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1. Introduction
Due to its easy availability of raw materials, easily controlled operation conditions and high mineralization efficiency, the 
classical Fenton reaction is widely used for the degradation of organics which are difficult to biodegrade. The hydroxyl 
radical (•OH), which has superb oxidative properties, is the core of this reaction [1].

  When the Fenton reaction is finished, the pH of the aqueous solution needs to be regulated in time to meet the 
discharge requirements. However, the iron sludge will appear in the aqueous solution at once. That may be attributed that 
the ferrous salt is incessantly added into the system to maintain the concentration of •OH because of the fast consumption 
rate of FeII[2]. The solid waste could not be properly disposed of. Therefore, the further application of the Fenton reaction 
is limited [2].

 Reducing the usage of ferrous can radically reduce the iron sludge. Accelerating the reduction of FeIII is a feasible 
strategy. In previous studies, the reduction of FeIII could be promoted by energy input such as light [3], electricity [4], and 
sound [5], though the maximum energy utilization of less than 40% was not practicable. In addition, the reduction of FeIII 
can also be significantly promoted by the reducing organics, such as N, N’-ethylenediaminodisuccinic acid (EDDS) [6], 
2-methoxyhydroquinone [7], 3,4,5-trihydroxy benzoic acid [8], though this is not easy to control precisely and there are 
problems with secondary contamination.

Hydrogen is a clean and efficient inorganic reducing agent. In previous studies [2], it was used to accelerate the 
reduction of ferric. H2 could be adsorbed and activated by Pd0 nanoparticle [9]. Only less than 2 mg L–1 of total iron was 
required to continuously mineralize methyl tert-butyl ether (MTBE). Since H2 is insoluble in water at room temperature, 
the whole system needs to be confined and pressurized to improve the utilization of H2. If the loading of Pd0 could be 
increased, it is obvious that the requirement for hydrogen partial pressure can be reduced, though significantly it was not 
economical. Therefore, how to increase the utilization of hydrogen in the condition of low usage of Pd0 is central to this 
research direction. The metal-organic frameworks (MOFs) materials may be one of a good substitute for the nano-Pd0.

Abstract: In this paper, a novel Fenton reaction system which was called MHACF-MIL-100(Fe) was constructed. In this system, based 
on active hydrogen-accelerated FeIII reduction, the hydroxyl radical was continuously produced with a trace amount of total iron. The 
MIL-100(Fe) modified with the nano-Pd0 particle could be used to activate the H2. Under normal temperature and pressure, the target 
organic pollutants, such as sulfamethazine and 4-chloro phenol, could be degraded fast. In the condition of initial aqueous solution pH 
3, 2 g L–1 dosage of MIL-100(Fe) catalyst loaded with nano-Pd0, Pd/MIL-100(Fe), 20 mM 30 wt% hydrogen peroxide, 25 μM ferrous 
chloride and 60 mL H2 min–1, 97.8% of sulfamethazine and 100% 4-chloro phenol could be degraded within only 5 min, respectively.  
Although the surface of the catalyst exhibited more obvious defects and roughness after 5 consecutive destructive experiment cycles, 
its basic structure could be maintained. The removal efficiency could be maintained at least more than 79% (sulfamethazine) and 94% 
(4-chloro phenol). That may be mainly attributed to the degradation of hydroxyl radical. 
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Metal organic backbone (MOFs) materials are three-dimensional crystalline materials generated by the coordination 
of metal centers and organic ligands. In recent years, MOFs materials have received wide attention in the fields of chemical 
catalysis, gas storage, gas adsorption and conversion, drug delivery, environmental monitoring, and environmental 
remediation. Metal-centered Fe is nontoxic. And the material with large specific surface area is hydrothermally stable. It 
could be used in adsorption, photocatalysis, and Fenton-like applications. This materials, with high porosity and surface 
area, could be used for the hydrogen storage [10]. And it is also a natural platform for loading Pd0 particles [11]. After 
it was used in the hydrogen-accelerated Fenton system mentioned above, a novel system called MOFs-H2-accelerated-
catalytic-Fenton (MHACF) was constructed. The typical refractory organics such as sulfamethazine (SMT) and 4-chloro 
phenol (4-CP) could be eliminated rapidly [11]. Although a series of MOFs materials modified by nano-Pd0 particle were 
used in this MHACF system such as MIL-101(Cr)[11], NH2-MIL-101(Cr) [12], MOF-808(Zr) [13] and UiO-66(Zr) [14], 
continuing to try to find stable MOFs material is still a worthwhile exploration. This is of great significance for expanding 
the application fields of MOFs materials and developing new advanced oxidation processes.

In previous study, it was reported that the MIL-100(Fe) exhibited stability when it was used as a solid catalyst in 
Fenton-like reaction [15]. Therefore, it was used to construct the MHACF system in this work. Both refractory SMT and 
4-CP were used as target pollutants. The main research objectives of this paper were (1) to achieve the recycling of trace 
iron; (2) to verify the efficient oxidation capacity of the novel MHACF system; (3) to test the durability of MIL-100(Fe).

2. Materials and methods
2.1. Chemicals and materials
1,3,5-benzene tricarboxylic acid and sodium borohydride were purchased from Aladdin Chemical (Shanghai, China). 
Palladium dichloride, ferrous chloride, polyvinyl alcohol (PVA), hydrogen peroxide (H2O2, 30 wt%), ethanol, HNO3, HCl, 
hydrofluoric acid, and sodium hydroxide were purchased from China Pharmaceutical Corporation (Shanghai, China). All 
solutions used in the experiments were prepared with Sartorius (Arium comfort I (Germany). All the chemicals were of 
analytical purity and were not further purified.
2.2. Analysis methods
The concentration of target organic pollutants and 4-hydroxybenzoic acid (p-HBA) was analyzed using an LC-20AT high-
performance liquid chromatograph (Shimadzu, Japan). A 150-mm column named ZORBAX Eclipse XDB-C18 was select-
ed. The specific analysis conditions were listed in Table. The detection methods of FeII, H2O2 and NH4

+ were from previous 
works. The concentration of inorganic anions such as inorganic NO2

-, NO3
-, and SO4

2- was determined by ICS-900 ion 
chromatography (Thermo, USA). The Multi NC 3100 TOC meter (Jena, Germany) was used to analyze the total organic 
carbon (TOC). The organic intermediates were analyzed by HPLC-MS equipped with the same column mentioned above. 
There were two kinds of solutions that were used as mobile phase. One was 2.0% glacial acetic acid solution, the other was 
acetonitrile. The analysis conditions were as follows: In the condition of 0.4 mL min–1, 10% acetonitrile was changed to 
60% in 10 min, then was changed to 90% in 8 min, finally was changed to 10% in 10 min. The MS section uses an ESI with 
a positive ion detection mode. 
2.3. Synthesis of MIL-100(Fe)
First, 1.03 g of 1,3,5-benzenetricarboxylic acid and 0.41 g of 200-mesh reduced iron powder were thoroughly mixed in 40 
mL of pure water at room temperature. Then 0.57 mL of HNO3 and 0.3 mL of hydrofluoric acid were added. After it was 
stirred for 1 h, the mixture was transferred into a 100-mL reaction kettle which was lined with PTFE. The kettle was placed 
in a blast drying oven for 1 day in the condition of 150 °C. The crystalline orange-red solid was washed with pure water at 
70 °C for 5.5 h, followed by C2H5OH at 60 °C for 3 h, and finally with pure water at 70 °C for 3 h. After the material was 
filtered and vacuum-dried at 70 °C for 0.5 day, the original MIL-100(Fe) material was obtained. It was activated at 200 °C 
for 0.5 day before used in reaction [17]. 

Table. Determination conditions for liquid chromatography.

Organic Mobile phase ratio Flow Rate (mL min–1) Sampling volume (μL) Temperature (℃) Wavelength (nm) Reference

4-CP Methanol/1% acetic acid 
solution = 65:35 0.5 20 30 278 [15]

SMT Acetonitrile/water = 35:65 1 20 30 275 [15]

p-HBA Methanol/0.1% acetic acid 
solution = 30:70 1 100 35 255 [16]
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2.4. Synthesis of Pd/MIL-100(Fe)
First, 0.0094 g polyvinyl alcohol was dissolved in an appropriate amount of water. The mixture was added into a two-
necked flask. Then 21.9 mL of 100 mg L–1 PdCl2 was added to solution. The mixture was stirred in an ice-water bath for 1 
h. Then 1.2 mL NaBH4 solution which concentration was 0.5 M was added into the two-necked flask. The pH was adjusted 
to 7–8 by NaOH solution and HCl solution. Then 0.5 g of the activated MIL-100(Fe) was added and stirred for 4.5 h. The 
solid obtained after filtering was reactivated in a vacuum-drying oven at 200 °C [18]. That was the preparation of Pd/UiO-
66(Zr) (Pd 0.507 wt% based on ICP-OES).
2.5. Operation of the MHACF-MIL-100(Fe) system
A 150-mL double-necked flat-bottomed flask was placed in a fume hood at atmospheric pressure and temperature (20 ± 2 
°C). The H2, ferrous and solid catalyst was successively supplied into the aqueous solution. After adding hydrogen peroxide 
into the aqueous solution, the reaction started timing. The reaction was sampled using a disposable syringe. The mixture 
was filtered by 0.45 μm polyethersulfone filter. The filtrate was placed in a liquid sample bottle prefilled with 1 drop of 
methanol. This methanol was used to burst any reactive oxygen particles that may remain in the filtrate.
2.6. Durability test of MHACF-MIL-100(Fe) system
One hundred and eighty minutes was set as a complete reaction cycle. At the end of each cycle, the material was recovered 
by centrifugation for 5 min at 6000 r min–1 using a high-speed centrifuge (TGL-16G Jiangsu Xinkang Medical Devices Co., 
Ltd.). The supernatant was then decanted. And the collected material was dried in a vacuum-drying oven at 105 °C for 3 h.
2.7. Characterization of the MOFs material modified by nano-Pd0 particle
The Brunauer-Emmett-Teller (BET) surface area of the solid powder was analyzed placed 77 K by N2 adsorption and 
desorption experiments using a BET tester after the material had been degassed under vacuum at 378 K for 1 day. The 
functional groups of the MOFs materials were determined in this experiment using Fourier transform infrared (FT-IR) 
spectroscopy infrared spectrograms using the KBr press method with the FT-IR test range set at 400–4000 cm–1. A D8 
Advance X-ray diffractometer (Bruker, Germany) was selected to analyze the crystalline phase of the powder at CuKa ra-
diation emission and 40 kV/40 mA current. The crystal morphologies and particle size of the samples were observed by a 
FEI Quanta FEG 250 scanning electron microscope (SEM, Thermo Fisher, USA). The surface morphologies of the samples 
were observed by a FEI Tecnai G2 F30 S-TWIN high-resolution transmission electron microscope (HRTEM, Thermo 
Fisher, USA) equipped with energy-dispersive X-ray analysis (EDXA, USA). The surface morphologies of the samples 
were observed by a FEI Tecnai G2 F30 S-TWIN high-resolution transmission electron microscope (HRTEM, Thermo 
Fisher, USA) equipped with energy-dispersive X-ray analysis (EDXA, USA). The determination of TCr and TPd content 
in the material was carried out by ICP-OES (Agilent 720ES, Santa Clara, California, USA). The content of Pd in the fresh 
prepared Pd/MIL-100(Fe) was 0.507 wt%.

3. Results and discussion
3.1. Characterization of materials
The SEM images shown in Figures 1a and 1b revealed that the surface structure of the synthesized MIL-100(Fe) was rough. 
As shown in the TEM images in Figures 1c and 1d, the MIL-100(Fe) nanoparticles exhibited a polyhedral shape [19]. As 
seen in Figure 1e, due to the substitution of the terminal ligand -X by methyl-containing groups upon vacuum activation 
at 200 °C, the peaks of 1452 cm–1 and 1383 cm–1 were derived from the deformation vibrations of methyl groups on the 
organic backbone [20]. Those peaks of 760 cm–1 and 712 cm–1 may be attributed to Fe-OH vibrations [21]. Those peaks of 
1113 cm–1 and 943 cm–1 may be related to the stretching vibrations of C-O. Those peaks of 1577 cm–1 and 1631 cm–1 may 
be attributed to the vibrations of double bonds on aromatic rings [22].

The pore size distribution and surface area of MIL-100(Fe), determined using the N2 adsorption-desorption method, 
were shown in Figure 2. Its specific surface area was 1982.60 m2 g–1. And the pore size of the material was approximately 
0.5–1.8 nm, demonstrating that this material is microporous. It was similar to the previously reported result [23]. As seen 
the XRD patterns of MIL-100(Fe) shown in Figure 3, the characteristic 2θ values of 6.29°, 10.25°, 11.01°, 12.58°, 18.61°, 
and 20.10° were corresponded to the (333), (660), (428), (1022), (7911), and (4814) crystal planes, respectively [24]. In 
combination with the above characterization results, the MIL-100(Fe) material was successfully synthesized.

Also as seen in Figure 2, the specific surface area of as-prepared Pd/MIL-100(Fe) was slightly reduced to about 1180 
m2 g–1. It is obvious from the TEM displayed in Figure 4 that the Pd0 nanoparticles with a particle size of about 7 nm are 
uniformly attached to the surface of the MIL-100(Fe) material. And there were no significant changes in the pore size 
distribution. Evidently, the nano-Pd0 particle with a particle size of about 7 nm could not be loaded into the channels of 
MIL-100(Fe) with a maximum pore size of 1.8 nm. Although the Pd0 occupied part of the surface area of MIL-100(Fe), the 



WANG et al. / Turk J Chem

1310

specific surface area and pore size distribution were not significantly changed due to its extremely low loading. As seen in 
the XRD patterns exhibited in Figure 3, the crystal structure of Pd/MIL-100(Fe) was similar to that of MIL-100(Fe). The 
nanoparticles of Pd0 are loaded on the surface of the material with a particle size up to about 15 nm, and their encapsula-
tion tends to have irregular morphology, which reduces the crystallinity of the material [25]. As shown in Figures 4a–4e, 
the basic structure of MIL-100(Fe) could be saved after the nano-Pd0 particle was loaded. As shown in Figure 4f, both Fe 
and Pd could be detected [26]. Combining the results of the above characterization, it can be seen that the nano-Pd0 par-
ticles were successfully loaded on the surface of MIL-100(Fe). 

Figure 1 Characterization of MIL-100(Fe): (a) the SEM photograph (500 nm scale); (b) the SEM

photograph (1 μm scale); (c) the TEM photograph (100 nm scale); (d) the TEM photograph (20

nm scale) ; (e) FT-IR spectrum of MIL-100(Fe).

Figure 1. Characterization of MIL-100(Fe): (a) the SEM photograph (500 nm scale); (b) the SEM photograph (1 μm scale); (c) the TEM 
photograph (100 nm scale); (d) the TEM photograph (20 nm scale) ; (e) FT-IR spectrum of MIL-100(Fe).

Figure 2 (a) N2 adsorption-desorption curve, (b) BET pore size distribution.
Figure 2. (a) N2 adsorption-desorption curve, (b) BET pore size distribution.
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Figure 3 XRD spectra of MIL-100(Fe), Pd/MIL-100(Fe) and Pd/MIL-100(Fe) after five

consecutive reaction cycles.

Figure 3. XRD spectra of MIL-100(Fe), Pd/MIL-100(Fe) and Pd/MIL-100(Fe) af-
ter five consecutive reaction cycles.

Figure 4 (a) SEM photograph (500 nm scale), (b) SEM photograph (1 μm scale), (c) TEM

photograph (100 nm scale), (d) the TEM photograph (20 nm scale), (e) the TEM photograph (5

nm scale) and (f) element mappings images of Pd/MIL-100(Fe).

Figure 4. (a) SEM photograph (500 nm scale), (b) SEM photograph (1 μm scale), (c) TEM pho-
tograph (100 nm scale), (d) the TEM photograph (20 nm scale), (e) the TEM photograph (5 nm 
scale) and (f) element mappings images of Pd/MIL-100(Fe).
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3.2. Conversion of iron valence during the reaction
The reduction of ferric was conducted in Figure 5. As shown in Figure 5a, without using solid catalyst, the ferrous was not 
detected. In systems without the addition of solid catalyst, Fe2+ was not detected. The reason for this phenomenon may be 
that the solubility of H2 in water at room temperature and pressure is only 1.83% [27]. Most of the H2 returned into the at-
mosphere at once. Even if some hydrogen could be dissolved in water, it cannot be reduced because it cannot be activated. 
Conversely, no matter if MIL-100(Fe) or Pd/MIL-100(Fe) was used, H2 could be activated. The ferric could be reduced by 
the generated active hydrogen. In the H2-MIL-100(Fe) system, the concentration of ferrous could be 2.4 μM. In the H2-Pd/
MIL-100(Fe) system, the concentration of ferrous could be 13.6 μM. The H2 could be activated better after the introduction 
of nano-Pd0 particle (Equation (1)). As shown in Figure 5b, the concentration of ferrous decreased from 20 μM to 5.17 μM 
after 5 min of reaction in the classic Fenton reaction. Only 25.9% of TFe was accounted for after 3 h of reaction. In contrast, 
the ferrous could be maintained at least 72% of TFe in the novel system. That may be attributed that the introduction of 
hydrogen significantly delayed the accumulation of ferric in the Fenton reaction.
3.3. The reactive oxygen species in the novel system
As the reaction proceeded, the concentration of H2O2 increased quickly from 20 μM to 62.5 μM in the MHACF system, 
as shown in Figure 6a. It could be attributed to the combination of hydrogen and O2 catalyzed by zero-valent palladium 
(Equation (3)) [28]. However, the H2O2 decreased slightly to 59.8 mmol L–1 in the next time. The H2O2 could be consumed 
by Fe2+, Pd0, and MIL-100(Fe), respectively [29].

As shown in Figure 6b, the BA was used as a trapping agent for •OH[16]. The p-HBA concentration increased from 0 
μM to 552.5 μM. This indicated that •OH existed in the MHACF system.

The SMT was used as target pollutant. It is a common refractory antibiotic. According to previous works [30], the co-
agulation of conventional ferrous salts, the direct oxidation of H2O2 and the simple blowing and reduction of H2 have an 
almost negligible effect on the removal of SMT. It could be degraded by •OH [31]. After the addition of CH3OH used as 
a quencher of hydroxyl radical [31], as shown in Figure 6c, the removal efficiency of SMT was just about 18%. Compared 
with that of MHACF system, the removal of SMT was significantly inhibited. It was the •OH that dominated the degrada-
tion of pollutants in this system. This was consistent with the results reported in previous works [11].

Pd-H + FeIII→ H+ + FeII + Pd0		  (1)
FeII + H2O2 →  FeIII + OH- + •OH  (the classic Fenton reaction)				         (2)

O2 + H2 →  H2O2

Pd 	       								            

 (3)
PdH2O2 →  2•OH 	              						         		      (4)                

Figure 5 Variation of ferrous in (a) Fe3+-H2-Pd/MIL-100(Fe), Fe3+-H2-MIL-100(Fe) and Fe3+-H2

system with an initial aqueous pH of about 2.5; (b) MHACF-MIL-100(Fe) and Fenton system.

Experimental conditions Fe3+ 20 μmol∙L-1, initial pH 3, Pd/MIL-100(Fe) 2 g∙L-1, H2O2 20

mmol∙L-1 and H2 70 mL∙min-1.

Figure 5. Variation of ferrous in (a) Fe3+-H2-Pd/MIL-100(Fe), Fe3+-H2-MIL-100(Fe) and Fe3+-H2 system with an initial 
aqueous pH of about 2.5; (b) MHACF-MIL-100(Fe) and Fenton system. Experimental conditions Fe3+ 20 μmol L–1, 
initial pH 3, Pd/MIL-100(Fe) 2 g L–1, H2O2 20 mmol L–1 and H2 70 mL min–1.
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3.4. Degradation of refractory sulfamethazine in the System
As shown in Figure 7a, when replacing Pd/MIL-100 (Fe) with MIL-100 (Fe), the removal efficiency within 180 min was 
only 42.4%, most of which came from the adsorption of the material. Only putting Pd0 into SMT solution did not degrade 
the pollutants. The Pd/MIL-100(Fe) powder could adsorb 32.6% of SMT. The oxidizing property of H2O2 contributed only 
2.2% removal efficiency of SMT. After the introduction of a trace amount of nano-Pd0 particle into the mixture of H2O2 and 
SMT, the removal efficiency of SMT increased to 6.2% based on the generation of •OH derived from the decomposition 
of H2O2 catalyzed by Pd0 (Equation (4)) [32]. Seven and two-tenths percent of SMT could be removed in the Pd0+ H2+O2 
system by Fenton-like reaction because of the combination of hydrogen and oxygen catalyzed by Pd0 (Equation (3)) [33]. 
In the MIL-100(Fe)+H2+FeII+ H2O2 system, the degradation efficiency of SMT could reach 43.4%. This could be attributed 
that the Fenton reaction existed in this system. In contrast, a previous study showed that the removal rate of SMT in the 
UiO-66(Zr)+ H2+Fe+ H2O2 system was only 24.1%, while the removal rate of SMT in the MOF-808(Zr)+ H2+Fe+ H2O2 
system was only 29.6%, which was much lower than that of the MHACF-MIL-100(Fe) system [13,14]. This was because 
it decomposes under the catalysis of Pd0 to produce • OH, which oxidizes and degrades SMT. The [H] generated by the 
activation of H2 by Pd0 plays an important role in the FeIII/FeII cycle.

Fifty-five and six-tenths percent of SMT was removed by the classical Fenton reaction. As seen in Figure 7b, after the 
ferrous was substituted by Pd/MIL-100(Fe), 92.3% of SMT could be removed based on the catalytic performance of abun-
dant active site of Fe containing in this material. Furthermore, with the introduction of ferrous ions into the H2O2+Pd/
MIL-100(Fe) system, more •OH could be generated. Therefore, the SMT removal efficiency could be 94.4%. In the Pd/

Figure 6 (a) Variation of H2O2 in the MHACF- MIL-100(Fe) system; (b) Concentration of p-HBA

generated in the MHACF-MIL-100(Fe) system; (c) Inhibitory effect of methanol on the

degradation of SMT. Experimental conditions: Fe2+ 20 μmol∙L-1, H2O2 20 mmol∙L-1, pH 3.0,

Pd/MIL-100(Fe) 2 g∙L-1, H2 60 mL∙min-1, SMT 20 mg∙L-1, BA 1.81 g∙L-1 and MeOH 500 mL∙L-1.

Figure 6. (a) Variation of H2O2 in the MHACF- MIL-100(Fe) system; (b) concentration of p-HBA generated in the 
MHACF-MIL-100(Fe) system; (c) inhibitory effect of methanol on the degradation of SMT. Experimental conditions: 
Fe2+ 20 μmol L–1, H2O2 20 mmol L–1, pH 3.0, Pd/MIL-100(Fe) 2 g L–1, H2 60 mL min–1, SMT 20 mg L–1, BA 1.81 g L–1 
and MeOH 500 mL L–1.
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MIL-100(Fe)+H2+FeII+H2O2 system, the degradation efficiency of SMT could reach 97.83% within 30 min. This is because 
it decomposes under the catalysis of Pd0 to produce •OH, which oxidizes and degrades SMT.

After 180 min reaction, 42.4% of sulfamethazine would be degraded in the Fenton+H2+MIL-100(Fe) system, while in 
the MHACF-MIL-100(Fe) system the 97.8% of sulfamethazine could be removed in only 5 min. It would be thoroughly 
degraded in the next 0.5 h. The introduction of trace amount of Pd0 had a significant effect on the improvement of the 
degradation of the refractory organic. 

As seen in Figure 7c, about 36% TOC was removed in the MHACF system. Organic intermediates such as 2-amino-
6-methylpyrimidine-4-carboxylic acid, formic acid, CH3-CH=CH-CH2-CH3, p-aminobenzenesulfonic acid, CH3COOH, 
p-aminophenol, HOOC-COOH and 2-amino-4,6-dimethylpyrimidine could be detected in the aqueous solution. And 
the anion inorganic ions such as NH4

+, NO2
-, NO3

- and SO4
2- could also be detected in this system, as shown in Figure 7d. 

The results were similar with the previous research works [13,14,34].  The degradation of sulfamethazine could be mainly 
attributed to the oxidation of •OH. 
3.5. The durability of MIL-100(Fe)
The 4-CP and SMT, which were the common refractory organics with different molecular structures, were selected as 
target pollutants, respectively. The former organic is an important chemical intermediate [29]. Both of them could be 
degraded by •OH [29]. The durability of the catalyst was investigated by repeatedly using the catalyst to degrade these 
two organic compounds. As displayed in Figure 8a, during the 5 reaction cycles, more than 94% of 4-CP could be stably 
removed. And at least 79% of SMT could be removed. According to the molecular structures displayed in Figure 8a, the 

Figure 7 (a-b) The control tests; (c) Variation of TOC and SMT and (d) inorganic ions in the

MHACF-MIL-100(Fe) system. Experimental conditions：Fe2+ 24.6 μmol∙L-1, H2O2 20 mmol∙L-1,

pH 3.0, Pd/MIL-100(Fe) 2 g∙L-1, Pd0 0.0098 g∙L-1, H2 70 mL∙min-1 and SMT 20 mg∙L-1.

Figure 7. (a-b) The control tests; (c) variation of TOC and SMT, and (d) inorganic ions in the MHACF-MIL-
100(Fe) system. Experimental conditions: Fe2+ 24.6 μmol L–1, H2O2 20 mmol L–1, pH 3.0, Pd/MIL-100(Fe) 2 g L–1, 
Pd0 0.0098 g L–1, H2 70 mL min–1 and SMT 20 mg L–1.
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molecular weight of SMT is higher than that of 4-CP. Therefore, 4-CP is more easily degraded by hydroxyl radical com-
pared with SMT. However, with the increase of the reaction cycles, the degradation efficiency of these target pollutants 
gradually showed a downward trend. 

By soaking MIL-100(Fe) in HCl (pH 3), as seen in Figure 8b, it was found that 3.6 mg L–1 TFe was dissolved after 3 h. 
And after 3 h operation of MHACF-MIL-100(Fe) system, there would be 11.29 mg L–1 of TFe was dissolved. The dissolved 
amount of TFe significantly exceeded its initial dosage. The Pd2+ was detected in the aqueous solution in both conditions. 
It could be speculated that the structure of MIL-100(Fe) may be changed during the operation of the MHACF system. 

According to Figure 2, compared with that of Pd/MIL-100(Fe), the N2 adsorption-desorption curve of solid catalyst 
after 5 reaction cycles was still hysteresis-free loop class I isotherm though its specific surface area was slightly increased to 
about 1900 m2 g–1. And the pore size of the material still ranged from 0.5 nm to1.8 nm. The crystal structure of the material 
basically remained though the intensity of the peaks was slightly reduced. Combined with the electron microscope 
photographs exhibited in Figure 9, the basic morphology and elemental composition of MIL-100(Fe) was not significantly 
changed though Part of the Pd0 particle had fallen off. According to the results mentioned above, it could be confirmed 
that during the operation of the MHACF-MIL-100(Fe) system, the structure of the solid catalyst would be changed slightly, 
resulting in a small amount of total iron dissolution. The nano-Pd0 particle would gradually fall off during the reaction. 
Compared with the MIL-101(Cr) and NH2-MIL-101(Cr) used in our previous works [12], the MIL-100(Fe) had better 
durability. However, it was slightly less durable than that of UiO-66(Zr) and MOF-808(Zr) [13,14]. According to the soft 
and hard acid theory, this is because the high-priced metals have stronger acid resistance [12]. Firstly, we found the sole 
activity-MHACF-MIL-100(Fe) by differential experiments, and then we proved the presence of the main reactive oxygen 
ion -OH in the system by the probe capture method; then we explored the FeIII/FeII cycle in the MHACF-MIL-100(Fe) 
system, and found that the FeIII/FeII cycle in the MHACF-MIL-100(Fe) system is highly efficient, which makes this system 
have the ability of sustainable oxidation downgrade SMT. We then investigated the FeIII/FeII cycle in the MHACF-MIL-
100(Fe) system and found that there is an efficient FeIII/FeII cycle in the MHACF-MIL-100(Fe) system, which makes this 
system have the ability to continuously oxidize and downgrade SMT, and in summary, through the accelerated reduction 
of hydrogen, it is possible to maintain the continuous production of •OH with the addition of only trace ferrous salts, 
and fundamentally reduce the production of iron sludge. Thus, continuous degradation of SMT in MHACF-MIL-100(Fe) 
system was achieved. The mechanism of MHACF-MIL-100(Fe) system was displayed in Figure 10. 

4. Conclusion
MIL-100(Fe) was used to construct the MHACF system to degrade refractory organics at room temperature and pres-
sure. By introducing hydrogen and Pd/MIL-100(Fe) catalyst into the classic Fenton system, based on the reduction of 
ferric enhanced by activated hydrogen, both SMT and 4-CP selected as the target pollutants could be rapidly degraded 
because hydroxyl radical could be incessantly generated. The production of iron sludge could be significantly reduced. The 

Figure 8 (a) The Durability of catalyst in the MHACF-MIL-100(Fe) system, and the molecular

structure of SMT and 4-CP; (b) Total iron leakage without SMT and 4-CP in the

MHACF-MIL-100(Fe) system and the control experiment. Experimental conditions：Fe2+ 24.6

μmol∙L-1, H2O2 20 mmol∙L-1, pH 3.0, Pd/MIL-100(Fe) 2 g∙L-1, H2 70 mL∙min-1, SMT 20 mg∙L-1

and 4-CP 12 mg∙L-1.

Figure 8. (a) The durability of catalyst in the MHACF-MIL-100(Fe) system, and the molecular structure of SMT and 4-CP; 
(b) total iron leakage without SMT and 4-CP in the MHACF-MIL-100(Fe) system and the control experiment. Experimental 
conditions: Fe2+ 24.6 μmol L–1, H2O2 20 mmol L–1, pH 3.0, Pd/MIL-100(Fe) 2 g L–1, H2 70 mL min–1, SMT 20 mg L–1 and 4-CP 
12 mg L–1.
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Figure 9 Pd/MIL-100(Fe) used on the degradation of SMT after five reaction cycles (a)-(e) SEM

and TEM photographs at different magnifications; (f) elemental surface scans; (g) EDX spectra; (h)

powder photographs.

Figure 9. Pd/MIL-100(Fe) used on the degradation of SMT after five reaction cycles (a–e) SEM and TEM photographs at 
different magnifications; (f) elemental surface scans; (g) EDX spectra; (h) powder photographs.
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removal efficiency could be maintained at least more than 79% (sulfamethazine) and 94% (4-chloro phenol) after 5 reac-
tion cycles though the Fe element was slightly dissolved, and the zero-valent palladium particle on the outer surface of the 
MIL-100(Fe) would also fall off. Therefore, it is essential to further explore stable MOFs materials and reasonable nano-Pd0 
particle loading methods in future.
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Figure 10. The mechanism of MHACF-MIL-100(Fe) system.
Figure 10 The mechanism of MHACF-MIL-100(Fe) system
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