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Abstract: This article presents an SIRD model based on the evolution of Coronavirus Disease 2019 (COVID-19) caused
by SARS-CoV-2 from the coronavirus family. Firstly, we constitute Pell-Lucas collocation method (PLCM) for this
model. According to method, the matrix forms of the Pell-Lucas polynomials (PLPs) are constituted. By utilizing
this matrix forms, solution forms and all terms in this model are expressed in matrix form. Thus, PLCM transforms
our model into a system of the matrix equations. By solving this system, the approximate solutions are obtained. In
addition, the error analysis is also presented. In the examples of this study, we analyzed the Türkiye’s situation using
initial datas and the parameters for Türkiye. For this, we make applications for two different scenarios. In these two
scenarios, the parameters, the initial conditions and the selected range are different. By considering the initial data
and the parameters for other countries, this method can be applied to them, too. Application results are tabulated
and visualized. Moreover, by comparing our results with Runge-Kutta method (RKM), the effectiveness of method is
demonstrated. This study allows the identification of trends in the pandemic.

Key words: Collocation method, Covid-19, mathematical modeling, nonlinear differential equations, Pell-Lucas poly-
nomials, SIRD model

1. Introduction
An epidemic of a disease of unknown reason first was emerged in Wuhan, China’s Hubei province, in 2019
and spread significantly to other countries. After a short time, this infectious agent was defined as a new
coronavirus (nCoV). This virus was named severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2).
The World Health Organization (WHO) denominated the infectious disease as coronavirus disease 2019 (COVID-
19). WHO announced this situation as a pandemic in March 11, 2020. In this process, some measures were
taken around the world. Countries mutually stopped flights and closed border gates. A curfew was imposed,
quarantine decisions were made for infected people, education was suspended and distance education was started.
Places such as cinemas, concert halls, wedding halls, cafes and massage parlors were temporarily closed. While
these negativities were continued, scientists carried out vaccine studies, and after a while, the public was
vaccinated to ensure immunity. As the vaccination rate increased, the normalization process began. Although
the normalization process has started today, cases and deaths continue. Looking at worldometer data∗, as of
∗Correspondence: suayipyuzbasi@gmail.com;suayipyuzbasi@bartin.edu.tr
2010 AMS Mathematics Subject Classification: 34A34, 42C05, 65L60, 65L70, 92D30, 93A30
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April 13, 2024, there are a total of 704,753,890 cases, 7,010,681 deaths, and 675,619,811 recoveries, worldwide.
Therefore, all studies on this pandemic are important for science and humanity. The mathematicians also
started to study this pandemic.

Since the past, the solutions of many mathematical models such as single species models [25, 50, 51,
55, 68, 72, 79], Lotka-Volterra population model [10, 11, 33, 38, 51, 53, 54, 67, 68, 72, 79], Hantavirus
infection model [1, 2, 23, 71, 76], HIV (Human Immunodeficiency Virus) infection models [17, 22, 27, 32, 40–
42, 46, 58, 61, 64, 69, 70, 73–75], SIR (Susceptible-Infected-Removed) epidemic model [5, 24, 26, 36, 56, 57]
and SIRD (Susceptible-Infected-Recovered-Dead) epidemic model [47, 62, 65, 66] have been studied to predict
the evolution of infectious diseases by some researchers. Recently, many numerical methods such as the finite
element method [6], the multidomain spectral relaxation method [3], the generalized Runge–Kutta method of
the fourth order [30] and the spectral collocation approach [31, 35] have been studied to predict the evolution of
Covid-19. Since 2020, some researchers have modified SIRD model for Covid-19 data, thus they have predicted
the evolution of COVID-19 [14, 15, 19–21, 37, 43, 49]. In 2020, a transmission model with susceptible, infected,
recovered and dead classes (SIRD) was developed to understand the spread of COVID-19 in Italy. Official data
of the pandemic was used to determine the parameters of this model. According to the results, it can be said
that the recovery rate tends to increase over time and the death rate tends to decrease [12]. In 2021, an approach
that performs a function estimation used to analyze data on the Covid-19 epidemic in Italy and Brazil. The
SIRD model was solved using the Levenberg-Marquardt method. It is concluded that there is a good agreement
between the data and the calculated values [13]. In 2021, an SIRD model was used to analyze the evolution of
the COVID-19 pandemic caused by SARS-CoV-2 in Spain. MATLAB Ode Solver is used to solve the system.
It is concluded that the epidemic is expected to decrease in the following days if adequate isolation measures
are maintained. It is stated that the numbers of the recoveries and deaths do not yet show a clear trend and
no comment can be made on this issue [39].

On the other hand, some researchers have investigated for Türkiye and estimated the progress of COVID-
19 using some methods [4, 7–9, 16, 45, 48, 63]. In 2021, the SIRD epidemic model used to study the evolution
of COVID-19 in some countries. Numerical simulations performed for France, Italy, Germany, Russia, Hungary,
Canada, Iran, Ukraine, Japan, Türkiye, Pakistan, Lithuania, Uganda and the USA. The results estimated by
the finite difference method. According to the data, it is estimated that if the rate of spread decreases, the
number of the confirmed cases and the maximum number of the infected cases decrease greatly [52]. Also,
Yüzbaşı and Yıldırım applied Pell-Lucas collocation method (PLCM) for solving SIR model with Türkiye’s
Covid-19 info [78]. The difference of the presented research from the study [78] is that the removed class is
applied as two separate classes (the recovered class and the dead class). In study [78], the removed class gave
us total information about the recovered class and dead class. Accordingly, there is no information available
to compare the recovered class with the dead class. For this reason, it is important to consider this class sThe
matrix formeparately as the recovered class and the dead class. Thanks to this study, it will be possible to
determine how many people died and recovered from the total population after days such as 60 days and 300
days, which we considered in the applications section.

The advantage of our method is that the results can be quickly obtained by using the code created in
MATLAB. Other advantage of our method is that other advantage of our method is that effective outcomes can
be obtained from our method even if the selected N value is very small. Another advantage of our method is
that the structure of the collocation method is simple and the computational cost is low. It also provides a very
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easy and simple procedure for solving various problems involving differential equations that model real-world
phenomena. In the literature, there are many numerical methods via Pell-Lucas polynomials (PLPs) for various
types of differential equations [18, 59, 60, 77, 79–81]. According to these studies, it is concluded that successful
outputs are discovered via PLPs. However, in the literature, there is no study based on a method using PLPs
for solving SIRD model. For this reason, in this paper, by adapting this model for Türkiye’s Covid-19 data,
PLCM is developed. In this article, SIRD epidemic model are given by [13, 15, 19]

dS(t)
dt = − β

PS(t)I(t)
dI(t)
dt = β

PS(t)I(t)− γI(t)− δI(t)
dR(t)
dt = γI(t)

dD(t)
dt = δI(t)

S(0) = S0, I(0) = I0, R(0) = R0, D(0) = D0.

(1.1)

Here, S(t) , I(t) , R(t) and D(t) represent, respectively, the susceptible, infected, recovered and dead population
defined on the interval 0 ≤ t ≤ b. β , γ , δ are transmission rate, recovery rate and death rate, respectively.
P is total population and P = S(t) + I(t) +R(t) + D(t) . Figure 1 shows the flow between four classes of the
model with arrows.

Figure 1. Diagram of modeling of (1.1).

For SIRD epidemic model to be applicable, the model has some prerequisites. These prerequisites are
described below:

• The equations that arise when time is divided into a series of discrete intervals are considered and the
infections are assumed to occur only at the moment of transition from one interval to another.

• Natural birth and natural death are assumed to be neglected.

• It is assumed that all individuals in the population are equally likely to be infected.

• Age, gender, race and social status do not affect the probability of an individual being infected.

• The parameters representing the transmission rate and recovery rate for each individual are assumed to
be at a constant value throughout the course of the disease.

The aim of this paper is to obtain approximate solutions of (1.1) as

SN (t) =
∑N

n=0 anQn(t),

IN (t) =
∑N

n=0 bnQn(t),

RN (t) =
∑N

n=0 cnQn(t),

DN (t) =
∑N

n=0 dnQn(t).

(1.2)
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Here, N > 0 and an , bn , cn , dn represent the unknown coefficients. Qn(t) represents PLPs and it is
described as follows [28, 29]:

Qj(t) =

Jj/2K∑
i=0

2j−2i j

j − i

(
j − i

i

)
tj−2i

where Jj/2K is the integer value of j/2 . Please see [28, 29], for features about PLPs.
This article is organized as follows: In Section 2, the required matrix relations for our method are

presented. In Section 3, the Pell-Lucas collocation method for SIRD model is presented. In Section 4, the
error analysis is given. In Section 5, the parameters and initial conditions in the SIR model are determined
according to Türkiye’s Covid-19 data. Thus, PLCM is applied to this model. Simulation results are presented
and evaluated in tables and graphs. In Section 6, a brief conclusion of the article is presented.

2. Basic matrix relations
The aim of this part is to express the Pell-Lucas polynomial solutions (PLPS) and each term in the SIRD model
(1.1) in matrix form.

Lemma 2.1 The matrix form [78, 79]. of PLPs is

QN (t) = TN (t)MN . (2.1)

Here, QN (t) =
[
Q0(t) Q1(t) Q2(t) · · · QN (t)

]
and TN (t) =

[
1 t t2 · · · tN

]
. If N is odd

MT
N =



2 0 0 · · · 0

0 21 1
1

(
1
0

)
0 · · · 0

20 2
1

(
1
1

)
0 22 2

2

(
2
0

)
· · · 0

...
...

... . . . ...
0 21 N

N+1
2

(N+1
2

N−1
2

)
0 · · · 2N N

N

(
N
0

)


and if N is even

MT
N =



2 0 0 · · · 0

0 21 1
1

(
1
0

)
0 · · · 0

20 2
1

(
1
1

)
0 22 2

2

(
2
0

)
· · · 0

...
...

... . . . ...
20 N

N
2

(N
2
N
2

)
0 22 N

N+2
2

(N+2
2

N−2
2

)
· · · 2N N

N

(
N
0

)

 .

Proof By multiplying the vector TN (t) by the matrix MN from the right side, the vector TN (t)MN is
obtained, which is QN (t) . 2

Lemma 2.2 PLPS (1.2) of SIRD model (1.1) are written in matrix forms:

SN (t) = TN (t)MNAN

IN (t) = TN (t)MNBN

RN (t) = TN (t)MNCN

DN (t) = TN (t)MNDN .

(2.2)
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Here,

AN =
[
a0 a1 · · · aN

]T
, BN =

[
b0 b1 · · · bN

]T
, CN =

[
c0 c1 · · · cN

]T
, DN =

[
d0 d1 · · · dN

]T
.

Also, other matrices are expressed in Lemma 2.1.

Proof By multiplying TN (t)MN , respectively, by AN , BN , CN , DN from the right, we get (2.2), which
completes the proof. 2

Lemma 2.3 The derivatives of PLPS (2.2) are expressed as follows:

S ′

N (t) = TN (t)FNMNAN

I ′

N (t) = TN (t)FNMNBN

R′

N (t) = TN (t)FNMNCN

D′

N (t) = TN (t)FNMNDN .

(2.3)

Here,

FN =


0 1 0 · · · 0
0 0 2 · · · 0
...

...
... . . . ...

0 0 0 · · · N
0 0 0 · · · 0

 .

And other matrices are expressed in Lemma 2.2.

Proof The first derivatives of PLPS (2.2) are in forms:

S ′

N (t) = T
′

N (t)MNAN

I ′

N (t) = T
′

N (t)MNBN

R′

N (t) = T
′

N (t)MNCN

D′

N (t) = T
′

N (t)MNDN .

(2.4)

On the other hand, by taking the first derivative of TN (t) , it is obtained

T
′

N (t) = TN (t)FN . (2.5)

Thus, by substituting the relation (2.5) in (2.4), the derivatives of PLPS (2.2) are expressed as in (2.3).
2

Lemma 2.4 The nonlinear expression S(t)I(t) in SIRD model (1.1) can be written as

SN (t)IN (t) = (TN (t)MNAN ) (TN (t)MNBN ) . (2.6)

The matrices TN (t) , MN , AN and BN in (2.6) are expressed in Lemma 2.2.

Proof Utilizing Lemma 2.2, we can write SN (t) = TN (t)MNAN and IN (t) = TN (t)MNBN . By multiplying
the matrix product SN (t) by the matrix product IN (t) from the right side, we get (2.6). 2
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Lemma 2.5 The initial conditions in the SIRD model (1.1) are expressed as follows:

UNAN = S0,
UNBN = I0,
UNCN = R0,
UNDN = D0.

(2.7)

Here, UN = TN (0)MN . The matrices TN (t) , MN , AN , BN , CN and DN in (2.7) are expressed in
Lemma 2.2.

Proof If t → 0 in (2.2), then we get

SN (0) = TN (0)MNAN

IN (0) = TN (0)MNBN

RN (0) = TN (0)MNCN

DN (0) = TN (0)MNDN .

(2.8)

Finally, the matrix multiplication TN (0)MN is denoted as UN and so we gain (2.7). 2

Theorem 2.6 Suppose that the solutions of the SIRD model (1.1) are represented as in (1.2). Then, we have

TN (t)FNMNAN = − β
P (TN (t)MNAN ) (TN (t)MNBN )

TN (t)FNMNBN = β
P (TN (t)MNAN ) (TN (t)MNBN )− γTN (t)MNBN − δTN (t)MNBN

TN (t)FNMNCN = γ (TN (t)MNBN )
TN (t)FNMNDN = δ (TN (t)MNBN ) .

(2.9)

All matrices are expressed in Lemmas 2.2 and 2.3.

Proof By using Lemmas 2.2-2.4 for the solutions forms, derivative terms and the nonlinear terms in (1.1),
the proof is completed. 2

3. PLCM for the SIRD model
In this section, the method is created with the help of the collocation points and the matrix relations in the
previous section.

Definition 3.1 The collocation points for the range of [0, b] are described by

ti =
b

N
i, i = 0, 1, ..., N. (3.1)
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Theorem 3.2 Assume that the approximate solutions of the SIRD model (1.1) are investigated in the matrix
forms (2.2). Then, model (1.1) becomes

W0AN +G1,0BN = 0
W0BN +G2,0BN = 0
W0CN +G3,0BN = 0
W0DN +G4,0BN = 0
W1AN +G1,1BN = 0
W1BN +G2,1BN = 0
W1CN +G3,1BN = 0
W1DN +G4,1BN = 0

...
WNAN +G1,NBN = 0
WNBN +G2,NBN = 0
WNCN +G3,NBN = 0
WNDN +G4,NBN = 0.

(3.2)

Here,

Wi = TN (ti)FNMN ,

G1,i =
β
P (TN (ti)MNAN )TN (ti)MN ,

G2,i = − β
P (TN (ti)MNAN )TN (ti)MN + γTN (ti)MN + δTN (ti)MN ,

G3,i = −γTN (ti)MN ,
G4,i = −δTN (ti)MN .

The matrices here are also given in Lemmas 2.1 - 2.3.

Proof By substituting (3.1) into (2.9), then we have

TN (t0)FNMNAN = − β
P (TN (t0)MNAN ) (TN (t0)MNBN )

TN (t0)FNMNBN = β
P (TN (t0)MNAN ) (TN (t0)MNBN )− γTN (t0)MNBN − δTN (t0)MNBN

TN (t0)FNMNCN = γ (TN (t0)MNBN )
TN (t0)FNMNDN = δ (TN (t0)MNBN )

TN (t1)FNMNAN = − β
P (TN (t1)MNAN ) (TN (t1)MNBN )

TN (t1)FNMNBN = β
P (TN (t1)MNAN ) (TN (t1)MNBN )− γTN (t1)MNBN − δTN (t1)MNBN

TN (t1)FNMNCN = γ (TN (t1)MNBN )
TN (t1)FNMNDN = δ (TN (t1)MNBN )

...
TN (tN )FNMNAN = − β

P (TN (tN )MNAN ) (TN (tN )MNBN )

TN (tN )FNMNBN = β
P (TN (tN )MNAN ) (TN (tN )MNBN )− γTN (tN )MNBN − δTN (tN )MNBN

TN (tN )FNMNCN = γ (TN (tN )MNBN )
TN (tN )FNMNDN = δ (TN (tN )MNBN )

(3.3)
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or

W0AN +G1,0BN = 0
W0BN +G2,0BN = 0
W0CN +G3,0BN = 0
W0DN +G4,0BN = 0
W1AN +G1,1BN = 0
W1BN +G2,1BN = 0
W1CN +G3,1BN = 0
W1DN +G4,1BN = 0

...
WNAN +G1,NBN = 0
WNBN +G2,NBN = 0
WNCN +G3,NBN = 0
WNDN +G4,NBN = 0.

Finally, if the following equations are also used

Wi = TN (ti)FNMN ,

G1,i =
β
P (TN (ti)MNAN )TN (ti)MN ,

G2,i = − β
P (TN (ti)MNAN )TN (ti)MN + γTN (ti)MN + δTN (ti)MN ,

G3,i = −γTN (ti)MN ,
G4,i = −δTN (ti)MN ,

the proof is completed. 2

Theorem 3.3 Assume that the solutions of SIRD model (1.1) are investigated in the matrix forms (2.2). In
that case, the following system is obtained:

W0AN +G1,0BN = 0
W0BN +G2,0BN = 0
W0CN +G3,0BN = 0
W0DN +G4,0BN = 0
W1AN +G1,1BN = 0
W1BN +G2,1BN = 0
W1CN +G3,1BN = 0
W1DN +G4,1BN = 0

...
WNAN +G1,NBN = 0
WNBN +G2,NBN = 0
WNCN +G3,NBN = 0
WNDN +G4,NBN = 0

UNAN = S0

UNBN = I0
UNCN = R0

UNDN = D0.

(3.4)

The matrices in here are also expressed in Theorem 3.2 and Lemma 2.5.
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Proof By writing the matrix systems (2.7) and (3.2) as one system, a new matrix system (4(N + 2) × 1 -
dimensional) is obtained as:

W0AN +G1,0BN = 0
W0BN +G2,0BN = 0
W0CN +G3,0BN = 0
W0DN +G4,0BN = 0
W1AN +G1,1BN = 0
W1BN +G2,1BN = 0
W1CN +G3,1BN = 0
W1DN +G4,1BN = 0

...
WNAN +G1,NBN = 0
WNBN +G2,NBN = 0
WNCN +G3,NBN = 0
WNDN +G4,NBN = 0

UNAN = S0

UNBN = I0
UNCN = R0

UNDN = D0.

(3.5)

Here,
Wi = TN (ti)FNMN ,

G1,i =
β
P (TN (ti)MNAN )TN (ti)MN ,

G2,i = − β
P (TN (ti)MNAN )TN (ti)MN + γTN (ti)MN + δTN (ti)MN ,

G3,i = −γTN (ti)MN ,
G4,i = −δTN (ti)MN ,
UN = TN (0)MN .

Other matrices are expressed in Theorem 2.6. Thus, the desired results are achieved. 2

Corollary 3.4 The obtained system (3.4) is solved according to the PLCM by using a program written in
MATLAB and thus we gain PLPS of (1.1).

4. Error analysis
In this section, the upper boundary of the errors are determined and the residual error estimation technique
is presented. The exact solutions of the SIRD model (1.1) are indicated by S(t) , I(t) , R(t) , D(t) and the
approximate solutions are indicated by SN (t) , IN (t) , RN (t) , DN (t) . The expansions of Maclaurin series
are indicated by SM

N (t) , IM
N (t) , RM

N (t) , DM
N (t) . Also, the residual functions of the SIRD model (1.1) are

represented, respectively, Rei,N (t) (i = 1, 2, 3, 4) . The error analysis is performed for the SIR model [78]. In
this section, we make similarly by utilizing this work.

Theorem 4.1 (Upper Boundary of Errors) The absolute errors of PLPS are limited by inequalities

∥S(t)− SN (t)∥∞ ≤ vN (∥ÃN∥∞ + ∥MN∥∞∥AN∥∞) + bN+1

(N+1)!∥S
(N+1)(ct)∥∞

∥I(t)− IN (t)∥∞ ≤ vN (∥B̃N∥∞ + ∥MN∥∞∥BN∥∞) + bN+1

(N+1)!∥I
(N+1)(ct)∥∞

∥R(t)−RN (t)∥∞ ≤ vN (∥C̃N∥∞ + ∥MN∥∞∥CN∥∞) + bN+1

(N+1)!∥R
(N+1)(ct)∥∞

∥D(t)−DN (t)∥∞ ≤ vN (∥D̃N∥∞ + ∥MN∥∞∥DN∥∞) + bN+1

(N+1)!∥D
(N+1)(ct)∥∞

(4.1)
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where ∥TN (t)∥∞ ≤ max {bN , 1} := vN , 0 ≤ t ≤ b, △AN = ∥AN+1∥∞ − ∥AN∥∞ , △BN = ∥BN+1∥∞ −

∥BN∥∞ , △CN = ∥CN+1∥∞ − ∥CN∥∞ , △DN = ∥DN+1∥∞ − ∥DN∥∞ . In addition, ÃN represents the

coefficient matrix of SM
N (t) , B̃N represents the coefficient matrix of IM

N (t) , C̃N represents the coefficient

matrix of RM
N (t) and D̃N represents the coefficient matrix of DM

N (t) .

Proof As the first step, the Maclaurin expansions are added and then subtracted, respectively, by S(t)−SN (t) ,
I(t)− IN (t) , R(t)−RN (t) , D(t)−DN (t). Then, by using the triangle inequality, it is written

∥S(t)− SN (t)∥∞ = ∥S(t)− SM
N (t) + SM

N (t)− SN (t)∥∞ ≤ ∥S(t)− SM
N (t)∥∞ + ∥SM

N (t)− SN (t)∥∞
∥I(t)− IN (t)∥∞ = ∥I(t)− IM

N (t) + IM
N (t)− IN (t)∥∞ ≤ ∥I(t)− IM

N (t)∥∞ + ∥IM
N (t)− IN (t)∥∞

∥R(t)−RN (t)∥∞ = ∥R(t)−RM
N (t) +RM

N (t)−RN (t)∥∞ ≤ ∥R(t)−RM
N (t)∥∞ + ∥RM

N (t)−RN (t)∥∞
∥D(t)−DN (t)∥∞ = ∥D(t)−DM

N (t) +DM
N (t)−DN (t)∥∞ ≤ ∥D(t)−DM

N (t)∥∞ + ∥DM
N (t)−DN (t)∥∞.

(4.2)

Now, let us examine the terms ∥S(t)−SM
N (t)∥∞ , ∥I(t)−IM

N (t)∥∞ , ∥R(t)−RM
N (t)∥∞ , ∥D(t)−DM

N (t)∥∞ .
The remainder terms of the expansions of the Maclaurin series are expressed as follows:

tN+1

(N+1)!S
(N+1)(ct),

tN+1

(N+1)!I
(N+1)(ct),

tN+1

(N+1)!R
(N+1)(ct),

tN+1

(N+1)!D
(N+1)(ct),

(4.3)

for 0 ≤ t ≤ b and from here it becomes

∥S(t)− SM
N (t)∥∞ ≤ bN+1

(N+1)!∥S
(N+1)(ct)∥∞,

∥I(t)− IM
N (t)∥∞ ≤ bN+1

(N+1)!∥I
(N+1)(ct)∥∞,

∥R(t)−RM
N (t)∥∞ ≤ bN+1

(N+1)!∥R
(N+1)(ct)∥∞,

∥D(t)−DM
N (t)∥∞ ≤ bN+1

(N+1)!∥D
(N+1)(ct)∥∞.

(4.4)

On the other hand, the matrix forms of PLPS are known from Lemma 2.2. Also, the expansions of
Maclaurin series can be written, as SM

N (t) = TN (t)ÃN , IM
N (t) = TN (t)B̃N , RM

N (t) = TN (t)C̃N , DM
N (t) =

TN (t)D̃N , respectively. Thus, for the terms ∥SM
N (t) − SN (t)∥∞ , ∥IM

N (t) − IN (t)∥∞ , ∥RM
N (t) − RN (t)∥∞ ,

∥DM
N (t)−DN (t)∥∞ , we write

∥SM
N (t)− SN (t)∥∞ = ∥TN (t)(ÃN −MNAN )∥∞ ≤ ∥TN (t)∥∞

(
∥ÃN∥∞ + ∥MN∥∞∥AN∥∞

)
∥IM

N (t)− IN (t)∥∞ = ∥TN (t)(B̃N −MNBN )∥∞ ≤ ∥TN (t)∥∞
(
∥B̃N∥∞ + ∥MN∥∞∥BN∥∞

)
∥RM

N (t)−RN (t)∥∞ = ∥TN (t)(C̃N −MNCN )∥∞ ≤ ∥TN (t)∥∞
(
∥C̃N∥∞ + ∥MN∥∞∥CN∥∞

)
∥DM

N (t)−DN (t)∥∞ = ∥TN (t)(D̃N −MNDN )∥∞ ≤ ∥TN (t)∥∞
(
∥D̃N∥∞ + ∥MN∥∞∥DN∥∞

)
.

(4.5)

As a next step, because of 0 ≤ t ≤ b , ∥TN (t)∥∞ is expressed as

∥TN (t)∥∞ ≤ max {bN , 1} := vN . (4.6)
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By using the expression (4.6) into the inequality (4.5), it becomes

∥SM
N (t)− SN (t)∥∞ ≤ vN

(
∥ÃN∥∞ + ∥MN∥∞∥AN∥∞

)
,

∥IM
N (t)− IN (t)∥∞ ≤ vN

(
∥B̃N∥∞ + ∥MN∥∞∥BN∥∞

)
,

∥RM
N (t)−RN (t)∥∞ ≤ vN

(
∥C̃N∥∞ + ∥MN∥∞∥CN∥∞

)
,

∥DM
N (t)−DN (t)∥∞ ≤ vN

(
∥D̃N∥∞ + ∥MN∥∞∥DN∥∞

)
.

(4.7)

Accordingly, if the inequalities (4.4) and (4.7) are substituted in (4.2), then we gain (4.1), which completes
the proof. 2

Theorem 4.2 (Error Estimation) The error problem for the SIRD model (1.1) is constructed as

e
′

1,N (t) + β
P (e1,N (t)e2,N (t) + IN (t)e1,N (t) + SN (t)e2,N (t)) = −Re1,N (t)

e
′

2,N (t)− β
P (e1,N (t)e2,N (t) + IN (t)e1,N (t) + SN (t)e2,N (t)) + γe2,N (t) + δe2,N (t) = −Re2,N (t)

e
′

3,N (t)− γe2,N (t) = −Re3,N (t)

e
′

4,N (t)− δe2,N (t) = −Re4,N (t)

e1,N (0) = 0, e2,N (0) = 0, e3,N (0) = 0, e4,N (0) = 0

(4.8)

where
e1,N (t) = S(t)− SN (t)
e2,N (t) = I(t)− IN (t)
e3,N (t) = R(t)−RN (t)
e4,N (t) = D(t)−DN (t).

Proof The approximate solutions (1.2) provide the SIRD model (1.1). Therefore, we get

Re1,N (t) = S ′

N (t) + β
PSN (t)IN (t)

Re2,N (t) = I ′

N (t)− β
PSN (t)IN (t) + γIN (t) + δIN (t)

Re3,N (t) = R′

N (t)− γIN (t)

Re4,N (t) = D′

N (t)− δIN (t)
SN (0) = S0, IN (0) = I0,RN (0) = R0,DN (0) = D0.

(4.9)

Hence, subtracting model (4.9) from model (1.1), we have the error problem (4.8). As a result, the proof
of the theorem is completed. 2

Corollary 4.3 If problem (4.8) is solved by using PLCM via MATLAB, then the estimated error functions
e1,N,M (t) , e2,N,M (t) , e3,N,M (t) , e4,N,M (t) are obtained for M > N .

5. Simulations
In this section, PLCM and the error estimation method are applied to SIRD model (1.1). The explanations
of the required data are presented in Table 1. Our method is applied to the model for two different scenarios.
For Scenarios 1, April 4, 2020 was chosen as the starting point. Accordingly, the initial values are as follows:
S0= 83,996,609; I0= 3013; R0= 302; D0= 76 †. Also, β, γ, δ and in SIRD model (1.1) are given in Table 2

†Republic of Türkiye, Ministry of Health, COVID-19 Information Platform, Available from: https://covid19.saglik.gov.tr/TR-
66935/genel-koronavirus-tablosu.html
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for Scenarios 1. These are identified for Türkiye’s Covid-19 info. For Scenarios 2, October 31, 2020 was chosen
as the starting point. Accordingly, S0 , I0 , R0 , D0 are respectively, 83, 996, 206; 2213; 1506; 75 ‡. Also,
β, γ, δ and in SIRD model (1.1) are given in Table 3. These parameters are taken from the source in [52]. The
SIRD model obtained according to the determined parameters is solved using a program written in MATLAB
for both scenarios. Moreover, the outcomes of PLCM and RKM (Runge-Kutta method) are compared for both
scenarios. Note that the results of RKM are obtained using MATLAB and we employed numerical simulation
using ode15s solver in MATLAB. All application results are presented in tables and graphs.

Table 1. Explanations of the solutions and the errors
Data Explanation
S(t) The susceptible individuals at time t
I(t) The individuals infected with COVID-19 at time t
R(t) The individuals recovered from COVID-19 at time t
D(t) The individuals dead from COVID-19 at time t
SN (t) The susceptible individuals at time t according to the method in Section (3)
IN (t) The individuals infected with COVID-19 at time t according to the method in Section (3)
RN (t) The individuals recovered from COVID-19 at time t according to the method in Section (3)
DN (t) The individuals dead from COVID-19 at time t according to the method in Section (3)
e1,N,M (t) The estimated error function for the susceptible population according to the method in Section (4)
e2,N,M (t) The estimated error function for the infected population according to the method in Section (4)
e3,N,M (t) The estimated error function for the recovered population according to the method in Section (4)
e4,N,M (t) The estimated error function for the dead population according to the method in Section (4)

Table 2. The values of β, γ, δ in SIRD model (1.1) (Scenarios 1).
Transmission rate Recovery rate Death rate

Parameters β γ δ
Values 1/14 786/23, 934 501/23, 934

[1/day] [44] [Total recovered/total infected] [34] [Total dead/total infected] [34]

Table 3. The values of β, γ, δ , in SIRD model (1.1) (Scenarios 2).
Transmission rate Recovery rate Death rate

Parameters β γ δ
Values 0.06194 0.04375 0.001911

[52] [52] [52]

The SIRD epidemic model becomes for Scenarios 1

dS(t)
dt = −(8.5034e− 10) S(t)I(t)

dI(t)
dt = (8.5034e− 10) S(t)I(t)− (0.0328) I(t)− (0.0209) I(t)

dR(t)
dt = (0.0328) I(t)

dD(t)
dt = (0.0209) I(t)

(5.1)

together with conditions
S(0) = 83, 996, 609
I(0) = 3013, R(0) = 302, D(0) = 76.

(5.2)

‡Republic of Türkiye, Ministry of Health, COVID-19 Information Platform, Available from: https://covid19.saglik.gov.tr/TR-
66935/genel-koronavirus-tablosu.html
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According to the solution forms in (1.2), for N = 5 we get

S5(t) =
∑5

n=0 anQn(t),

I5(t) =
∑5

n=0 bnQn(t),

R5(t) =
∑5

n=0 cnQn(t),

D5(t) =
∑5

n=0 dnQn(t)

(5.3)

or by utilizing Lemma 2.2, instead of (5.3) it can be written

S5(t) = T5(t)M5A5

I5(t) = T5(t)M5B5

R5(t) = T5(t)M5C5

D5(t) = T5(t)M5D5

(5.4)

where

A5 =
[
a0 a1 a2 a3 a4 a5

]T
, B5 =

[
b0 b1 b2 b3 b4 b5

]T
, C5 =

[
c0 c1 c2 c3 c4 c5

]T
,

D5 =
[
d0 d1 d2 d3 d4 d5

]T
, T5(t) =

[
1 t t2 t3 t4 t5

]
, MT

5 =


2 0 0 0 0 0
0 2 0 0 0 0
2 0 4 0 0 0
0 6 0 8 0 0
2 0 16 0 16 0
0 10 0 40 0 32

 .

By determining the collocation points, we obtain t0 = 0, t1 = 12, t2 = 24, t3 = 36, t4 = 48, t5 = 60 for the
range [0, 60] . According to system (3.2), we can write

W0A5 +G1,0B5 = 0
W0B5 +G2,0B5 = 0
W0C5 +G3,0B5 = 0
W0D5 +G4,0B5 = 0
W1A5 +G1,1B5 = 0
W1B5 +G2,1B5 = 0
W1C5 +G3,1B5 = 0
W1D5 +G4,1B5 = 0

...
W5A5 +G1,5B5 = 0
W5B5 +G2,5B5 = 0
W5C5 +G3,5B5 = 0
W5D5 +G4,5B5 = 0

(5.5)
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where

Wi = T5(ti)F5M5,
G1,i = (8.5034e− 10) (T5(ti)M5A5)T5(ti)M5,
G2,i = −(8.5034e− 10) (T5(ti)M5A5)T5(ti)M5 + (0.0328) T5(ti)M5 + (0.0209) T5(ti)M5,
G3,i = −(0.0328) T5(ti)M5,
G4,i = −(0.0209) T5(ti)M5,

T5(0) =
[
1 0 0 0 0 0

]
, T5(12) =

[
1 12 122 123 124 125

]
, T5(24) =

[
1 24 242 243 244 245

]
,

T5(36) =
[
1 36 362 363 364 365

]
, T5(48) =

[
1 48 482 483 484 485

]
,

T5(60) =
[
1 60 602 603 604 605

]
, M5 =


2 0 2 0 2 0
0 2 0 6 0 10
0 0 4 0 16 0
0 0 0 8 0 40
0 0 0 0 16 0
0 0 0 0 0 32

 , F5 =


0 1 0 0 0 0
0 0 2 0 0 0
0 0 0 3 0 0
0 0 0 0 4 0
0 0 0 0 0 5
0 0 0 0 0 0

 .

By using (2.7), the matrix representations of the initial conditions (5.2) are expressed as follows:

U5A5 = 83, 996, 609, U5 = T5(0)M5,
U5B5 = 3013, U5 = T5(0)M5,
U5C5 = 302, U5 = T5(0)M5,
U5D5 = 76, U5 = T5(0)M5,

(5.6)

where
T5(0) =

[
1 0 0 0 0 0

]
.

Now, the obtained system by combining (5.5)-(5.6) is solved by using MATLAB. Thus, by calculating
the coefficient matrices A5 , B5 , C5 and D5 , these are written in the solution form (5.4). Consequently, our
approximate solutions become as follows:

S5(t) = 83, 996, 609− (2.1537e+ 02) t− (1.8846e+ 00) t2 − (1.1813e− 02) t3 − (3.4679e− 05) t4 − (3.2610e− 07) t5,
I5(t) = 3013 + (5.3229e+ 01) t+ (4.6567e− 01) t2 + (2.9122e− 03) t3 + (8.6147e− 06) t4 + (7.9519e− 08) t5,
R5(t) = 302 + (9.9026e+ 01) t+ (8.6660e− 01) t2 + (5.4360e− 03) t3 + (1.5918e− 05) t4 + (1.5059e− 07) t5,
D5(t) = 76 + (6.3120e+ 01) t+ (5.5238e− 01) t2 + (3.4649e− 03) t3 + (1.0146e− 05) t4 + (9.5989e− 08) t5.

(5.7)

In Figure 2, the approximate solution functions of the SIRD model (5.1)-(5.2) are depicted when N

is selected as 5, 8, and 10 for Scenarios 1. According to this figure, it is said that there is an increase in
the infected population, the recovered population and the dead population, while there is a diminish in the
susceptible population. In Figure 3, the approximate solution functions of (5.1)-(5.2) (the infected population
I5(t) , the recovered population R5(t) and the dead population D5(t)) are shown for Scenarios 1. According to
outcomes of the method for Scenarios 1, at 60 days, the highest rate is recovery. In Figure 4, our approximate
solution functions for N = 5 are compared with the approximate solution functions of RKM for Scenarios 1.
From here, it is concluded that the results are similar according to the two techniques. From this, it is said that
our method is successful.
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Figure 2. Plots of Pell-Lucas polynomial solutions of (5.1)-(5.2) for N = 5 , N = 8 , N = 10 (Scenarios 1).
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Figure 3. Comparison of the infected class, the recovered class and the dead class for N = 5 (Scenarios 1).
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Figure 4. Plots of the comparison of Pell-Lucas polynomial solutions of (5.1)-(5.2) for N = 5 with RKM (Scenarios 1).

The residual error functions of (5.1)-(5.2) are compared when N is selected as 5, 8, and 10 in Figure 5,
while the estimated error functions of (5.1)-(5.2) are compared when (N,M) is selected as (5, 6), (8, 9), and
(10, 11) in Figure 6 (Scenarios 1). Additionally, the values of these error functions at some points are given in
Table 4. Moreover, the CPU times (in seconds) are demonstrated in Table 4 (Scenarios 1).

Now, let us examine the results when we apply the Pell-Lucas collocation method to the SIRD model
at the range [0, 300] for Scenario 2. In Figure 7, the approximate solution functions of the SIRD model are
shown for N = 8 , N = 10 and N = 12 in the range [0, 300] (Scenarios 2). Accordingly, there is an increase in
the infected population, the recovered population and the dead population population. As for the susceptible
population, there is a diminish. In Figure 8, the approximate solution functions of the SIRD model (the infected
population I8(t) , the recovered population R8(t) and the dead population D8(t)) are visualized for Scenario
2. Accordingly, the recovery rate is higher than the infected rate and the death rate at 300 days. In addition
to these, our approximate solution functions for N = 8 are compared with the approximate solution functions
of RKM for Scenario 2 in Figure 9. From here, it is deduced that the results of these two methods are similar
and our method is successful.
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Table 4. The residual absolute errors (RAE) and the estimated absolute errors (EAE) at some t points (Scenarios 1).
RAE for SN (t) EAE for SN (t)

ti N = 8 N = 10 (N,M) = (8, 9) (N,M) = (10, 11)

0 2.5056e-05 1.7783e-08 4.0250e-23 2.1607e-25
10 3.9553e-07 1.0352e-10 6.2166e-05 5.4102e-08
20 5.4813e-08 1.0179e-11 7.0338e-05 8.0230e-08
30 9.1259e-14 9.8672e-14 8.0867e-05 1.1138e-07
40 2.7207e-08 5.3320e-12 9.3632e-05 1.4853e-07
50 7.7956e-08 2.2799e-11 1.0886e-04 1.9283e-07
60 1.5689e-14 2.0004e-13 1.2527e-04 2.4498e-07

CPU time(s) 0.1563 0.3281 0.1875 0.3438
RAE for IN (t) EAE for IN (t)

N = 8 N = 10 (N,M) = (8, 9) (N,M) = (10, 11)

0 4.5785e-06 1.5829e-08 1.5302e-23 8.4721e-26
10 7.1281e-08 9.2290e-11 1.1546e-05 3.3436e-08
20 9.7305e-09 9.1821e-12 1.3613e-05 3.9903e-08
30 1.4936e-13 1.5413e-13 1.6220e-05 4.7592e-08
40 4.6660e-09 4.8482e-12 1.9364e-05 5.6765e-08
50 1.3107e-08 2.0559e-11 2.3111e-05 6.7690e-08
60 5.1165e-14 6.0192e-14 2.7281e-05 8.0100e-08

CPU time(s) 0.1563 0.3281 0.1875 0.3438
RAE for RN (t) EAE for RN (t)

N = 8 N = 10 (N,M) = (8, 9) (N,M) = (10, 11)

0 1.2506e-05 1.1849e-09 1.9375e-23 7.7570e-27
10 1.9802e-07 6.7026e-12 3.0915e-05 1.2607e-08
20 2.7533e-08 6.3793e-13 3.4643e-05 2.4614e-08
30 8.6016e-15 1.9237e-14 3.9482e-05 3.8939e-08
40 1.3766e-08 3.4413e-13 4.5357e-05 5.6028e-08
50 3.9605e-08 1.3239e-12 5.2367e-05 7.6410e-08
60 1.9096e-14 1.3046e-14 5.9845e-05 1.0068e-07

CPU time(s) 0.1563 0.3281 0.1875 0.3438
RAE for DN (t) EAE for DN (t)

N = 8 N = 10 (N,M) = (8, 9) (N,M) = (10, 11)

0 7.9714e-06 7.4792e-10 7.1132e-23 5.8679e-28
10 1.2622e-07 4.2326e-12 1.9705e-05 8.0227e-09
20 1.7549e-08 4.1177e-13 2.2082e-05 1.5676e-08
30 9.4655e-15 4.6421e-15 2.5166e-05 2.4807e-08
40 8.7748e-09 2.0375e-13 2.8911e-05 3.5699e-08
50 2.5244e-08 8.8040e-13 3.3379e-05 4.8691e-08
60 2.7559e-15 2.3016e-14 3.8146e-05 6.4160e-08

CPU time(s) 0.1563 0.3281 0.1875 0.3438
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Figure 5. Comparison of the residual absolute error functions of (5.1)-(5.2) (Scenarios 1).

In Figure 10, the residual error functions of the SIRD model are compared for N = 8, N = 10 and
N = 12 . In Figure 11, the estimated error functions of the SIRD model are compared for (N,M) = (8, 9) ,
(N,M) = (10, 11) and (N,M) = (12, 13) for Scenarios 2. Additionally, the values of these error functions at
some points are given in Table 5. Moreover, the comparisons of the results of the norms ||L||∞ for Scenarios
2 are shown in Table 6. For this, the upper bound of the errors obtained with the error estimation method in
Theorem 4.2 is calculated with ||L||∞ by using

||L||∞ = ||ei,N,M ||∞ = max{|ei,N,M |}, i = 1, 2, 3, 4.

According to Figures 5, 6, 10, 11 and Tables 4, 5, it is said that less errors are made when larger values
of N and (N,M) are chosen for both scenarios. In addition, the results for residuals absolute errors are
more accurate than the estimated ones. Thanks to the code written in MATLAB, the outcomes are quickly
achieved in a very short time. This can be seen in the Table 4. Since the biggest increase is in the recovery
rate, if the infected population is quarantined, the spread of the pandemic will decrease. Thus, the rate of
recovery will increase further as the rate of spread will decrease. This is a positive result for the course of the
pandemic. Because, if adequate isolation measures are taken, the epidemic is expected to decrease. According
to all outcomes, it is observed that our techniques is successful.
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Figure 6. Comparison of the estimated absolute error functions of (5.1)-(5.2) (Scenarios 1).
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Figure 7. Plots of Pell-Lucas polynomial solutions of the SIRD model for N = 8 , N = 10 , N = 12 (Scenarios 2).
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Figure 8. Comparison of the infected class, the recovered class and the dead class for N = 8 (Scenarios 2).
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Table 5. The residual absolute errors (RAE) and the estimated absolute errors (EAE) at some t points (Scenarios 2).

The Residual Absolute Errors |Rei,N (t)|
ti |Re1,8(t)| |Re1,12(t)| |Re2,8(t)| |Re2,12(t)| |Re3,8(t)| |Re3,12(t)| |Re4,8(t)| |Re4,12(t)|
0 6.5988e-07 4.1134e-09 2.7636e-07 9.9962e-10 3.6747e-07 2.9834e-09 1.6051e-08 1.3032e-10
50 1.0693e-08 1.7949e-15 4.6200e-09 1.7949e-15 5.8186e-09 1.3003e-20 2.5416e-10 2.7244e-22
100 1.5606e-09 1.3432e-14 7.1628e-10 1.3432e-14 8.0900e-10 5.4058e-21 3.5337e-11 2.7740e-22
150 1.7563e-10 6.9599e-14 1.7563e-10 6.9599e-14 1.3609e-21 1.3221e-20 1.1181e-21 1.2983e-22
200 9.2437e-11 2.7334e-13 5.1461e-10 2.7334e-13 4.0450e-10 4.2674e-20 1.7669e-11 3.2665e-22
250 7.0006e-09 5.2242e-13 5.7860e-09 5.2242e-13 1.1637e-09 8.6970e-20 5.0831e-11 2.1521e-21
300 2.0803e-08 5.3210e-13 2.0803e-08 5.3210e-13 5.5126e-20 1.8637e-19 5.8376e-22 1.2840e-20

The Estimated Absolute Errors |ei,N,M (t)|
ti |e1,8,9(t)| |e1,12,13(t)| |e2,8,9(t)| |e2,12,13(t)| |e3,8,9(t)| |e3,12,13(t)| |e4,8,9(t)| |e4,12,13(t)|
0 1.1553e-21 1.0507e-35 4.9937e-23 8.1328e-36 6.3181e-22 1.3172e-35 2.7598e-23 5.7535e-37
50 2.8245e-10 2.4091e-16 4.6889e-13 2.4440e-16 1.5341e-10 3.3307e-16 6.7012e-12 1.4548e-17
100 6.5971e-09 7.2594e-14 8.0097e-10 1.3664e-13 3.5174e-09 1.3427e-13 1.5364e-10 5.8649e-15
150 6.5715e-09 6.8712e-13 1.1866e-08 3.7895e-12 2.5742e-09 1.4734e-12 1.1244e-10 6.4358e-14
200 1.2618e-07 3.6054e-11 6.9077e-08 2.7527e-11 7.4385e-08 1.5031e-11 3.2491e-09 6.5657e-13
250 7.3952e-07 2.4310e-10 3.0284e-07 9.2390e-11 4.2730e-07 1.5052e-10 1.8664e-08 6.5745e-12
300 3.3360e-06 6.4680e-10 1.3500e-06 2.1807e-10 1.9249e-06 4.1954e-10 8.4078e-08 1.8326e-11

Table 6. Comparison of norms ||L||∞ for Scenarios 2 .

(N,M) ||e1,N,M ||∞ ||e2,N,M ||∞ ||e3,N,M ||∞ ||e4,N,M ||∞
(8,9) 5.7766e-22 2.4968e-23 3.1590e-22 1.3799e-23
(12,13) 5.2533e-36 4.0664e-36 6.5859e-36 2.8767e-37
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Figure 10. Comparison of the residual absolute error functions of the SIRD model (Scenarios 2).
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Figure 11. Comparison of the estimated absolute error functions of the SIRD model (Scenarios 2).

6. Conclusions
In this research, an SIRD model is developed to explore the current status of COVID-19 and for estimating its
future evolutions in Türkiye. PLCM is implemented to this model. This method transforms the SIRD model to
a matrix system that is a system of nonlinear algebraic equations. This system is solved via MATLAB, thus the
approximate solutions are obtained. Moreover, the error analysis is performed in Section 4. The significance of
this technique is to have information about the made error. The method is applied to the SIRD model for two
different scenarios. In these two scenarios, different parameters and initial conditions are analyzed. In addition,
the method is applied for the range of [0, 60] in the first scenario and for the range of [0, 300] in the second
scenario. As a result of the application, the assumed solution functions represented the susceptible, infected,
recovered and dead populations are shown in Figures 2, 3, 7, 8. According to this, the susceptible population
is diminishing, while other populations is increasing. In Figure 3, while the infected population increased from
3013 to 8685, the recovered population and the died population increased, respectively, from 302 to 10,861 and
from 76 to 6806 for N = 5 for Scenario 1. In Figure 8, while the infected population increased from 2184 to
301,712, the recovered population and the died population increased, respectively, from 1512 to 827,964 and
from 84 to 36,183 for N = 8 for Scenario 2. Therefore, the recovered population is increased at a greater rate
for both scenarios. Since the initial point, the total number of infected patients has increased for both scenarios.
However, the number of the recovered patients is increasing at a greater rate. In addition, a comparison is made
with RKM in Figures 4 and 9 for Scenario 1 and Scenario 2, respectively. From here, it is anticipated that the
results of our techniques and the results of RKM are analogous.

On the other hand, the absolute errors (the residual and the estimated) of these solution functions for
two scenarios are examined in Figures 5, 6, 10, 11 and Tables 4, 5. Accordingly, it is concluded that the error
declines while the value of N rises. When these errors are compared, it is seen the that residual absolute errors
give more accurate results.
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When Tables 4 and 5 are analyzed for N = 8 , it is observed that both the residual absolute errors and
the estimated absolute errors of Scenario 2 (Table 5) give better results. In other words, the errors obtained by
applying the method to the SIRD model are more reasonable than in Scenario 2 (Table 5). An advantage of our
method is that the results can be quickly obtained by using the code created in MATLAB. Other advantage
of our method is that effective outcomes are obtained from our method even if the selected N value is very
small. Another advantage of our method is that the structure of the collocation method is simple and the
computational cost is low. It also provides a very easy and simple procedure for solving various problems
involving differential equations that model real-world phenomena. Our method has two more advantages of
great importance: The first is that it can be implemented to any country by identifying the parameters in SIRD
model for several countries. The results are achieved in seconds, through code created in MATLAB. In this way,
precautionary measures can be taken to reduce infections. The second is that the method can be implemented
for like these infections. Although, the method also has some disadvantages. First, the errors can be made
when entering data into the MATLAB program. This is a problem because it does not reflect reality. Secondly,
if the values of N and M chosen in the method are too large, inappropriate results may be obtained due to the
increased complexity of the operations in MATLAB. Nevertheless, there was no problem in our applications as
appropriate N and M values are chosen. According to all these results, it is observed that our method is the
efficient method for solving the SIRD model.
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