Palladium acetate (10 mol.%)
and DMF solvent (3 mL) were added, and the mixture was stirred at 100 °C for 48 h. NMR was used to observe the course
of the process of the reaction. The solvent was then evaporated and washed with a suitable solvent, diethyl ether, and finally
water. The desired polymeric compounds were then dried again in a vacuum oven to produce the small compound P1-3a
as a brown solid in 79% of the cases. [a]3** =+39.40 (c 0.05 g/dL in DMF). 'H NMR (400 MHz, DMSO-d,, 25 °C) § 8.68,
7.27-8.22 (aromatic H), 6.37-6.63 (vinylic H), 5.10, 0.61-2.92 (quinuclidine H) ppm. IR (KBr) v 3178, 3067, 2942, 2865,
1733, 1652, 1604, 1509, 1458, 1327, 1257, 1177, 1069, 1004, 758, 683 cm™'. M_(SEC) = 8.0 x 10°, M /M_= 1.65.

Using the same procedure described in the Supporting Information, additional optically active HBPs
were synthesized from various sulfonamide and ester dimers derived from cinchona. Table 1 summarizes the relevant
results.

3.3. General procedure for the asymmetric Michael addition reaction of -ketoesters to nitroolefins using chiral
sulfonamide polymers
Trans-nitrostyrene 12 (82.05 mg, 0.55 mmol) and methyl 2-oxocyclopentanecarboxylate 11 (63uL, 0.50 mmol) were taken
in a reaction vessel with 2.5 mL of solvent. HBP catalyst was then poured into the mixture (5 mol.%). The reaction mixture
was then stirred for a predetermined amount of time at room temperature. A rotary evaporator was used to evaporate
the solvent once all 11 had been consumed as determined by TLC. To remove the utilized polymeric catalyst from the
reaction mixture, the solution containing the asymmetric compound was collected by pipette after being washed with
ether. In order to obtain the desired asymmetric compound, the solution was concentrated in vacuo and the compound
was purified using column chromatography on silica gel (100-200 mesh) with hexane:EtOAc = 6.0:1.0 as the eluent to
afford the title asymmetric compound as a colorless oil. "H NMR (400 MHz, 25°C, CDCl,) § 7.29-7.23 (m, 5H), 5.14 (dd,
J=13.8 Hz, 3.8 Hz, 1H), 5.00 (dd, J = 13.8 Hz, 10.7 Hz, 1H), 4.08 (dd, ] = 10.8 Hz, 3.8 Hz, 1H), 3.74 (s, 3H), 2.38-2.33 (m,
2H), 2.04-1.84.

The outcomes of further asymmetric Michael additions were achieved in similar ways, as shown in Tables 2-6 as well
as in Scheme 5.

4. Conclusion

In this study, we successfully developed novel chiral HPBs using the Mizoroki-Heck polymerization method. These
HPBs have a primary chain repeating unit made of a sulfonamide and ester structure based on cinchona. For chiral
polymerization, two components were employed as the approach. Despite the fact that these chiral polymers are insoluble
in commonly used organic solvents, they function as superb catalysts in the asymmetric Michael addition of ketoesters
to nitroolefins, resulting in up to 99% enantioselectivity and good yield. Chiral HBP P2-3b shows an excellent level of
enantioselectivity (>99% ee) with good yield as a low-molecular-weight catalyst. Their insoluble property allows these
polymers to better satisfy “green chemistry” requirements and be used several times without losing enantioselectivity.
These HBPs based on sulfonamide and the ester dimer of cinchona alkaloid were successfully applied in enantioselective
synthesis.
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[Materials and General Considerations]

All solvents and reagents were brought from Sigma-Aldrich, Wako Pure Chemical Industries, Ltd., or Tokyo Chemical Industry (TCI)
Co., Ltd. at the maximum available cleanness and were used as received. Pre-coated silica gel plates (Merck 5554, 60F254) was used for
Thin-layer chromatography (TLC) to monitor various types of reactions progression. Column chromatography was conducted by using
a silica gel column (Wakogel C-200, 100-200 mesh). Yanaco micro melting apparatus was used to record melting point and the average
values of the analysed samples were taken. NMR spectra were recorded on JEOL JNM-ECS400 spectrometers and JEOL JNM-ECX500
spectrometers in CDCI3 or DMSO-d6 at room temperature operating at 400 MHz (1H), 500 MHz (1H) and 100 MHz (13C{1H}). For 1H
NMR Tetramethylsilane (TMS) was used as an internal standard and chemical shifts were reported in parts-per-million (ppm). CDCI3
was used as standard for 13C NMR and the | values were reported in hertz. JEOL JIR-7000 Fourier transform (FT)-IR spectrometer
was use to record IR spectra and reported in reciprocal centimeters (cm-1). High-resolution mass spectrometry (HRMS) electrospray
ionization (ESI) spectra were recorded using Bruker micro TOF-Q II HRMS/MS instrument. High-performance liquid chromatography
(HPLC) was run with a Jasco HPLC system constructed of a DG-980-50 three-line degasser, a HPLC pump (PU-980), a Jasco UV-975
UV detector for peak detection, and a column oven CO-2065 equipped with a chiral column (Chiralpak OD-H, Daicel) with hexane/2-
propanol as the eluent at a flow rate of 1.0 mL/min at room temperature. Size-exclusion chromatography (SEC) was performed using
a Tosoh HLC 8020 instrument with UV (254 nm) or refractive index detection. As a carrier solvent dimethylformamide (DMF) was
used at a flow rate of 1.0 mL min-1 at 40 °C and two polystyrene gel columns of 10-um bead size were used. The number average
molecular weight (Mn) and molecular weight distribution (Mw/Mn) values were determined by using a calibration curve compared with
polystyrene standards. The optical rotation was obtained by using a JASCO DIP-149 digital polarimeter using a 10-cm thermostatted
microcell.

Synthesis of cinchona derived sulfonamide and ester dimers:

Synthesis of compound 3b

Cinchonidine amine 1 (1099.0 mg, 3.7456 mmol; 2 equiv or little excess), a,a’-m-xylene sulfonyl chloride 2 (545.0 mg, 1.7977 mmol),
triethyl amine (522 L, 3.7456 mmol) and magnetic stir bar taken in a 20 mL volumetric flask. Then dry CH,Cl, 10.0 mL added to the
mixture and kept it at room temperature with stirring. The reaction progress was observe by TLC. After 24 hours CH,Cl, was removed
by rotary evaporator and then the crude compound was purified by silica gel (100-200 mesh) column chromatography using CH,CL:
MeOH = 9:1 as an eluent to give the desired compound 3b in 48% yield as white solid. mp: 151-153 °C. [@]%8* =-7.53 (¢ 0.19 g/dL in
DMEF).'NMR (400 MHz, CDCL, 25 °C) § 8.95-8.92 (m, 2H), 8.23-8.28 (m, 2H), 8.10-8.12 (m, 2H), 7.68-7.45 (m, 2H), 7.50-7.63 (m, 4H),
7.32 (d, J=4.8, 1H), 7.02 (s, 1H), 6.83-6.92 (m, 2H), 6.59-6.92 (m, 2H), 6.59 (d, J=11.2, 1H), 5.54-5.22 (m, 2H), 4.85-4.99 (m, 4H), 4.58
(d, J=8.8, 1H), 3.58-3.77 (m, 4H), 3.14-3.24 (m, 4H), 2.86-3.02 (m, 2H), 2.68-2.77 (m, 4H), 2.28 (br, 2H), 1.57-1.69 (m, 6H), 1.25-1.31
(m, 2H), 0.74-0.92 (m, 2H) ppm. "C NMR (100 MHz, CDCl,, 25 °C) § 150.3, 148.5, 145.9, 141.2, 132.3, 130.8, 130.4, 129.7, 128.9, 127 .4,
124.9, 122.8, 120.0, 114.8, 60.7, 59.8, 55.5, 52.7, 40.4, 39.5, 27.6, 25.5 ppm. IR (KBr) v 3213, 2938, 2865, 1708, 1590, 1509, 1455, 1424,
1319, 1222, 1149, 1128, 988, 764 cm™. HRMS (ESI) caled for C, H_ N O S  [M+Na]*: 817.02 found: 817.3606.

4677527 6 472
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Figure S1: '"H NMR of dimer 3b in CDCI,
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Figure S2: ?C NMR of dimer 3b in CDCL,



ISLAM et al. / Turk ] Chem

110

YT
24
8
4] 118l 5
»p |26
H 19 27
25
0 I | I 1 1 13 1TS 1 1
4000 3000 2000 1000 400
Wavenumber [cm-1]
[ E—HEhiER ] N
Mo, UE = Mo, {UE SEE
1 FM2T79 37460 2 ks S A0 CECE
I puE o= S 156068 4 20557 24 7146
& 1ea2 12217 <] 15253 44 2517
7 1500.50 285508 =] 180603 21124
G 14EE.0G Ju=iE A2 S 10 142417 40514
11 13551 44 5505 12 13252 45 22 5451
12 13907 557400 14 1222 =2
1= 114837 STATE 16 112815 TEA0ES
17 108475 F2.g258 12 10ER T3 =E.0ETE
1= o833 221223 20 2.5 43,812
21 et HEET0S &2 912186 25 02
Z3 852074 31.433 24 S12.849 44 5578
5 Fi=:%<cr) 117713 bl eskec) 2FE0
or B 1EE 2245 o= 00437 2FTE14
Figure S3: IR spectra of 3b
|
] |
= |
1 I |
=] N . o
a IR NS N
:;:7 B ' ‘J‘\ PLL \ ,I | J\k \ L‘ —Jf\ M’t; lk“)‘\“kjf‘ “l||,l|j|lj|.‘ Ay ¥—/‘I W ‘ll\m_j‘-_‘ l\ “

w

0

X : parts per Million : Proton

Figure S4: '"H NMR of dimer 3c in CDCI,
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Figure S9: IR spectra of 3d
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Figure $16: '"H NMR of polymer P1-3a in DMSO-d,
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Figure S17: IR spectra of polymer P1-3a
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Figure S19: IR spectra of polymer P2-3b
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Figure $22: '"H NMR of polymer P4-3d in DMSO-d,
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Figure S23: IR spectra of polymer P4-3d
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Figure $24: '"H NMR of polymer P5-3e in DMSO-d,
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Figure S25: IR spectra of polymer P5-3e
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Figure S27: IR spectra of polymer P6-3b

16



ISLAM et al. / Turk ] Chem

32

2x = 2.5(ppm]

002 004 D05 008 01 012 014 016 018 02 02 024 026 028 03 0.

Figure $28: "H NMR of polymer P7-3b in DMSO-d,

ap 21
22
40
a0 1 1 1 1 1|3 1 1
4000 3000 2000 1000 400

Wavenumber [cm-1]

[E—otedFEs ]
Ma.

uE SEE Mo, {iiE SEE
1 306574 777366 2 34617 76,2632
a 342014 76703 ) 239314 759664
i 302384 776844 fi 298127 714329
7 206474 741691 g 1652.7 772748
q 1646.91 773135 1 160641 hifi. 1887
11 168049 749188 12 1676452 769482
13 150613 36.234 14 147238 76.5014
15 14B6A6 96829 16 131714 73.2987
17 122268 fi3.3961 1w s G9.9431
19 112815 76,1965 a0 100473 734484
21 8224m 74.0003 22 764637 GB.54148

Figure S29: IR spectra of polymer P7-3b
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Figure $30: '"H NMR of polymer P8-6a in DMSO-d,
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Figure S31: IR spectra of polymer P8-6a
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Figure S33: IR spectra of polymer P9-6b
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HPLC data of the products obtained from Enantioselective Michael Addition of Methyl 2-oxocyclopentanecarboxylate, 11 to
trans-p-Nitrostyrene, 12
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Figure S34: HPLC chromatogram of asymmetric compound, 13
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Figure $35: HPLC chromatogram of asymmetric compound, 13
Table 2, entry 2
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Figure S36: HPLC chromatogram of asymmetric compound, 13
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Figure S37: HPLC chromatogram of asymmetric compound, 13
Table 2, entry 4
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Figure S38: HPLC chromatogram of asymmetric compound, 13
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Figure S39: HPLC chromatogram of asymmetric compound, 13
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Figure S40: HPLC chromatogram of asymmetric compound, 13
Table 2, entry 7
99% ee
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Figure S41: HPLC chromatogram of asymmetric compound, 13
Table 3, entry 1
99% ee
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Figure S42: HPLC chromatogram of asymmetric compound, 13
Table 3, entry 2
>99% ee
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Figure S43: HPLC chromatogram of asymmetric compound, 13
Table 3, entry 3
98% ee
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Figure S44: HPLC chromatogram of asymmetric compound, 13
Table 3, entry 4
98% ee
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Figure S45: HPLC chromatogram of asymmetric compound, 13
Table 3, entry 5
99% ee
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Figure S46: HPLC chromatogram of asymmetric compound, 13
Table 3, entry 6
94% ee

Fether-p8-DCM-rt - CH1

15.0
Retention Time [min]

Figure $47: HPLC chromatogram of asymmetric compound, 13
Table 3, entry 7
96% ee
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Figure $48: HPLC chromatogram of asymmetric compound, 13
Table 3, entry 8
64% ee
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Figure $49: HPLC chromatogram of asymmetric compound, 13
Table 3, entry 9
>99% ee
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Figure S50: HPLC chromatogram of asymmetric compound, 13
Table 4, entry 1
>99% ee
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Figure S51: HPLC chromatogram of asymmetric compound, 13
Table 4, entry 2
98% ee
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Figure §52: HPLC chromatogram of asymmetric compound, 13
Table 4, entry 3
95% ee
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Figure S53: HPLC chromatogram of asymmetric compound, 13
Table 4, entry 4
97% ee
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Figure S54: HPLC chromatogram of asymmetric compound, 13
Table 4, entry 5
97% ee
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Figure S55: HPLC chromatogram of asymmetric compound, 13
Table 4, entry 6
96% ee
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Figure S56: HPLC chromatogram of asymmetric compound, 13
Table 4, entry 7
98% ee
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Figure S57: HPLC chromatogram of asymmetric compound, 18
Table 5, entry 1
92% ee
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Figure S58: HPLC chromatogram of asymmetric compound, 19
Table 5, entry 2
73% ee
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Figure §59: HPLC chromatogram of asymmetric compound, 20
Table 5, entry 3
>99% ee
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Figure S60: HPLC chromatogram of asymmetric compound, 21
Table 5, entry 4
99% ee
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Figure S61: HPLC chromatogram of asymmetric compound, 13
Table 6, entry 1, fresh
>99% ee
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Figure $62: HPLC chromatogram of asymmetric compound, 13
Table 6, entry 2, cycle 1
97% ee
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Figure S63: HPLC chromatogram of asymmetric compound, 13
Table 6, entry 3, cycle 2
99% ee
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Figure S64: HPLC chromatogram of asymmetric compound, 13
Table 6, entry 4, cycle 3
98% ee
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Figure S65: HPLC chromatogram of asymmetric compound, 13

Table 6, entry 5, cycle 4
99% ee
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