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2015 Neil Avenue, Columbus, OH 43210
e-mail: yanp@ece.osu.edu

Abstract

Recent studies of high-resolution traffic measurement discovered the self-similarity in both LAN and

WAN traffic. In this paper, we introduce a two-degree of freedom rate based flow controller, which includes

a robust H∞ control block and an LMMSE based capacity predictor. The former part can guarantee

the robust stability against time-varying time delay uncertainties and the latter improves the transient

response by predicting the self-similar cross-traffic. Implementation issues are discussed and performance

analysis is provided to validate our design. We also investigate the prediction and control in larger time

scale which is more applicable for the real network environment.

1. Introduction

Congestion control for traffic management is one of the main concerns in the design of modern high speed
communication networks. For best-effort services, flow control mechanisms are implemented to ensure a
good Quality of Service (QoS) by means of regulating the data rate generated by the sources[5][9].

In ATM ABR (Available Bit Rate) services, the rate-based flow control has been chosen by the ATM

forum[1], which allows for the intermediate nodes to adjust a data rate to ABR sources based on network
feedback; this problem can be viewed as a feedback control problem where the queue length is used as explicit
feedback[2][3][10]. In [3], for example, the problem was formulated as an LQG stochastic control problem
with action delays, and the information of available rate as well as the queue length was used to compute
the sending rate for each ABR source. In [2], the authors studied the problem in a game-theoretic context
where each user minimized its own performance objective.

A challenging aspect of flow control is the presence of round trip time delays (RTT) which consist
of forward delays and backward delays. The problem is further complicated due to the fact that these
time delays are usually time-varying and uncertain because of data buffering at the bottleneck nodes. For
such time delay systems, the H∞ based robust control techniques were discussed in [12][13][4], where the
robustness against delay uncertainties, weighted fairness, as well as tracking performance were considered
in the framework of H∞ optimization for infinite dimensional systems. Internally robust implementation of
∗A shorter version appeared in the Proceedings of the 39th Annual Allerton Conference on Communication, Control, and

Computing, Monticello, Illinois USA, October 2001. This work is supported in part by the National Science Foundation under
grant numbers ANI-9806660, ANI-0073725, and by a SBC/Ameritech Faculty Research Grant.
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this controller was discussed in [13], and the case of multiple time-delays at different channels was discussed

in [4].

In a more recent result [15], the authors investigated a two-degree of freedom H∞ flow controller
design, which used capacity information as well as queue length as feedback. This controller, as demonstrated
by the simulations of [15], had faster transient response with respect to time-varying available bandwidth.
The available bandwidth was assumed to be generated by applying an unknown L2 signal to a known low-
pass filter. Thus they designed an H∞ based capacity predictor, because it was the most natural for this
kind of disturbance.

However, the available bandwidth is actually a random variable determined by the network cross
traffic. Recent statistical analysis of high-resolution traffic measurement have revealed the self-similar
behaviors of network traffic [16][19]. Thus the available capacity c(t) = c0 − ccross(t) also exhibits LRD

(Long-Range-Dependence), which is not in the form considered in [15]. Here c0 is the full link capacity and

ccross(t) is the capacity taken out by the cross traffic. The Long-Range-Dependence can not be described
by typical statistical models, such as Gaussian, ARMA, or the L2 signals passing a known low-pass filter
[15]. This is the motivation for us to investigate the flow control problem for LRD network traffic. With the
current state of the art in robust control of time varying time delay systems with self-similar disturbances,
it is impossible to pose an optimal robust performance problem that is tractable. In this work, we assume
the LRD cross traffic and design an LMMSE (Linear Minimum Mean Square Error) predictor for available

bandwidth estimation. In fact, it has been demonstrated in [7] that the causal linear predictors are quite
efficient for self-similar signals. The LMMSE is used with the H∞ controller designed for robustness against
the time-varying time delay uncertainty[4].

We also consider a more realistic case where control and prediction are in a larger time scale. In fact,
for ATM networks, once every N cells the sources send a control cell which can be used by switches to
convey feedback. And for TCP/IP networks, each source updates its sending window size once every RTT

when an ACK is received[8]. For this scenario, implementation issues are discussed, and the performance is
analyzed in the sense of the multifractal nature of cross traffic as well as the robustness of our controller. All
the above results are demonstrated by MATLAB simulations, where the cross traffic comes from the data
traces generated by packet-level simulations using ns-2.

2. Preliminary definitions

The measurements of LAN or WAN traffic have revealed the presence of self-similarity or fractal behavior.
The most broadly studied fractal model is the fractal Brownian motion (fBm), whose increment process

G(k) := B((k + 1)∆)− B(k∆) is called fractional Gaussian noise (fGn).

Heavy-Tailedness: A random variable X is called heavy-tailed if Pr{X > x} ∼ x−α as x → ∞ ,
where 0 < α < 2. A simple heavy-tailed distribution is the Pareto distribution whose probability density
function is given by:

p(x) = αwαx−α−1 (1)

where α is the shape parameter and w > 0 is the location parameter. Its distribution function obeys
F (x) = 1− (w/x)α . Note that smaller α means heavier tail of the distribution. In network models, we are

interested in choosing 1 < α < 2, [14].
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Self-Similarity: Consider a wide-sense stationary (W.S.S.) time series Xt, t ∈ Z. The aggregated series

X
(n)
t is obtained by averaging Xt over non-overlapping blocks of length n and replacing each block by its

mean:

X
(n)
t =

Xtn−n+1 + · · ·+ Xtn
n

. (2)

Denote the auto-covariance of Xt and X
(n)
t by rX(k) and r

(n)
X (k) respectively. We say that Xt is self-similar

if the following conditions hold:

rX(k) ∼ const · k−β, and r
(n)
X ∼ rX(k) (3)

for k, n → ∞ where 0 < β < 1. That is, the correlation structure is preserved at different time scales
and rX(k) decays according to a power-law. The Hurst parameter is denoted by H = 1 − β/2, where

1/2 < H < 1. The Hurst parameter is an indicator of the degree of self-similarity in the sense that larger
H means stronger LRD.

Long Range Dependence: Xt is said to exhibit LRD in that its auto-covariance decays hyperbolically

with
∑∞

k=0 rX(k) =∞ , which is implied by (3). One example of an LRD process is fGn.

3. Mathematical Model

The congestion control problem to be considered here is for queue management and bandwidth allocation
at the bottleneck node, where the output capacity is determined by self-similar cross traffic. For simplicity,
consider the single bottleneck node network with one source, the model of which can be depicted in Figure
1.

The dynamics of the system can be modeled as:

q̇(t) = rb(t)− c(t) = r(t − τ )− c(t) (4)

where q(t) is the queue length at time t , rb(t) is the data rate received at the bottleneck node, and r(t) ≥ 0

is the flow rate assigned by the controller. The round-trip delay (RTT), τ (t) is defined as:

τ (t) = τb(t) + τf (t) (5)
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Figure 1. LMMSE based feedback control system.
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where τf (t) := hf + δf (t) is the forward time delay from the source node to the bottleneck node where

hf is the nominal forward delay and δf (t) is the time-varying forward time delay uncertainty. Similarly,

τb(t) := hb + δb(t) is the backward time delay from the bottleneck node (controller output) to the source

node where hb is the nominal backward delay and δb(t) is the time-varying backward time delay uncertainty.

Thus, the total nominal time-delay can be defined as h = hb+hf , and the total time delay uncertainty

is δ(t) = δb(t) + δf (t).

Our two-degree of freedom flow controller consists of a stochastic predictor and a robust control block,
together with a zero-order hold (ZOH). In digital implementation, the ZOH holds r̂(t) for n-step, which
means a larger time scale prediction and control at the scale nTs , where Ts is the sampling period. In the
reasoning of this section, we set n = 1 for simplicity. Thus we have r(t) = r̂(t). This leads to:

q̇(t) = r̂(t− τ ) − c(t) ≈ u(t− τ ) − (c(t) − ĉh(t− τ )) (6)

The cross traffic ccross(t) is assumed to be stochastically self-similar. Thus the output capacity c(t) =

c0 − ccross(t) also exhibits self-similarity. We introduce the LMMSE based predictor, the output of which

is a causal estimate of c(t+ τ ), namely ĉτ (t), or ĉh(t) for simplicity. Note that by omitting the time delay

uncertainties, a good predictor can act as a compensator by which the impact of c(t) can be canceled. In

other words, ec(t) := c(t)− ĉh(t− τ ) should be small enough. Details of the predictor design and validation
are discussed in the next section.

In this sense, we would like to have q̇(t) = u(t − τ ). Substitute τ with its nominal value h , and
consider the frequency domain expression, we will have:

Q(s) =
e−hs

s
U(s) =

e−hs

s
K1(s)Eq(s) (7)

where

Eq(s) = Qd(s) −Q(s) (8)

where qd(t) is the desired queue length and Qd(s) is its frequency domain expression. The objectives in the
design of robust control block K1 are:

• Robust stability against the time-varying time delay uncertainty δ(t)

• Queue management, e.g. minimizing ‖eq‖2

Combining the robust stability and nominal performance conditions (e.g. tracking, weighted fairness, and

transient response), we come up with an infinite dimensional H∞ optimization problem as follows:

Minimize γ , such that K1 is stabilizing P0 andwwww[ Ws(1 + P0K1)−1

WK1(1 + P0K1)−1

]wwww
∞
≤ γ (9)

where P0(s) = e−hs

s , and W,Ws are chosen to meet desired robustness and performance respectively. See

[12][13] for details.

The optimal controller K1 is computed in [4]:

K1(s) =
γ̂

hδ̂

hs− k
hs

1
1 + F (hs)

(10)
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where γ̂, δ̂, k are determined by the upper bound of delay uncertainty δ+ , the upper bound on the derivative

of delay uncertainty β and the upper bound on the derivative of forward delay uncertainty βf , as well as
the nominal time delay h . We refer to [4] for details. An internally robust digital implementation of the

controller (10) includes a PI term which is cascaded with a feedback block containing an FIR (Finite Impulse

Response) filter F (hs). The length of the FIR filter is h/Ts , where Ts is the sampling period, see [4] for
the calculation of FIR coefficients.

In our setting, robust controller K1 and predictor K2 are combined together to form a flow controller
which has access to queue information as well as capacity information.

4. Short-Term Prediction of Self-Similar Traffic

In the digital implementation of the flow controller of Figure 2, we should provide a [h/Ts]-step prediction of
the available bandwidth, where Ts is the sampling period of the discretized system. The positive correlations
of LRD traffic implies the possibility of nontrivial short-term traffic prediction. Since the derivation of an
optimal nonlinear predictor will depend on higher order moment functions that may not be available, we
will consider designing causal LMMSE predictors. In fact, It has been demonstrated in [7] that the causal
linear predictors have good prediction results for self-similar signals.

First, let’s consider one step prediction. Denote the available capacity observed at time k by c(k). We

have a random sequence c(k), k = 0, 1, . . . , N by time N . Suppose we will be using a sliding window of length

l , {c(N), . . . , c(N − l + 1)} , to generate a one-step prediction, namely ĉ1(N), which will be the predicted

value of c(N + 1). In order to have better estimation, we further assume N ≥ 2l . Let c̄l(N) =
Pl−1
k=0 c(N−k)

l

be the mean value and denote x(k) = c(k)− c̄l(N), k = N − l+ 1, · · · , N . Then we have

ĉ1(N) = c̄l(N) + x̂1(N) (11)

where x̂1(N) is the one-step prediction of zero-mean W.S.S. random sequence x(N + 1) given {x(k), k =

N − l+ 1, · · · , N} , which can be written as:

x̂1(N) =
l−1∑
i=0

a
(N)
i x(N − l+ 1 + i) (12)

where a(N)
i , i = 0, · · · , l−1 are optimal parameters of the LMMSE predictor, which satisfy the orthogonality

condition, [17], [
x(N + 1)−

l−1∑
i=0

a
(N)
i x(N − l+ 1 + i)

]
⊥ x(k), N − l+ 1 ≤ k ≤ N. (13)

We define the column vector a(N) :=
[
a

(N)
0 a

(N)
1 · · · a(N)

l−1

]T
and the row vector

Γ1 := E [x(N + 1)x(N − l + 1) x(N + 1)x(N − l + 2) · · · x(N + 1)x(N)]

= [Kxx[l] Kxx[l− 1] · · · Kxx[1]] (14)

and l× l Toeplitz covariance matrix Kxx , where

(Kxx)ij = E[x(N − l + 1 + i)x(N − l+ 1 + j)] = Kxx[|i− j|]. (15)
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From (13), we have:

a(N)T = Γ1K
−1
xx . (16)

This prediction is non-biased and the LMMSE is given by

εmin = E
[
(x(N + 1)− x̂1(N))2

]
= E

[
(x(N))2

]
− Γ1K

−1
xx ΓT1 . (17)

From (11), (12) and (16), we can determine the algorithm for one-step prediction. Note that the covariance

Kxx[i], i = 0, . . . , l can be estimated by the time average under the assumption that the sequence is ergodic
in correlation, i.e.

K̂xx[i] =
1

m− i
m−i∑
k=1

x[N −m+ k]x[N −m+ i + k] (18)

where we choose 2l ≤ m ≤ N to guarantee accuracy.

Similarly, the multiple-step prediction can be easily formulated by substituting Γ1 with Γs :=
[Kxx[l+ s− 1] Kxx[l+ s− 2] · · · Kxx[s]] in the above derivation, where s is the prediction steps.

5. Simulation Results of the LMMSE Predictor

In the following, the performance of the LMMSE predictor is evaluated for self-similar network traffic
prediction by simulations using data traces generated by ns-2. We set the network topology to be a single
bottleneck node with 50 UDP flows sharing the link. Each flow, at the application layer, obeys a Pareto
distribution with shape parameter α . The link capacity is supposed to be 4 Mbps and we sample the
aggregated traffic with Ts = 0.05 sec . It has been shown that the heavy-tailed distributions of objects
(e.g. files) at the application layer will result in the self-similarity of the aggregated traffic [14]. Thus
this simulation can examine whether the LMMSE predictor designed here is qualified for self-similar traffic
prediction.

For one step prediction, we set l = 10, m = 100 and define the relative error to be E[x−x̂
x

] . By

Choosing α = 1.20, 1.45, 1.95, we have the results shown in Figure 2. The error for each case is around 6%,
which indicates good match between the traffic data and our predictions.
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Figure 2. One-step prediction for different values of α

Remark 1 It has been demonstrated in [11] that it makes little difference whether we know x on (−∞, t)
or (0, t) for short-term prediction of fBm traffic. What is more, our simulations show that larger l and m

cannot improve the performance very much, although they increase complexity.

Intuitively, for multiple-step prediction, the error might be larger with more prediction steps, which
can be verified by Figure 3, where we plot the errors for up to 20 prediction steps for each case.

From Figure 3, we can also find that for smaller α , which means heavier distribution in the tail, the
errors become smaller for both one-step and multiple-step predictions. In order to validate this claim, we
introduce the relative error variance (RV) V ar(x− x̂)/V ar(x) (see [11] for details), which is another index
for evaluating the predictor. For α = 1.05, 1.20, 1.45, 1.80, 1.95 respectively, we plot the errors and the
relative error variances as depicted in Figure 4.

Remark 2 Theoretically, the Hurst Parameter H can be calculated by H = 3−α
2 , which comes from the

ON/OFF model in the idealized case corresponding to a fGn process [6, 19]. In reality, H can still be linearly

related to α , although its slope changes case by case[14, 18].

The results in [11] show that the relative error variance decays to zero when H approaches 1, that
means the LMMSE based predictor works better for the case of stronger LRD. In other words, our prediction
is more reliable for smaller shape parameter α , which has been demonstrated in Figures 3 and 4. Note that
estimation errors are not monotone with respect to the shape parameter α because our data traces came
from the aggregation of heavy-tailed distributions, not idealized fGn.
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Figure 4. Prediction Error and relative error variance in one-step prediction

Meanwhile, the self-similarity implies nontrivial correlation structure at larger time scales, with which
we can realize larger time scale predictions. For the above data traces, we change the time scale to nTs ,

which means c(k) is aggregated over n samples and replaced by its mean c(n)(k), as (2) shows. So all

prediction at time scale nTs will be based on this new sequence c(n)(k), k ∈ Z+ ∪{0} . Following the above
simulations, we obtained similar results, which again verified the self-similar nature of network traffic as well
as the feasibility of the LMMSE predictor for different time scale predictions. We only list the one step
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prediction error for the scenario of 1 sec time scale (which corresponds to n = 20) for different values of α
in Table 1. Other results are omitted because they are quite similar to the above figures. Recall from the
above discussion that for α between 1.2 and 1.95 the relative error was about 6% for 0.05 sec time scale,
these results are comparable to the ones shown in Table 1. But for the same time interval of prediction, the
larger time scale prediction needs fewer prediction steps compared with that at smaller time scale. We will
make use of this fact in the system simulations in Section 6.

α = 1.05 α = 1.20 α = 1.45 α = 1.80 α = 1.95
Prediction error 5.08% 5.59% 5.16% 5.29% 6.41%

Table 1. One-step prediction at a larger time scale (1sec)

Remark 3 Note that the LMMSE predictor is an adaptive estimator since the predictor updates its parame-
ters at every sampling time as described by (12), (16) and (18). Moreover this scheme can be easily extended
for a multi-sources network topology, since the predictor block K2 is designed independently of the control
block K1 and that the design of the block K1 for a multi-source network topology with uncertain time-varying
time delays has been considered in [4].

6. System Level Simulations

The control scheme combining the LMMSE predictor K2 and the robust control block K1 is applied to
the discretized model depicted in Figure 5, where the sampling time is Ts and the time delay is equal to
MTs with M = [h/Ts] ; K2 predicts the traffic at time scale nTs which results from the traffic aggregation

obeying (2). Correspondingly the Zero Order Hold holds the signal for n steps which gives the output
rLMMSE of the overall controller sampled at nTs . Note that n = 1 corresponds to the case where every
signal is sampled at the value Ts .

Remark 4 We should notice that the robust controller K1 with a ZOH at n = 1 in Figure 5 is just a dis-
cretized implementation of K1 , which is a common practice of controller implementation (from continuous-

time to discrete-time). At larger time scales (i.e. n > 1 in the ZOH), the robust stability could not be
guaranteed theoretically. For this sake, we will investigate the system performance in the presence of the
ZOH at different time scales in terms of settling time ts and cost index J .

The simulations of our control scheme is compared with those of the two-degree of freedom H∞
controller of [15] which we call comparison controllers for short.

We assume Ts = 0.05 sec , h = 1 sec , n = 1, qd(k) = 80 with k ∈ Z+ ∪ {0} in our first setting. The

cross traffic ccross(k) is generated by using the similar network topology as mentioned in Section 5 by ns-2,
where the shape parameter is α = 1.80. The LMMSE system responses are depicted in Figure 6.

We can see that the LMMSE control scheme and the comparison controller have similar performance,
with nearly the same overshoot, settling time, and oscillations. In fact, by adding time-varying time delay

uncertainty, say δ(k) = 0.5 sin(2π
50kTs), we can still get the same conclusion, which implies that the two

kinds of controllers even have similar robustness.
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Figure 6. System responses for 0.05 sec time scale: the middle one denotes the comparison controller and the

bottom one denotes the LMMSE based scheme

However, the LMMSE predictor is designed directly for self-similar network traffic, that works equally
well in the larger time scale, with the extra advantage of reducing the prediction steps which has been
discussed in Section 5. Thus we would like to implement it with the robust control block at larger time
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scales, that is more applicable for the real network environment, where control actions are updated once
every RTT.

Before such implementation, we need to investigate the performance of the robust control block K1 at
different time scales (i.e. holding the control output for n steps in our simulations). In this case we quantify
the performance of the control system in two ways:

• Settling time ts , defined as ts = mint{|q(s) − qd(s)|/qd(s) ≤ 5%, ∀s > t} ,

• Cost index J = 1
T

√∑[T/Ts]
i=0 (q(iTs)− qd(iTs))2Ts .

For h = 1 sec , we choose holding steps n from 1 to 40 and set c(k) = 60 for k ∈ Z+ ∪ {0} , by
which we omit the impact of the cross traffic. The responses of K1 alone and the comparison controller are
examined with respect to different values of n : performance indexes, ts and J are shown in Figure 7.
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Figure 7. Performance indexes as a function of n

As shown in Figure 7, K1 preserves good performance even for n = 20, i.e. for the case where the
assigned rates (controller output) is updated every 1 sec while Ts = 0.05 sec . The comparison controller,
however, does not possess this property. Larger holding time deteriorates the performance of the comparison
controller significantly. Note that we did not plot the cost index curve for the comparison controller in Figure
7, because it diverges very rapidly.

Based on the above simulations at different time scales for K1 and the multi-scale properties of the
LMMSE predictor, we consider applying our control scheme at a larger time scale, where the control output
is updated once every second. We adopt the same parameter setting as in the first scenario, except that
in this case we have n = 20. The responses for the LMMSE controller and the comparison controller are
shown in Figure 8, where the performance improvement of the LMMSE control scheme is apparent.
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Figure 8. System response for 1 sec time scale: The middle one denotes the comparison controller and the bottom

one denotes the LMMSE one

Furthermore, we list the performance index J for time scale 0.05 sec and 1 sec , for both control
schemes in Table 2. In conclusion, the controller which uses the LMMSE predictor shows good performance
with respect to self-similar traffic and time delay uncertainties, both in smaller time scales and in larger
ones.

time scale 0.05 sec time scale 1 sec
h = 1 h = 1 + δ(k) h = 1 h = 1 + δ(k)

LMMSE controller 0.6765 0.6869 0.7398 0.7928
Comparison controller 0.6305 0.6520 1.9751 1.9818

Table 2. Comparison of performance index J

7. Concluding Remarks

In this paper, an LMMSE based predictor is added to the robust H∞ controller designed in earlier works
[13][4]. The two-degree of freedom flow controller has better transient response for self-similar cross traffic
and good robustness against time delay uncertainty. Notably, the flow controller developed here preserves
good performance in the scenario of larger time scale prediction and control, which is more applicable for
real networks. An interesting extension of this work is to consider prediction and control at different time
scales or multiple time scales, by which we could make better use of the multifractal properties of network
traffic and the robustness of the H∞ controller.
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