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Abstract: We characterize the 2 -adic valuation of (Pn − 1)n≥0 , where (Pn)n≥0 denotes the Padovan sequence. In
addition, we use this formula to find all the Cullen and Proth numbers that are Padovan numbers. We also fully describe
the 2 -adic order of (Rn + 1)n≥0 , where (Rn)n≥0 denotes the Perrin sequence, and use it to find all Woodall and Proth
numbers of the second kind which are Perrin numbers. As a consequence we find that 3 , 5 , 9 , and 65 are the only
Fermat numbers in the Padovan sequence; while 3 and 7 and 2 and 5 are the only numbers of Mersenne and Thâbit
ibn Kurrah in the Perrin sequence respectively.

Key words: 2 -adic valuation, Cullen number, Fermat number, mersenne number, Padovan number, Perrin number,
Proth number, thâbit ibn Kurrah number, Woodall number

1. Introduction
Let p be a prime number. The p -adic valuation of an integer n is the exponent of the highest power of p that
divides n . We denote it by υp(n) . In recent years, the p -adic valuation of members of ternary linear recursive
sequences has been studied. In 2014, Lengyel and Marques [19] completely determined υ2(Tn) where (Tn)n≥0

denotes the Tribonacci sequence. Two years later, Facó and Marques [13] did the same with υ2(Tn − 1) . In
2020, Young [22] characterized υ2(Tn + 1) for n ∈ Z . Bravo, Díaz and Ramírez [9, 10] gave exact formulas for
υ2(tn) , υ3(tn) and υ3(tn ± 1) where (tn)n≥0 denotes the TriPell sequence. See also Irmak [16] for υ2(Sn ± 1)

where (Sn)n≥0 denotes the Tribonacci-Lucas sequence, and Anwar, Ismail and Rihane [4] for υ3(Nn±1) where
(Nn)n≥0 denotes the Narayana’s cow sequence. Recently, Bilu et al. [7] described a formula for υ3(Tn) for
n ≥ 0 ; while Alahmadi and Luca [1] proved that the formula for υ2(Tn) of Marques and Lengyel [19] hold for
all integers n , not only for positive ones.

The 2 -adic valuation of Padovan and Perrin numbers was completely characterized by Irmak [17] in 2019.
The Padovan sequence (Pn)n≥0 is defined by the recurrence equation

Pn+3 = Pn+1 + Pn for n ≥ 0,

with initial conditions P0 = P1 = P2 = 1 . Other sources such as OEIS∗ in its entry A000931 may start
the Padovan sequence at a different location, in which case the results of this paper should be adjusted with
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appropriate offsets. The Perrin sequence (Rn)n≥0 is defined by the same recurrence as the Padovan sequence
but with different initial values. The first Padovan and Perrin numbers for n ≥ 0 are respectively

1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37, 49, 65, 86, 114, 151, 200, 265, 351, 465, 616, 816, 1081, . . .

and

3, 0, 2, 3, 2, 5, 5, 7, 10, 12, 17, 22, 29, 39, 51, 68, 90, 119, 158, 209, 277, 367, 486, 644, 853, 1130, . . . .

These sequences can be extended to negative indices by Pn = Pn+3 −Pn+1 for n ≤ −1 . The first Padovan and
Perrin numbers for n ≤ −1 are respectively

0, 1, 0, 0, 1, −1, 1, 0, −1, 2, −2, 1, 1, . . .

and
−1, 1, 2, −3, 4, −2, −1, 5, −7, 6, −1, . . . .

A Cullen number Cm is a number of the form

m2m + 1 for m ≥ 1.

These numbers were first introduced in 1905 by Cullen [11] and are also mentioned in Guy’s book [15, Section
B20]. In turn, a Woodall number Wm is of the form

m2m − 1 for m ≥ 1.

These numbers were first studied in 1917 by Cunningham and Woodall [12]. The first Cullen and Woodall
numbers are respectively

3, 9, 25, 65, 161, 385, 897, 2049, 4609, 10241, 22529, 49153, 106497, 229377, 491521, . . .

and
1, 7, 23, 63, 159, 383, 895, 2047, 4607, 10239, 22527, 49151, . . . .

The Cullen and Woodall numbers satisfy the recurrence relations:

C0 = 3, C1 = 9, Cn = 4Cn−1 − 4Cn−2 + 1 for n ≥ 2.

W0 = 1, W1 = 7, Wn = 4Wn−1 − 4Wn−2 − 1 for n ≥ 2.

The problem of finding Cullen and Woodall numbers belonging to other known sequences has been studied by
several authors in the last decades, see for example [2, 5, 6, 8, 14, 20]. We point out that by the main result
of Bilu, Marques and Togbé [8, Theorem 1] for a given linear recurrence (Gn)n , under weak assumptions, and
a given polynomial T (x) ∈ Z[x] , if Gn = mxm + T (x) , then m ≪ 1 and n ≪ log |x| , where the implied
constants depend only on (Gn)n and T (x) . Letting (Gn)n≥0 ∈ {(Pn)n≥0, (Rn)n≥0} , x := 2 and T (x) := ±1

we get |Pn ∩ Cm| < ∞ and |Rn ∩Wm| < ∞ . In the present paper, using a complete description of the 2 -adic
valuation of (Pn − 1)n≥0 and (Rn + 1)n≥0 , and a different approach, we fully determine which Cullen and
Woodall numbers are Padovan and Perrin numbers, respectively.

We also use the 2 -adic valuation of (Pn − 1)n≥0 to find the Padovan numbers which are Proth numbers.
A Proth number is of the form

k · 2m + 1,
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for odd k , m a positive integer, and 2m > k . The 2m > k condition is needed since otherwise, every odd
number > 1 would be a Proth number. The first few Proth numbers are

3, 5, 9, 13, 17, 25, 33, 41, 49, 57, 65, 81, 97, 113, 129, 145, 161, 177, 193, 209, 225, 241, 257, 289, . . . .

The Cullen numbers are a special case of the Proth numbers with k = m and the inequality restriction dropped.
The Fermat numbers are a special case of the Proth numbers with k = 1 .

Finally, we also use the 2 -adic valuation of (Rn + 1)n≥0 to find the Perrin numbers which are Proth
numbers of the second kind. A Proth number of the second kind is of the form

k · 2m − 1,

for odd k , m a positive integer, and 2m > k . The first of these numbers are

1, 3, 7, 11, 15, 23, 31, 39, 47, 55, 63, 79, 95, 111, 127, 143, 159, 175, 191, 207, 223, 239, 255, 287, . . . .

Thâbit ibn Kurrah numbers and Woodall numbers are a special case of these numbers with k = 3 and k = m

respectively, and the inequality restriction dropped. The Mersenne numbers are a special case of these numbers
with k = 1 . Our results are as follows.

2. Results
Theorem 2.1 For n ≥ 0 , we have

υ2 (Pn − 1) =



∞, if n = 0, 1, 2;

0, if n ≡ 3, 4, 6 (mod 7);

υ2(n+ 2) + 1, if n ≡ 5 (mod 7);

υ2((n− 1)(n+ 13)) + 1, if n ≡ 1 (mod 7);

υ2(n) + 1, if n ≡ 0 (mod 14);

υ2(n+ 7) + 1, if n ≡ 7 (mod 14);

υ2(n+ 5) + 2, if n ≡ 9 (mod 14);

υ2((n− 2)(n+ 26)) + 3, if n ≡ 2 (mod 28);

υ2(n+ 12) + 4, if n ≡ 16 (mod 28).

Theorem 2.2 For n ≥ 0 , we have

υ2 (Rn + 1) =



0, if n ≡ 1, 2, 4 (mod 7);

1, if n ≡ 5 (mod 7);

υ2(n+ 7) + 2, if n ≡ 0 (mod 7);

υ2(n+ 11) + 1, if n ≡ 3 (mod 7);

υ2((n+ 1)(n+ 29)) + 1, if n ≡ 6 (mod 7).

Theorem 2.3 The only Cullen numbers which are Padovan numbers are 3 , 9 , and 65 .

Theorem 2.4 The only Proth numbers which are Padovan numbers are 3 , 5 , 9 , 49 , 65 , and 3329 .

An immediate consequence is the following which is one of the main results of Adegbindin, Rihane, and Togbé
[3, Theorem 4].
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Corollary 2.5 The only Fermat numbers in the Padovan sequence are 3 , 5 , 9 , and 65 .

Theorem 2.6 The only Woodall number that is a Perrin number is 7 .

Theorem 2.7 The only Proth numbers of the second kind which are Perrin numbers are 3 , 7 , and 39 .

For k = 1 we deduce the following conclusion, which is one of the main results of Kafle, Rihane, and Togbé [18,
Theorem 1.2].

Corollary 2.8 The only Mersenne numbers in the Perrin sequence are 3 and 7 .

Except for 2 and 5 every Thâbit ibn Kurrah number is a Proth number of the second kind with k = 3 , so we
have the following result.

Corollary 2.9 The only Thâbit ibn Kurrah numbers in the Perrin sequence are 2 and 5 .

3. Auxiliary results

The following result for the Padovan and Perrin numbers and their sums was found by Sokhuma [21, Proposition
2.2] with appropriate offsets.

Lemma 3.1 For all positive integers m,n we have the relations:

Pn+m = Pn−1Pm−1 + PnPm−2 + Pn−2Pm−3,

Rn+m = Pn−1Rm−1 + PnRm−2 + Pn−2Rm−3.

The 2 -adic valuation of Padovan and Perrin numbers was fully described by Irmak [17, Lemmas 2.5 and 2.6].
Their formulas are given below.

Lemma 3.2 For n ≥ 0 , we get that

υ2 (Rn) =



0, if n ≡ 0, 3, 5, 6, (mod 7);

1, if n ≡ 2 (mod 14);

2, if n ≡ 9 (mod 14);

υ2(n− 1) + 1, if n ≡ 1 (mod 7);

1, if n ≡ 4 (mod 7).

Lemma 3.3 For n ≥ 0 , we obtain

υ2 (Pn) =


0, if n ≡ 0, 1, 2, 5, (mod 7);

υ2(n+ 4) + 1, if n ≡ 3 (mod 7);

υ2((n+ 3)(n+ 17)) + 1, if n ≡ 4 (mod 7);

υ2((n+ 1)(n+ 8)) + 1, if n ≡ 6 (mod 7).

The following three results generalize Lemmas 2.2, 2.3, and 2.4 in Irmak [17].
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Lemma 3.4 Let wn be either the nth Padovan or Perrin number. For n, r, s ∈ Z we have

wrn+s = Rrwr(n−1)+s −R−rwr(n−2)+s + wr(n−3)+s.

Proof Let wn = Pn and let P (X) = X3 −X − 1 be the characteristic polynomial of (Pn)n≥0 and (Rn)n≥0 .
Denoting the zeros of P by α, β and γ , with

α =
3

√
9 +

√
69

18
+

3

√
9−

√
69

18
= 1.32471 . . .

the only real zero, we have Pn = cαα
n + cββ

n + cγγ
n and Rn = αn + βn + γn for n ∈ Z , where cz =

(7z2 + z + 3)/23 . Using this and the fact that αβγ = 1 we get

RrPr(n−1)+s −R−rPr(n−2)+s + Pr(n−3)+s = cαα
rn+s + cββ

rn+s + cγγ
rn+s = Prn+s.

The proof that Rrn+s = RrRr(n−1)+s −R−rRr(n−2)+s +Rr(n−3)+s is similar. We omit the details. 2

Lemma 3.5 For the integers j and k, t ≥ 1 , we get:

P7·2tk+j ≡

{
Pj (mod 2t+2), if j ≡ 1, 2, 4 (mod 7),

Pj + k · 2t+1 (mod 2t+2), otherwise.

Proof Suppose j ≡ 1, 2, 4 (mod 7) . We prove the first statement using induction on k . The base case k = 1

corresponds to Irmak [17, Lemma 2.3]. Assume that P7·2tk+j ≡ Pj (mod 2t+2) holds for all positive integers
≤ k . Using Lemma 3.4 with wn = Pn , n = k + 1 , r = 7 · 2t and s = j we have

P7·2t(k+1)+j = R7·2tP7·2tk+j −R−7·2tP7·2t(k−1)+j + P7·2t(k−2)+j . (3.1)

From Lemma 2.4 in Irmak [17] with j = 0 we know that R7·2t ≡ 3 (mod 2t+2) . Moreover, considering
that 2R−n = R2

n − R2n and using again Lemma 2.4 in Irmak [17] with j = 7 · 2t we arrive at 2R−7·2t =

R2
7·2t −R7·2t+7·2t ≡ 6 (mod 2t+2) . Thus R−7·2t ≡ 3 (mod 2t+2) . From (3.1) it then follows that

P7·2t(k+1)+j ≡ (3P7·2tk+j − 3P7·2t(k−1)+j + P7·2t(k−2)+j) (mod 2t+2)

≡ (3Pj − 3Pj + Pj) (mod 2t+2)

≡ Pj (mod 2t+2).

Assume j ≡ 0, 3, 5, 6 (mod 7) . Again we use strong induction on k to prove the second statement. The base
case is again obtained by Irmak [17, Lemma 2.3]. From the induction hypothesis and the fact that R±7·2t ≡ 3

(mod 2t+2) it follows from (3.1) that

P7·2t(k+1)+j ≡ (3P7·2tk+j − 3P7·2t(k−1)+j + P7·2t(k−2)+j) (mod 2t+2)

≡ (3Pj + 3k · 2t+1 − 3Pj − 3(k − 1)2t+1 + Pj + (k − 2)2t+1) (mod 2t+2)

≡ Pj + (k + 1)2t+1 (mod 2t+2).

2
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Lemma 3.6 For the integers j and k, t ≥ 1 , we have

R7·2tk+j ≡

{
Rj (mod 2t+2), if j ≡ 0, 2, 6 (mod 7),

Rj + k · 2t+1 (mod 2t+2), otherwise.

In addition,
R7·2t ≡ 3 (mod 2t+5) for t ≥ 3 (3.2)

Proof Assume j ≡ 0, 2, 6 (mod 7) . We prove the first statement by induction on k . For k = 1 the result is
given by Irmak [17, Lemma 2.4]. Suppose that the equivalence holds for all positive integers do not exceed k .
From Lemma 3.4 with wn = Rn , n = k + 1 , r = 7 · 2t and s = j we get

R7·2t(k+1)+j = R7·2tR7·2tk+j −R−7·2tR7·2t(k−1)+j +R7·2t(k−2)+j . (3.3)

The above together with the fact that R±7·2t ≡ 3 (mod 2t+2) leads to R7·2t(k+1)+j ≡ Rj (mod 2t+2) .
Suppose j ≡ 1, 3, 4, 5 (mod 7) . Again by strong induction on k we can prove the second statement. The

base case follows again by Irmak [17, Lemma 2.4]. From (3.3) and the fact that R±7·2t ≡ 3 (mod 2t+2) we can
conclude the inductive step.

We use induction on t to prove the last equivalence. Since R56 = 6900995 ≡ 3 (mod 256) , it is true for

t = 3 . Assume R7·2t ≡ 3 (mod 2t+5) for fixed t ≥ 4 . Then R7·2t = 3+2t+5x1 for x1 ≥ 0 . Let Tn =

 Rn

Rn+1

Rn+2


and B0 =

3 0 2
0 2 3
2 3 5

 . By using Irmak [17, Eq. (2.5)] with wn = Rn and n = m = 7 · 2t we get

R7·2t+1 = TT
7·2tB

−1
0 T7·2t

=
1

5

(
R7·2t R7·2t+1 R7·2t+2

)−1 −6 4
−6 −11 9
4 9 −6

 R7·2t

R7·2t+1

R7·2t+2


= −1

5
(R2

7·2t + 11R2
7·2t+1 + 6R2

7·2t+2 + 12R7·2tR7·2t+1 − 8R7·2tR7·2t+2 − 18R7·2t+1R7·2t+2). (3.4)

Using Lemma 3.6 with j = 1, 2 and k = 1 we can write R7·2t+1 = 2t+1 + 2t+2x2 and R7·2t+2 = 2+ 2t+2x3 for
x2, x3 ≥ 0 . From this, the induction hypothesis and (3.4) we deduce that

R7·2t+1 = 3− x1

5

(
2t+4(x2 − x3) + 2t+2(6x2 + 3)− 5

)
2t+6 − 1

5
(11 + 44x2 + 44x2

2 − 36x3 + 24x2
3 − 72x2x3)2

2t+2

≡ 3 (mod 2t+6)

as claimed. 2

We end this section of preliminaries with the following equivalences.

Lemma 3.7 For positive integers k and t ≥ 3 , we have

• P7·2tk+2 ≡ 1 (mod 2t+5) ,
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• P7·2tk−26 ≡ 1 (mod 2t+5) ,

• P7·2tk−12 ≡ 1 (mod 2t+4) for t ≥ 2 ,

• R7·2tk−1 ≡ −1 (mod 2t+3) .

Proof To prove the first statement we use induction on k . Assume that k = 1 . To show P7·2t+2 ≡ 1

(mod 2t+5) we use induction on t . For t = 3 , P58 = 8745217 ≡ 1 (mod 256) is satisfied. Suppose that

P7·2t+2 ≡ 1 (mod 2t+5) holds for fixed t ≥ 4 . Then P7·2t+2 = 1 + 2t+5y1 for y1 ≥ 0 . Let Tn =

 Pn

Pn+1

Pn+2

 and

B0 =

1 1 1
1 1 2
1 2 2

 . From Irmak [17, Eq. (2.5)] with wn = Pn , n = 7 · 2t + 2 and m = 7 · 2t we obtain

P7·2t+1+2 = TT
7·2t+2B

−1
0 T7·2t

=
(
P7·2t+2 P7·2t+3 P7·2t+4

) 2 0 −1
0 −1 1
−1 1 0

 P7·2t

P7·2t+1

P7·2t+2


= (2P7·2t − P7·2t+2)P7·2t+2 + (P7·2t+2 − P7·2t+1)P7·2t+3 + (P7·2t+1 − P7·2t)P7·2t+4. (3.5)

Using Lemma 3.5 with j = 0, 1, 3, 4 and k = 1 we can write P7·2t = 1 + 2t+1 + 2t+2y2 , P7·2t+1 = 1 + 2t+2y3 ,
P7·2t+3 = 2 + 2t+1 + 2t+2y4 and P7·2t+4 = 2 + 2t+2y5 for yi ≥ 0 , i = 2, 3, 4, 5 . From this, the induction
hypothesis and (3.5) we obtain

P7·2t+1+2 = 1 + (3y1 + 4y1y2 − 16y21 + 2ty1 + 2t+1y1y4)2
t+6 + (2y3y5 − 2y2y5 − 2y3y4 − y3 − y5)2

2t+3

≡ 1 (mod 2t+6)

as claimed. Now assume that
P7·2tk+2 ≡ 1 (mod 2t+5) (3.6)

for fixed t ≥ 3 and for all positive integers k . From Lemma 3.4 with wn = Pn , n = k+1 , r = 7 · 2t and s = 2

we get
P7·2t(k+1)+2 = R7·2tP7·2tk+2 −R−7·2tP7·2t(k−1)+2 + P7·2t(k−2)+2. (3.7)

Now from (3.2), the fact that 2R−n = R2
n −R2n and Lemma 3.6 with j = 7 · 2t and k = 1 we get

R−7·2t ≡ 3 (mod 2t+5) for t ≥ 3. (3.8)

Finally, from (3.6), (3.7), (3.2) and (3.8) we arrive at

P7·2t(k+1)+2 ≡ (3P7·2tk+2 − 3P7·2t(k−1)+2 + P7·2t(k−2)+2) (mod 2t+5)

≡ (3 · 1− 3 · 1 + 1) (mod 2t+5)

≡ 1 (mod 2t+5).

All other statements are proved in a similar way. We omit the details of the second and third ones.
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To prove the last statement, we again use strong induction on k . Assume that k = 1 . By using the last
equivalence in Lemma 3.6, we will show R7·2t−1 ≡ −1 (mod 2t+3) . If t = 1 , it is obvious. Now assume that

R7·2t−1 ≡ −1 (mod 2t+3)

holds for positive integer t . Our aim is to show R7·2t+1−1 ≡ −1 (mod 2t+3) for integer t . To do this, we take

wn = Rn , n = 7 · 2t − 1 , m = 7 · 2t and B0 =

3 0 2
0 2 3
2 3 5

 in Irmak [17, Eq. (2.5)]. Then

R7·2t+1−1 =

R7·2t−1

R7·2t

R7·2t+1

T 3 0 2
0 2 3
2 3 5

−1  R7·2t

R7·2t+1

R7·2t+2

 .

Lemma 3.6 yields that R7·2t−1 = −1 + y12
t+3 , R7·2t = 3 + y22

t+5 , R7·2t+1 = 2t+1 + y32
t+2 and R7·2t+2 =

2 + y42
t+2 for integers y = i , i = 1, 2, 3, 4 . So

R7·2t+1−1 ≡ −1 (mod 2t+3)

holds. Now, assume that R7·2t(k+l)−1 ≡ −1 (mod 2t+3) for l ∈ {−2,−1, 0} . Our goal to prove that
R7·2t(k+1)−1 ≡ −1 (mod 2t+3) . Using Lemma 3.4 with wn = Rn , n = k + 1 , s = −1 and r = 7 · 2t , we
have

R7·2t(k+1)−1 = R7·2tR7·2tk−1 −R−7·2tR7·2t(k−1)−1 +R7·2t(k−2)−1.

Since R7·2t ≡ 3 (mod 2t+5) , 2R−7·2t ≡ R2
7·2t − R7·2t+1 ≡ 6 (mod 2t+5) , R7·2t(k+l)−1 ≡ −1 (mod 2t+3) for

l ∈ {−2,−1, 0} , then we deduce

R7·2t(k+1)−1 ≡ R7·2t(k−2)−1 ≡ −1 (mod 2t+3)

as claimed. 2

4. The proof of Theorem 2.1
Suppose n ≥ 0 .

In the proof of Theorem 2.1 we have used

Case 1: n = 0, 1, 2

Recall that υp(0) = ∞ is defined for every prime number p .

Case 2: n ≡ 3, 4, 6 (mod 7)

In this case, Pn is even by Lemma 3.3. Therefore υ2(Pn − 1) = 0 .

Case 3: n ≡ 5 (mod 7)

We have n ≡ −2 (mod 7) and then assuming n ̸= 5 we can write n = 7 · 2tk − 2 for some t ≥ 1 and k ≡ 1

(mod 2) . By Lemma 3.5 with j = −2 we get P7·2tk−2 ≡ P−2 + k · 2t+1 (mod 2t+2) . Then Pn − 1 ≡ k · 2t+1

(mod 2t+2) , from which it follows that υ2(Pn − 1) = t + 1 = υ2(7 · 2tk) + 1 = υ2(n + 2) + 1 . The result also
holds for n = 5 since υ2(P5 − 1) = υ2(2) = υ2(5 + 2) + 1 .
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Case 4: n ≡ 1 (mod 7)

Here, we have n ≡ 1, 8 (mod 14) . If n ≡ 1 (mod 14) then

υ2((n− 1)(n+ 13)) =

 υ2(n− 1) + 1, if n ≡ 1 (mod 4),

υ2(n+ 13) + 1, if n ≡ 3 (mod 4).

When n ≡ 1 (mod 4) we can write n = 7 · 2tk + 1 for some t ≥ 2 and k ≡ 1 (mod 2) . Using Lemma 3.5 with
j = 1 we get Pn ≡ P1 ≡ 1 (mod 2t+2) . Therefore Pn − 1 ≡ 0 ≡ 2t+2 (mod 2t+2) . From the above we get
υ2(Pn − 1) = t+ 2 = υ2(7 · 2tk) + 2 = υ2(n− 1) + 2 = υ2((n− 1)(n+ 13)) + 1 .

In case n ≡ 3 (mod 4) we have n ≡ −13 (mod 4) and we can write n = 7 · 2tk − 13 for some t ≥ 2

and k ≡ 1 (mod 2) . Applying Lemma 3.5 with j = −13 we obtain Pn ≡ P−13 ≡ 1 (mod 2t+2) . Therefore
Pn−1 ≡ 0 ≡ 2t+2 (mod 2t+2) and then υ2(Pn−1) = t+2 = υ2(7·2tk)+2 = υ2(n+13)+2 = υ2((n−1)(n+13))+1 .

On the other hand, when n ≡ 8 (mod 14) we have υ2((n− 1)(n+ 13)) = 0 . So it suffices to show that
υ2(Pn − 1) = 1 . For this we prove by induction on k that P14k+8 ≡ 3 (mod 4) , where n = 14k + 8 for k ≥ 0 .
If k = 0 then P22 = 351 ≡ 3 (mod 4) . Assume P14k+8 ≡ 3 (mod 4) for fixed k ≥ 1 . From the induction
hypothesis and Lemma 3.1 with n = 14k + 9 and m = 13 we obtain

P14(k+1)+8 = P14k+8P12 + P14k+9P11 + P14k+7P10

= 21P14k+8 + 16P14k+9 + 12P14k+7 ≡ P14k+8 ≡ 3 (mod 4).

Case 5: n ≡ 0 (mod 14)

Here we can write n = 7 · 2tk for some t ≥ 1 and k ≡ 1 (mod 2) . Then Pn ≡ P0 + k · 2t+1 (mod 2t+2) by
Lemma 3.5 with j = 0 . It follows from the above that υ2(Pn − 1) = t+ 1 = υ2(7 · 2tk) + 1 = υ2(n) + 1 .

Case 6: n ≡ 7 (mod 14)

We have n ≡ −7 (mod 14) and then we can write n = 7 · 2tk − 7 for some t ≥ 1 and k ≡ 1 (mod 2) . From
Lemma 3.5 with j = −7 we conclude that Pn ≡ P−7 + k · 2t+1 (mod 2t+2) . Thus υ2(Pn − 1) = t + 1 =

υ2(7 · 2tk) + 1 = υ2(n+ 7) + 1 .

Case 7: n ≡ 9 (mod 14)

Now we have n ≡ −5 (mod 14) and so we can write n = 7 · 2tk− 5 for some t ≥ 1 and k ≡ 1 (mod 2) . Taking
j = −5 in Lemma 3.5 we get Pn ≡ P−5 ≡ 1 (mod 2t+2) . Consequently Pn − 1 ≡ 0 ≡ 2t+2 (mod 2t+2) and
therefore υ2(Pn − 1) = t+ 2 = υ2(7 · 2tk) + 2 = υ2(n+ 5) + 2 .

Case 8: n ≡ 2 (mod 28)

In this case n ≡ 2, 30 (mod 56) . If n ≡ 2 (mod 56) then we write n = 7 · 2tk + 2 for some t ≥ 3 and k ≡ 1

(mod 2) or n = 56x + 2 for x ≥ 1 . From Lemma 3.7 it follows that Pn − 1 ≡ 0 ≡ 2t+5 (mod 2t+5) . Then
υ2(Pn − 1) = t+ 5 = υ2(n− 2) + 5 = υ2((n− 2)(56x+ 28)) + 3 = υ2((n− 2)(n+ 26)) + 3 holds.

1191



BRAVO and IRMAK/Turk J Math

In case n ≡ 30 (mod 56) we have n ≡ −26 (mod 56) and so we can write n = 7 · 2tk − 26 for some
t ≥ 3 and k ≡ 1 (mod 2) or n = 56x+ 30 for x ≥ 0 . From Lemma 3.7, υ2(Pn − 1) = t+ 5 = υ2(n+ 26) + 5 =

υ2((56x+ 28)(n+ 26)) + 3 = υ2((n− 2)(n+ 26)) + 3 holds.

Case 9: n ≡ 16 (mod 28)

We have n ≡ −12 (mod 28) and then we can write n = 7 · 2tk− 12 for some t ≥ 2 and k ≡ 1 (mod 2) . Using
Lemma 3.7 we have Pn − 1 ≡ 0 ≡ 2t+4 (mod 2t+4) . Then υ2(Pn − 1) = t+4 = υ2(7 · 2t) + 4 = υ2(n+12) + 4 .

5. The proof of Theorem 2.2

Assume n ≥ 0 .

• Case 1: n ≡ 1, 2, 4 (mod 7) .

Here, Rn is even by Lemma 3.2. Hence υ2(Rn + 1) = 0 .

• Case 2: n ≡ 5 (mod 7) .

We write n = 7k + 5 with k ≥ 0 . In order to prove that υ2(Rn + 1) = 1 it is sufficient to show that
Rn ≡ 1 (mod 4) . We do this by induction on k . If k = 0 then Rn = R5 = 5 ≡ 1 (mod 4) . Assume that
R7k+5 ≡ 1 (mod 4) for fixed k ≥ 1 . Taking n = 4 and m = 7k + 8 in Lemma 3.1 we get

R7(k+1)+5 = P3R7k+7 + P4R7k+6 + P2R7k+5

= 2(R7k+7 +R7k+6) +R7k+5.

From Lemma 3.2 we have that R7k+7 and R7k+6 are odd, so R7k+7 + R7k+6 ≡ 0, 2 (mod 4) . In either
case we obtain from the above equation and the induction hypothesis that R7(k+1)+5 ≡ 1 (mod 4) .

• Case 3: n ≡ 0 (mod 7) .

We have n ≡ −7 (mod 7) and assuming that n ̸= 0 we can write n = 7 · 2tk − 7 for some t ≥ 1

and k ≡ 1 (mod 2) . Using Lemma 3.6 with j = −7 we get R7·2tk−7 ≡ R−7 ≡ −1 (mod 2t+2) . Then
Rn + 1 ≡ 0 ≡ 2t+2 (mod 2t+2) which implies that υ2(Rn + 1) = t+ 2 = υ2(7 · 2tk) + 2 = υ2(n+ 7) + 2 .
When n = 0 the result also follows since υ2(R0 + 1) = υ2(4) = 2 = υ2(0 + 7) + 2 .

• Case 4: n ≡ 3 (mod 7) .

Now n ≡ −11 (mod 7) and so we can write n = 7 · 2tk − 11 for some t ≥ 1 and k ≡ 1 (mod 2) . From
Lemma 3.5 with j = −11 we obtain R7·2tk−11 ≡ R−11 + k · 2t+1 (mod 2t+2) . Then Rn + 1 ≡ k · 2t+1

(mod 2t+2) and thus υ2(Rn + 1) = t+ 1 = υ2(7 · 2tk) + 1 = υ2(n+ 11) + 1 .

• Case 5: n ≡ 6 (mod 7) .

Now we have n ≡ 6, 13 (mod 14) . When n ≡ 6 (mod 14) we have υ2((n+1)(n+29)) = 0 . It is therefore
sufficient to show that υ2(Rn + 1) = 1 . Let n = 14k + 6 for k ≥ 0 . Next we proceed by induction on k

to show that R14k+6 ≡ 1 (mod 4) . The base case follows as R6 = 5 ≡ 1 (mod 4) . Suppose R14k+6 ≡ 1
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(mod 4) for fixed k ≥ 1 . From the induction hypothesis and Lemma 3.1 with n = 11 and m = 14k + 9

we get

R14(k+1)+6 = P10R14k+8 + P11R14k+7 + P9R14k+6

= 12R14k+8 + 16R14k+7 + 9R14k+6 ≡ R14k+6 ≡ 1 (mod 4).

On the other hand, if n ≡ 13 (mod 14) then n ≡ 13, 27 (mod 28) . In case n ≡ 13 (mod 28) we have
υ2((n + 1)(n + 29)) = 2 . Therefore, it is sufficient to show that υ2(Rn + 1) = 3 . Put n = 28k + 13 for
k ≥ 0 . Next we use induction to prove that R28k+13 ≡ 7 (mod 16) . As R13 = 39 ≡ 7 (mod 16) the
base case is followed. Assume R28k+13 ≡ 7 (mod 16) for fixed k ≥ 1 . From Lemma 3.1 with n = 26 and
m = 28k + 15 we obtain

R28(k+1)+13 = P25R28k+14 + P26R28k+13 + P24R28k+12

= 816R28k+14 + 1081R28k+13 + 616R28k+12.

Note that R28k+12 is odd by Lemma 3.2, so R28k+12 ≡ 1, 3, 5, 7, 9, 11, 13, 15 (mod 16) . In any case we
obtain from the above equation and the induction hypothesis that R28(k+1)+13 ≡ 7 (mod 16) .

Finally, in the case n ≡ 27 (mod 28) we have n ≡ 27, 55 (mod 56) . When n ≡ 27 (mod 56) we have
n ≡ −29 (mod 56) and then we can write n = 7·2tk−29 for some t ≥ 3 and k ≡ 1 (mod 2) . From Lemma
3.7 it follows that Rn+1 ≡ 0 ≡ 2t+3 (mod 2t+3) giving υ2(Rn+1) = t+3 = υ2(28)+υ2(2

t−2k−1)+υ2(n+

29)+1 = υ2((7·2tk−28)(n+29))+1 = υ2((n+1)(n+29))+1 . If n ≡ 55 (mod 56) then n ≡ −1 (mod 56)

and so we can write n = 7·2tk−1 for some t ≥ 3 and k ≡ 1 (mod 2) . Again from Lemma 3.7 we have that
υ2(Rn+1) = t+3 = υ2(n+1)+υ2(28)+υ2(2

t−2k+1)+1 = υ2((n+1)(7·2tk+28))+1 = υ2((n+1)(n+29))+1 .

6. Padovan Cullen numbers
Let us start by proving by induction that

αn−4 ≤ Pn − 1 for n ≥ 3. (6.1)

If n = 3, 4, 5 , then α−1 < 0.8 < 1 = P3 − 1 , α0 = 1 = P4 − 1 , and α < 1.4 < 2 = P5 − 1 . Suppose that
αk−4 ≤ Pk − 1 for all 3 ≤ k ≤ n − 1 . Taking into account that α−1 is a zero of X3P (1/X) and using the
recurrence equation of the Padovan sequence we obtain

αn−4 = αn−4(α−2 + α−3) = αn−6 + αn−7 ≤ Pn−2 + Pn−3 − 2 < Pn − 1.

Assume m,n ≥ 4 . Using (6.1) in equation Pn = Cm we obtain αn−4 ≤ Pn − 1 = m2m ≤ 23m/2 , and thus

n < 4m+ 4. (6.2)

Now from Theorem 2.1 and the fact that υ2(n) ≤ log n/ log 2 for all n ∈ Z+ we deduce that

υ2(Pn − 1) ≤ log(n− 2) + log(n+ 26)

log 2
+ 3 for all n ≥ 4. (6.3)
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Using (6.3) in equation Pn = Cm we obtain m ≤ υ2(m2m) = υ2(Pn−1) ≤ ((log(n−2)+log(n+26))/ log 2)+3 .
Thus by (6.2) we get

m <
log(2m+ 1) + log(2m+ 15)

log 2
+ 5.

This inequality yields m ≤ 15 . Therefore n ≤ 47 since P48 = 525, 456 > 491, 521 = C15 . A computational
search reveals that (n,m) ∈ {(5, 1), (9, 2), (16, 4)} are the only solutions of equation Pn = Cm for n ∈ [0, 47]

and m ∈ [1, 15] . This completes the proof of Theorem 2.3.

7. Padovan Proth numbers
Suppose n ≥ 4 . Using (6.1) in equation Pn = k · 2m + 1 we get αn−4 ≤ Pn − 1 = k · 2m < 2m · 2m = 22m .
Therefore,

n < 5m+ 4. (7.1)

Now from (6.3) in equation Pn = k · 2m + 1 we obtain m = υ2(k · 2m) = υ2(Pn − 1) ≤ ((log(n − 2) + log(n +

26))/ log 2) + 3 . So from (7.1) we get

m <
log(5m+ 2) + log(5m+ 30)

log 2
+ 3.

This inequality is only true if m ≤ 16 . So n ≤ 83 by (7.1) and k < 216 = 65536 . Through a computational
search we find that (k, n,m) ∈ {(1, 5, 1), (1, 7, 2), (1, 9, 3), (3, 15, 4), (1, 16, 6), (13, 30, 8)} are the only solutions
of the equation Pn = k · 2m + 1 for odd k with 2m > k ∈ [1, 65535] , m ∈ [1, 16] and n ∈ [0, 83] . This ends the
proof of Theorem 2.4.

8. Perrin Woodall numbers
Assume n ≥ 2 and m ≥ 4 . From Theorem 2.2 and the fact that υ2(n) ≤ log n/ log 2 for all n ≥ 1 we get

υ2(Rn + 1) ≤ log(n+ 1) + log(n+ 29)

log 2
+ 1. (8.1)

Using (8.1) in equation Rn = Wm we get

m <
log(n+ 1) + log(n+ 29)

log 2
+ 1. (8.2)

On the other hand, let us prove by induction that

αn−2 < Rn for n ≥ 2. (8.3)

If n = 2, 3, 4 , then α0 = 1 < 2 = R2 , α < 1.4 < 2 = R3 , and α2 < 1.8 < 2 = R4 . Suppose that αk−2 < Rk

for all 2 ≤ k ≤ n− 1 . From the fact that −α−3 − α−2 + 1 = 0 and from the recurrence equation of the Perrin
sequence it follows that

αn−2 = αn−2(α−2 + α−3) = αn−4 + αn−5 < Rn−2 +Rn−3 = Rn.
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Using (8.3) in equation Rn = Wm we get αn−2 < Rn < Rn + 1 = m2m ≤ 23m/2 , and therefore

n < 3.7m+ 2. (8.4)

From (8.2) and (8.4) we then get

m <
log(3.7m+ 3) + log(3.7m+ 31)

log 2
+ 1.

This inequality implies that m ≤ 12 . Thus n ≤ 38 since R39 = 57, 918 > 49, 151 = W12 . The proof of
Theorem 2.6 ends with a computational search which confirms that (n,m) = (7, 2) is the only solution of
equation Rn = Wm for n ∈ [0, 38] and m ∈ [1, 12] .

9. Perrin Proth numbers of the second kind
Assume n ≥ 2 . Using (8.3) in equation Rn = k · 2m − 1 we obtain αn−2 < Rn + 1 = k · 2m < 22m , and then

n < 5m+ 2. (9.1)

From (8.1) in equation Rn = k · 2m − 1 we get m < (log(n+1)+ log(n+29))/ log 2)+1 . Thus, by (9.1) we get

m <
log(5m+ 3) + log(5m+ 31)

log 2
+ 1.

From this inequality, it follows that m ≤ 13 . So n ≤ 66 by (9.1) and k < 213 = 8192 . The proof of Theorem
2.7 ends with a computational search that proves that (k, n,m) ∈ {(1, 0, 2), (1, 3, 2), (1, 7, 3), (5, 13, 3)} are the
only solutions of the equation Rn = k · 2m − 1 for odd k with 2m > k ∈ [1, 8191] , m ∈ [1, 13] and n ∈ [0, 66] .
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