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Abstract: We study fibration category structures induced by enrichments over symmetric monoidal categories that
are also fibration categories. Let V be a monoidal category that is also a fibration category. Assuming that V has
an interval object, we demonstrate that the fibration category structure on V can be transferred to any V -enriched
category through corepresentable functors, provided certain power objects exist. Furthermore, we extend this result to
its G -equivariant version for a group G , showing that, under mild conditions, the category of G -objects in a V -enriched
category admits a (nontrivial) fibration category structure. We also show that several categories of topological algebras
and associative algebras, along with their G -equivariant analogues, can be structured as fibration categories obtained
through this method. Finally, we present some applications of these results, including the recovery of existing findings
related to (equivariant) K -theory and E -theory of operator algebras.

Key words: Fibration category, homotopy, enriched category, path object, equivariant homotopy

1. Introduction
In homotopy theory, fibration categories provide an efficient framework for many homotopy terminal construc-
tions, such as homotopy fiber sequences, loop space objects, and homotopical cohomology theories. Various
types of fibration (and their dual versions, cofibration categories) have been studied in the literature; see,
e.g., [5], [4], and [26]. In this paper, we focus on Brown’s version, namely the “category of fibrant objects.”
These fibration categories have been instrumental in studying the homotopy theories of various objects, such as
C∗ -algebras [30], spectral sequences [18], and cofibration categories [29].

A category of fibrant objects is defined as a category equipped with two classes of morphisms, called
weak equivalences and fibrations, that satisfy certain conditions. In this paper, we specifically focus on the
structures of categories of fibrant objects that are induced by enrichments over symmetric monoidal categories,
which are also categories of fibrant objects. Examples of such appear frequently in the literature and have many
important applications in noncommutative topology (see, e.g., [28, 30]). We denote (V,⊗, [−,−], 1) as a closed
symmetric monoidal category with the unit represented by the terminal object 1 = ∗ . Such monoidal categories
are often called “semicartesian monoidal”. Note that all cartesian monoidal categories are semicartesian, but
not vice versa; e.g., Cat with the non-Cartesian tensor product in [12]. We consider (V,weV ,fibV) a category
of fibrant objects satisfying the following “interval condition” (IC) that reads:
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(IC) there is a factorization of the codiagonal ∗ q ∗ → I → ∗ as a composition of an acyclic fibration
followed by a pseudo-cofibration.

Here, an acyclic fibration is defined as a fibration that is also a weak equivalence, while a pseudo-
cofibration is a morphism whose pullback power with an (acyclic) fibration is an (acyclic) fibration. For details
regarding this condition, see Lemma 3.2 and the preceding paragraph. Note that in the case of a monoidal
model category, this definition of pseudo-cofibration coincides with that given in [21].

We first prove the following theorem.

Theorem 1.1 Suppose that (V,⊗, [−,−], 1) is a closed symmetric monoidal category and that (V,weV ,fibV)
is a category of fibrant objects satisfying (IC) . Let A be a subcategory of V that generates V and contains I .
If C is a finitely complete category that is enriched over V and powered over A , then C is a category of fibrant
objects in which f is a weak equivalence (resp. fibration) if, for every D ∈ C , the morphism C(D, f) is a weak
equivalence (resp. fibration) in V .

Let G be a group and let V and C be as defined in Theorem 1.1. Denote by GV and GC the categories of
G -objects in V and C , respectively. For A and B in GC (i.e. G -objects in C ), we let GC(A,B) to denote the
object C(A,B) in V together with the G -action given by conjugation (see 3.1 for the precise definition). Thus,
GC(A,B) is an object in GV . For any H ≤ G , the H -fixed point object functor (−)H : GV → V is defined
as the functor given by the limit over H ; that is, for X in GV , we have XH = limBH X , where BH is the
delooping groupoid of H (a category with single object and elements of H as morphisms on this object), and
X is considered a functor from BH to V with the restricted H -action. The equivariant version of Theorem
1.1 is presented as follows.

Theorem 1.2 Let G be a group and F be a collection of subgroups of G . Let V and C be as defined in
Theorem 1.1 such that limits defining H -fixed points exist in V for every H ∈ F . Then, GC is a category
of fibrant objects in which f is a weak equivalence (resp. fibration) if, for every D ∈ GC and H ∈ F , the
morphism GC(D, f)H is a weak equivalence (resp. fibration) in V .

The paper is organized as follows: In Section 2, we provide essential background on categories of fibrant
objects. In Section 3, we state and prove the theorems presented above, along with other auxiliary results. We
prove Theorem 1.1 by formally verifying each axiom of a category of fibrant objects separately. Subsequently,
in Section 3.1, we outline the prerequisites for equivariant constructions and prove Theorem 1.2. In Section 4,
we present several examples that follow from our results. We demonstrate that various categories of operator
algebras, including Uuye and Schocket’s homotopy theory for C∗ -algebras, serve as examples of Theorem 1.1,
while their equivariant versions correspond to Theorem 1.2. Additionally, we show that the categories of metric
spaces and algebras (including G -algebras) over a unital ring R are categories of fibrant objects derived from our
theorems. In Section 5, we apply our results to recover known findings, demonstrating that the equivariant KK -
category, the equivariant E -category of G -C∗ -algebras, and the kk -category of R -algebras are triangulated
categories.

2. Preliminaries
In this section, we provide essential background on categories of fibrant objects for the readers’ convenience.
For further details, we refer the reader to [5].
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Definition 2.1 A category of fibrant objects is a category C with two distinguished subcategories: weC of weak
equivalences and fibC of fibrations. Both subcategories contain the core of C (i.e. both include all isomorphisms)
and satisfy the following axioms:

FC1 C has all finite products, and a terminal object ∗ .

FC2 weC has the 2-out-of-3 property; i.e. assuming v ◦ w is defined, if any two of v , w , and v ◦ w are in
weC , then so is the third.

FC3 Pullbacks along (acyclic) fibrations exist and are again (acyclic) fibrations. Here, an acyclic fibration
means a fibration that is also a weak equivalence; i.e. an arrow in the intersection weC ∩ fibC .

FC4 For each object A of C , there exists an object PA in C (called the path object) which satisfies the following:
there is a weak equivalence ωA : A→ PA and a fibration δA = (δ0, δ1) : PA→ A×A , and the composition
δA ◦ ωA is equal to the diagonal map d : A→ A×A .

FC5 All objects are fibrant; i.e. for each object A , the unique map to the terminal object A→ ∗ is in fibC .

If we do not require FC5 and weaken FC4 so that only fibrant objects have path objects, then such a C is
called a prefibration category. The full-subcategory of fibrant objects Cfib in a prefibration category C is a
category of fibrant object, see [26, Defn. 1.1.2 and Prop. 2.1.2].

For f, g : A → B in C , f is said to be right-homotopic to g if there exist H : A → PB such that
δ0 ◦H = h and δ1 ◦H = g and f is homotopic to g if there exist a weak equivalence w : A′ → A such that
f ◦ w is right-homotopic to g ◦ w . The homotopy relation is an equivalence relation on C(A,B) , see [5]. The
set of homotopy classes in C(A,B) is denoted by πC(A,B) and the resulting quotient category is denoted by
πC .

Theorem 2.2 ([5], Theorem 2.1) The homotopy category Ho C is the category with the same objects as C
and has hom-sets given by

Ho C(A,B) = colim
A′ ≃−→A

πC(A′, B).

The theorem implies that any morphism in the homotopy category of a category of fibrant objects can be written
as a zig-zag of length 2 .

A functor F : C → D between two categories of fibrant objects is called exact if it preserves fibrations,
acyclic fibrations, terminal objects and pullbacks along fibrations.

Lemma 2.3 ([5], Ken Brown’s Lemma) If a functor between two categories of fibrant objects sends acyclic
fibrations to weak equivalences, then it preserve all weak equivalences. In particular, exact functors preserve
weak equivalences.

Lemma 2.4 ([5], Factorization Lemma) Let (C,weC ,fibC) be a category of fibrant objects. Then, every
morphism f in C factors as f = p ◦ i with f ∈ fibC and w is a section of an acyclic fibration.

Factorization Lemma allows us to define homotopy fiber sequences in C . Given f : A → B the homotopy
fiber of f , denoted by hofib(f) , is the pullback of the diagram A → B ← PB . The homotopy fiber of the
path fibration PA → A × A is called the loop space object of A and denoted by ΩA . By definition, the loop
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space construction is functorial and defines an endofunctor on C . The loop object ΩA is a group object and
ΩΩA = Ω2A is an abelian group object in the homotopy category Ho C . If C is a pointed category of fibrant
objects (i.e. the terminal object is also initial), then the stable homotopy category StHo C is given by the
Spanier-Whitehead category; i.e. objects as pairs (A,n) where A ∈ C and n ∈ N and morphisms are given by

StHo C((A,n), (B,m)) = colim
k

(Ωn+kA,Ωm+kB).

This is a triangulated category with shift (−, n) 7→ (−, n− 1) and with distinguished triangles isomorphic to

(ΩB,n)
j→ (F, n)

i→ (A,n)
p→ (B,n),

where p is a fibration with fiber F and j is the map induced by the action of the loop object on the fiber of
p , see [5, Sec. 4] and [15].

3. Main results
Notation and convention
In this paper, we assume the categories are locally small and concrete, except possibly the homotopy categories
of corresponding homotopical categories. For a V -enriched category C , we denote the V -valued hom-functors
by C(−,−) and Set -valued hom-functors by C0(−,−) . We say a functor preserve (co)limits when it preserve
(co)limits that exists in the codomain. See [27] for more details.

Let V be a category and A be a full subcategory of V . We say V is generated by A if for every Y in V
there exist a functor F : J → A such that Y = colimJ F ◦ ι where ι : A → V is the inclusion. We should also
mention that similar notions exist in the literature, known as “dense” or “colimit dense” subcategories, see e.g.
[1]. If V is cocomplete and A = V then the condition above is trivially satisfied. Nontrivial examples of such
categories also appear quite often. Here, we provide several well-known examples:

(i) If V is the category of simplicial sets, then one can choose A as its full-subcategory of simplicial n -
simplices for every n ∈ N , as every simplicial set is a colimit of simplicial simplices over its category of
simplices.

(ii) More generally, if V is a category of preshaves over a small category C , then A can be chosen as all
representable functors as every presheaf is a colimit of representables over its category of elements.

(iii) The category of ∆ -generated spaces (see [11] originally based on J. Smith’s unpublished work∗) when ∆

is chosen to be the subcategory of topological spaces of topological n -simplices.

(iv) More generally, if V is an accessible category in the sense of [2], then there is a small subcategory of
“small objects” that generates V (see [2] for details).

(v) Yet another example is the category of compactly generated spaces (which is not an accessible category)
where A is chosen to be the category of compact Hausdorff spaces.

∗Dugger D (2003). Notes on Delta-generated spaces [online]. Website https://pages.uoregon.edu/ddugger/delta.html [ac-
cessed 22 April 2024].
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Lemma 3.1 Let V be a closed symmetric monoidal category that is generated by a subcategory A . If C
is a V -enriched category that is powered over A , then for every object D in C the corepresentable functor
C(D,−) : C → V preserves conical limits.

Proof Let F : I → C be a functor from a small category I . Then, C(D, limI F ) is a cone over C(D,F ) .
Thus, there exist a morphism

q : C(D, lim
I
F )→ lim

J
C(D,F ).

Since corepresentables into Set are continuous, C(D, limJ F ) is a limiting cone for the underlying Set -functor.
In particular, q0 is a bijection of the underlying sets. Now, let X ∈ A and consider the following diagram

V0(X, C(D, lim
J
F ))

φ0

��

V0(X,q) // V0(X, limJ C(D,F ))

φ1

��
C0(D,⋔ (X, lim

J
F ))

ν0

��

lim
J
V0(X, C(D,F ))

ν1

��
C0(D, lim

J
⋔ (X,F ))

q1 // lim
J
C0(D,⋔ (X,F ))

.

The maps ϕ0 and ν1 are bijections as they are underlying maps of isomorphisms in V that comes from the
powering over X . Since V is closed monoidal (so that [X,−]) preserves limits), ϕ1 is a bijection. This also
implies that V0(X,−) is injective. Since powers preserve limits, we have ⋔ (X, limJ F ) ∼= limJ ⋔ (X,F ) , so
that ν0 is a bijection. Since every other map in the diagram is a bijection and q1 is an injection, then q1 is
also a bijection. For every Y in V there is a functor F : J → A such that Y ∼= colimJ F ◦ ι . Then, we have

V0(Y, q) = V0(colim
J

F ◦ ι, q) ∼= lim
j∈J
V0(F ◦ ι(j), q)

which is a bijection since F ◦ ι(j) is in A . Thus, by Yoneda lemma q is a isomorphism in V . 2

Here we mean C(D,−) preserve limits that exists in C and do not make any assumption about which limits
exist. Note that if Y = colimJ F ◦ ι for some F : J → A and A is an object in C such that limj:J ⋔ (F ◦ ι(j), A)
exists, then the power ⋔ (Y,A) is also defined via limj:J ⋔ (F ◦ι(j), A) . The natural isomorphism C(D, limj:J ⋔
(F ◦ ι(j), A)) ∼= V(colimJ F ◦ ι, C(D,A)) follows from formal properties of (co)limits and representables. If C
has all such J -shaped limits for every Y in V with Y ∼= colimJ F ◦ ι , then C is powered over V . In particular,
if C is complete, then it is powered over V , and thus, is V -complete.

Let (V,⊗, [−,−], 1) be a closed symmetric monoidal category and let (V,weV ,fibV) be a category of
fibrant objects. Following [21], we call a morphism f : X → Y in V pseudo-cofibration if for every (acyclic)
fibration g : Z →W the pull-back power

V(Y, Z)→ V(X,Z)×V(X,W ) V(Y,W )

is an (acyclic) fibration. Note that every isomorphism is a pseudo-cofibration.

Lemma 3.2 If (V,⊗, [−,−], 1) is a closed symmetric monoidal category with 1 as the terminal object ∗ and
(V,weV ,fibV) is a category of fibrant objects satisfying
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(IC) the codiagonal ∗ q ∗ → ∗ exists and admits a factorization ∗ q ∗ (j0,j1)−→ I cI−→ ∗ such that cI is an acyclic
fibration, and j0 and j1 are pseudo-cofibrations.

Then V(I, X) is a path object for every X in V .

Proof Since j0, j1 is also a pseudo-cofibration by [21, Lemma 6.4] . For every object X in V the map

V((j0, j1), cX) : V(I, X)→ V(∗ q ∗, X)×V(∗⨿∗,∗) V(X, ∗)

Similarly, since j0 is an acyclic pseudo-cofibration,

V(j0, cX) : V(I, X)→ V(∗, X)×V(∗,∗) V(X, ∗)

is an acyclic fibration. Moreover, we have V(∗, X) ×V(∗,∗) V(X, ∗) ∼= X . As a result, V(I, X) is a path object
for X . 2

Proposition 3.3 If V is a cartesian closed symmetric monoidal model category, then its full subcategory of
fibrant objects satisfies (IC) .

In this case, we can choose I as the object that appears in the factorization ∗q∗ (j0,j1)−→ I cI−→ ∗ , of the codiagonal
for the terminal object, as a cofibration (and thus, a pseudo-cofibration) followed by an acyclic fibration. Note
that the inclusions ∗ → ∗q∗ are pseudo-cofibrations, and as pseudo-cofibrations are closed under compositions
[21, Lemma 6.5], j0 and j1 are also pseudo-cofibrations.

Theorem 3.4 (Theorem 1.1) Suppose that (V,⊗, [−,−], 1) is a closed symmetric monoidal category and that
(V,weV ,fibV) is a category of fibrant objects satisfying (IC) . Let A be a subcategory of V that generates V
and contains I . If C is a finitely complete category that is enriched over V and powered over A , then C is a
category of fibrant objects in which f is a weak equivalence (resp. fibration) if for every D ∈ C the morphism
C(D, f) is a weak equivalence (resp. fibration) in V .

Proof We show that C satisfies each axiom given in the definition of the category of fibrant objects given in
Definition 2.1. Axioms FC1 and FC2 are superfluous and FC3 follows from Lemma 3.1 as the pullback of a
fibration (resp. acyclic fibration) along any morphism in V is a fibration in V and C(D,−) preserves pullbacks.

For FC4, without loss of generality we assume A contains the factorization in (IC) . Observe that for
every B in C

C(D,⋔ (I, B)) ∼= V(I, C(D,B)) ∼= PC(D,B)

in V . For any X in V we have V(∗, X) ∼= X and V(∗ q ∗, X) ∼= X × X , so that V(cI, X) ∼= ωX and
V((j0, j1), X) ∼= δX (in the notation of FC4, Definition 2.1). Let PC =⋔ (I,−) . For an object B in C consider
the factorization

B ∼=⋔ (∗, B)
⋔(cI,B)−→ PC(B)

⋔((j0,j1),B)−→ ⋔ (∗ q ∗, B) ∼= B ×B.

Then, for every D in C we have

C(D,B) ∼= C(D,⋔ (∗, B))
ω∗

−→ C(D,PC(B))
δ∗−→ C(D,B ×B) ∼= C(D,B)× C(D,B),
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where ω∗ = C(D,⋔ (cI, B)) and δ∗ = C(D,⋔ ((j0, j1), B)) . Note by 2 in 3.2 that ω∗ ∼= ωC(D,B) and δ∗ ∼= δC(D,B)

in the notation of FC4, Definition 2.1 and the composition is the diagonal of C(D,B) in V . Since both weV

and fibV contains the core of V , ⋔ (cI, B) composed with the isomorphism B ∼=⋔ (∗, B) is a weak equivalence
and ⋔ ((j0, j1), B) composed with the isomorphism ⋔ (∗ q ∗, B) ∼= B × B is a fibration in C . Therefore, the
object PB :=⋔ (I, B) is a path object for every B ∈ C .

Every object is clearly fibrant as C(D,A)→ C(D, ∗) ∼= ∗ is a fibration in V ; thus, the axiom FC5 holds
as well. As a result we obtain that C is a category of fibrant objects. 2

The theorem can be refined as follows:

Corollary 3.5 Let V and C be as in Theorem 1.1 and T be a collection of objects in C . Then C is a category
of fibrant objects in which f is a weak equivalence (resp. fibration) if for every D ∈ T the morphism C(D, f)
is a weak equivalence (resp. fibration) in V .

Proposition 3.6 Let V and C be as in Theorem 1.1. Then for every D ∈ C , C(D,−) : C → V is exact.

The proposition is immediate from Lemma 3.1 and by definition of weak equivalences and fibrations in C .
Observe that we do not need to assume the monoidal structure is coherent with the homotopical structure

except for the objects in the factorization of the codiagonal. Of course, assuming such a coherence would have
further implications.

Corollary 3.7 Let V and C be as in Theorem 1.1 and assume for every X in V , two maps from ∗ to X are
homotopic in V if an only if they are right homotopic. Then Ho C is equivalent to πC and for A and B in C
Ho C(A,B) ∼= HoV(∗, C(A,B)) . In particular, if V is the full subcategory of fibrant objects in a cartesian closed
monoidal model category with cofibrant unit, then Ho C is equivalent to πC and Ho C(A,B) ∼= HoV(∗, C(A,B)) .

Proof If h : A →⋔ (I, B) is a right homotopy in C from f to g , then for any D ∈ C the induced
map C(D,h) : C(D,A) → C(D,⋔ (I, B)) ∼= V(I, C(D,B)) defines a right homotopy from C(D, f) to C(D, g) .
Conversely, if for every D in C , C(D, f) is right homotopic to C(D, g) via kD : C(D,A)→ V(I, C(D,B)) , then
define h : A→⋔ (I, B) via the bijection

V0(I, C(A,B)) ∼= C0(A,⋔ (I, B))

by h = (kA)0(idA) . Therefore, f, g : A→ B in C are right homotopic if and only if for every D ∈ C , C(D, f)
and C(D, g) are right homotopic in V .

We have C(A,B) ∼= C(A,⋔ (∗, B)) ∼= V(∗, C(A,B)) . By assumption two maps f0, g0 : ∗ → C(A,B) are
right homotopic if and only if they are homotopic, and if and only if f0 = g0 in the homotopy category of V .
Therefore, we have Ho C is equivalent to πC and Ho C(A,B) ∼= HoV(∗, C(A,B)) .

If V is the full subcategory of fibrant objects in a cartesian closed monoidal model category with cofibrant
unit ∗ , then the assumption in the statement above holds as C(A,B) is fibrant. 2

Loop space objects in C are defined via powering, provided that the loop space objects in V are defined via
internal hom. This happens, in particular, if the coequalizer of j0, j1 exists in V .

Corollary 3.8 Suppose that there exist S in V such that for any A in V the loop object ΩA is of the form
V(S,A) , then for every X in C the loop object ΩX is isomorphic to ⋔ (S,X) provided that A contains S .
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Proof Given the pull-back square

ΩA

A×A∗

⋔ (I, A)ι̃

δ̃X

ι

δX

applying C(D,−) we get

C(D,ΩA)

C(D,A×A) ∼= C(D,A)× C(D,A)C(D, ∗) ∼= ∗

C(D,⋔ (I, A))
C(D, ι̃)

C(D, δ̃X)

C(D, ι)

C(D, δX)

which is a pullback in V . Since C(D,⋔ (I, A)) = V(I, C(D,A)) ∼= PC(D,A) we have C(D,ΩA) ∼= ΩC(D,A) for
every D in C . Moreover, we have

C(D,ΩA) ∼= ΩC(D,A) ∼= V(S, C(D,A)) ∼= C(D,⋔ (S,A)),

and thus, by Yoneda lemma ΩA ∼=⋔ (S,A) . 2

If the enriching category is not a category of fibrant objects but just a prefibration category, then we have the
following result.

Corollary 3.9 Suppose that (V,⊗, [−,−], 1) is a closed symmetric monoidal category and that (V,weV ,fibV)
is a prefibration category satisfying (IC) . Let A be a subcategory of V that generates V . If C is a finitely
complete category that is enriched over V and powered over A , then C is a prefibration category in which f

is a weak equivalence (resp. fibration) if for every D ∈ C the morphism C(D, f) is a weak equivalence (resp.
fibration) in V . Moreover, the homotopy category of C is equivalent to the homotopy category of Cfib , its full
subcategory of fibrant object.

The proof of the first part is contained in the proof of Theorem 1.1. The last part follows from [26, Thm. 5.5.1
and 6.1.6]. In this particular case, since path objects are constructed functorially, for every object A in C ,

A→ ∗ factorizes as A w→ A′ f→ ∗ with w ∈ weC and f ∈ fibC where A′ is obtained as the object fitting in the
following pullback square

A′

∗A

⋔ (I, ∗)c̃

δ̃0

c

δ0

with w being the section of δ̃0 (see the proof of Factorization Lemma in [5] and proof of [26, Prop. 2.1.2]).
In particular, A′ is uniquely determined by A . Moreover, for any map f : A → B there is an induced map
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f ′ : A′ → B′ obtained in the obvious cubes of pullbacks.

A′

B′

∗A

B

⋔ (I, ∗)c̃

f

f̃ c̃′

δ̃0

c′δ̃0

c

δ0

In particular, we obtain a functor R : C → Cfib with R(A) = A′ for every A in C , together with a natural weak
equivalence (i.e. natural transformation that is componentwise weak equivalence) w : idC ⇒ R defined by the
section of δ̃0 , implying that Cfib is a right deformation retract of C in the sense of [9]. Consequently,

Ho C(A,B) ∼= Ho Cfib(RA,RB) ∼= πCfib(RA,RB).

3.1. Equivariant version
Let G be a group and F be a collection of subgroups of G . For any given category D denote by GD the
functor category [BG,D] where BG denotes the delooping groupoid of G ; i.e., GD is the category of G -objects
and G -equivariant morphisms (i.e. natural transformations) in D .

We first discuss a trivial (but uninteresting for our purposes) way of extending Theorem 1.1 to equivariant
setting. Let V be as in Theorem 1.1. Assume the tensor unit in V is the terminal object. Suppose that for every
H ∈ F and for every X : BG→ C in GV , the limit XH := limBH X ◦ ιH exists in GV , where ιH : BH → BG

is the inclusion. Then, there is a immediate category of fibrant objects structure on GV in which a morphism
f in GV is a weak equivalence (resp. fibration) if for every H ∈ F the induced morphism fH is a weak
equivalence (resp. fibration) in V . This is immediate since the functors −H are defined via limits; and thus,
preserve pullbacks, powers and terminal objects. This is also true for GC provided that relevant fixed points
exist; that is, there is a category of fibrant objects structure on GC in which a G -morphism f : A → B is a
weak equivalence (resp. fibration) if fH : AH → BH is a weak equivalence (resp. a fibration).

On the other hand, there exists a more sophisticated category of fibrant object structure on GC , which
is obtained by using equivariant homotopical structure on hom-objects with conjugation actions. In terms of
applications, the latter is more relevant to our interests.

Again, we let V be as defined in Theorem 1.1, which is also semicartesian monoidal (i.e. the tensor
unit of V is the terminal object). We observe that for a given group G and a collection of subgroups F , GV
is a category of fibrant objects in which weak equivalences and fibrations are defined via fixed point objects.
The category GV is also semicartesian symmetric monoidal where the action is defined diagonally. Since every
object in the factorization given in (IC) has trivial G -actions, GV also satisfies (IC) . Let C be a V -enriched
category. Since the inverse map gives an isomorphism BG ∼= BGop , we have an isomorphism of categories
[BG, C]op ∼= [BGop, Cop] that sends a functor A : BG→ C to Aop . Then we can define a functor

Π− : [BG, C]op × [BG, C]→ [BGop ×BG, Cop × C]

which sends (A,B) to (A− × B) , where A− : BGop → Cop is the object A with the action reversed. Let
d− : BG → BGop × BG be the functor given by g 7→ (g−1, g) for every morphism g in BG and let
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d− : [BGop × BG,V] → [BG,V] be the functor induced by d− on functor categories. We define a functor
GC : GCop ×GC → GV by the following composition

[BG, C]op × [BG, C] Π−

−→ [BGop ×BG, Cop × C] C(−,−)−→ [BGop ×BG,V] d−

−→ [BG,V].

In particular, for any two object A and B in GC , GC(A,B) is the composition

VCop × CBGop ×BGBG
C(−,−)d− Aop × B

.

More precisely, GC(A,B) sends the unique object of BG to C(A,B) and sends a morphism g in BG to the
composition

C(A,B)C(A,B)C(A,B)
C(A(g−1), B) C(A,B(g))

.

In the underlying Set -category a map f : A → B is sent to the composition A
g−1

−→ A
f−→ B

g→ B which
is in fact just the usual conjugation action, (g · f) : a 7→ g · f(g−1 · a) . Observe that the composition
GC(B,C)×GC(A,B)→ GC(A,C) in V is G -equivariant where the action on the product is defined diagonally.
Besides, the fixed point object GC(A,B)G , which is given by the limit of over BG , is naturally isomorphic to
the hom-object GC(A,B) . We obtain that GC is GV enriched, see also [27, 3.4].

Now, for a given functor F : I → GC we have a morphism

q : GC(D, lim
I
F )→ lim

I
GC(D,F )

in GV ; i.e. natural transformation between functors BG → V . This is because GC(D, limI F ) is a cone over
GC(D,F ) . By Lemma 3.1, the underlying map is an isomorphism in V . But this implies that q has an inverse
in GV , as in BG there is only one object and every morphism has an inverse. This means for every D in C
the functor GC(D,−) sends limits in GC to limits in GV .

Let X be an object in GA with a trivial G -action (that is acts by identity morphisms in V ) and A

be an object in GC . Then define G ⋔(X,A) : BG → C as the functor that sends the unique object of BG
to ⋔(X,A) and a morphism g : BG → BG to the morphism ⋔(X,A(g)) : ⋔(X,A) → ⋔(X,A) . Since powers
preserve limits, we have natural isomorphisms in V

G ⋔(X,AH) ∼= G ⋔(X,A)H

for every H ≤ G .

Theorem 3.10 (Theorem 1.2) Let G be a group and F be a collection of subgroups of G . Let V and C be
as defined in Theorem 1.1 such that for every H ∈ F limits defining H -fixed points exists in V . Then GC is
a category of fibrant objects in which f is a weak equivalence (resp. fibration) if for every D ∈ GC and H ∈ F
the morphism GC(D, f)H is a weak equivalence (resp. fibration) in V .

Equivariant versions of Proposition 3.6, Corollary 3.7, Corollary 3.8, and Corollary 3.9 can be obtained in the
same way.
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The first mentioned category of fibrant objects structure on GC , in which f is a weak equivalence
(fibration) if fH is so for every H ∈ F , is usually not homotopically equivalent to the one given in Theorem
1.2. In fact, a weak equivalence in the latter is already a weak equivalence in the former, but not vice versa.
Let f : A→ B be a weak equivalence in the category of fibrant objects of Theorem 1.2; i.e.

GC(D, f)H : GC(D,A)H → GC(D,B)H

is a weak homotopy equivalence for every H ≤ G and for every D ∈ GC . In particular, this is true for all such
D on which G acts trivially. In this case, we have

GC(D,A)H ∼= C(D,A)H ∼= C(D,AH).

Hence, f is a weak equivalence in the former category of fibrant objects. On the other hand, it is easy to
find some A in GC with nontrivial action so that GC(D,A) is not equivariantly weak equivalent to C(D,A)
with the action on C(D,A) defined in the covariant side; i.e. for f ∈ C(D,A) , g ∈ G and for every d ∈ D
(g ·f)(d) := g ·f(d) . In fact, we can choose D with a nontrivial action so that GC(D,A) is not weak equivalent
to GC(D,A)H for some H ≤ G and A with the trivial action to obtain GC(D,A) and C(D,A) are not
equivariantly weak equivalent. Thus, the two fibration categories present different homotopy theories.

3.1.1. A remark on actions of group objects in V
Let V and C be as in Theorem 1.1. We assume for convenience that V is cartesian monoidal. Let G be a
Hopf group (i.e. a group internal to V ), see [14]. Then G is V -enriched and following [14, 2.2, 2.3] we let
GC be the category of G -objects in C ; that is, the category of V -enriched functors BG → C . Let F be a set
of closed subgroups of G , see [14, Sec. 6.1 and 6.2]. Again, being limits, fixed point functors commute with
limits; in particular, pullbacks, powers and terminal objects. Therefore, GV is a category of fibrant objects
as in Section 3.1, where weak equivalences and fibrations are created by fixed point functors. The functor
GC(D,−) : GC → GV can be defined in the same way as above. Then, V -group version of Theorem 1.2 follows.

4. Examples
4.1. Operator algebras
Our first example, which is the motivating example of the present paper, is the category of C∗ -algebras,
which was first given in [30]. These are particularly interesting as it is known that with the equivalences and
fibrations induced by representable functors (as in our main theorems) do not come from a model structures
for C∗ -algebras, see [30, Appendix].

Notation 4.1 The category of Banach spaces and contractions (i.e. bounded linear operators with norm at
most 1) is denoted by Ban . This is a closed symmetric monoidal category with the projective tensor product.
A Banach algebra is a monoid in this symmetric monoidal category. We denote by BanAlg the category of
monoids in Ban ; that is, the subcategory of Ban spanned by Banach algebras with morphisms as contractions
that preserve the algebra structure. The category of C∗ -algebras and ∗-homomorphisms is denoted by C∗Alg .
Since every ∗-homomorphisms is already a contraction, see, e.g., the unpublished notes by Putnam†, C∗Alg can

†Putnam IF (2019). Lecture notes on C∗ -algebras [online]. Website https://web.uvic.ca/~ifputnam/ln/C*-algebras.pdf
[accessed 22 April 2024].
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be considered a subcategory of BanAlg . In particular, we have inclusions C∗Alg → BanAlg → Ban . We denote
the cartesian closed symmetric monoidal category of compactly generated and weakly Hausdorff topological spaces
by T op and the category of compact Hausdorff spaces by Comp . We denote by sSet the category of simplicial
sets.

Let C be either of Ban , BanAlg , and C∗Alg . Being normed, every object in C is a compactly generated
weakly Hausdorff topological space with the norm topology. Hence, we can give the set C(A,B) with a topology
by using the subspace topology of the compact open topology, which makes C(A,B) an object in T op . It is
straightforward that this topology is coherent with the composition, which is defined in the same way as in
T op , making C a T op -enriched category.

For any given compact Hausdorff space X and a Banach space B , the space of continuous functions
T op(X,B) , by considering B with the norm topology, is a Banach space. In fact, the compact open topology
on T op(X,B) coincides with the topology given by the sup-norm. If B is a Banach algebra, then there is
a naturally induced Banach algebra structure on T op(X,B) and if further B is a C∗ -algebra, then so does
T op(X,B) (see also [30, 2.2]).

Since T op is cartesian closed we have a natural isomorphism

T op(A, T op(X,B)) ∼= T op(A×X,B) ∼= T op(X, T op(A,B)).

If A and B are Banach spaces, the above natural isomorphism induces a natural isomorphism

Ban(A, T op(X,B)) ∼= T op(X,Ban(A,B)).

Similarly, we have natural isomorphisms

BanAlg(A, T op(X,B)) ∼= T op(X,BanAlg(A,B))

and
C∗Alg(A, T op(X,B)) ∼= T op(X,C∗Alg(A,B)).

The last one also appears in [30, Sec. 2.4]. This implies that C is powered over Comp where the powering is
given by the set of continuous functions equipped with the relevant extra structure. In the category T op every
object generated by compact Hausdorff spaces. Besides, T op is a monoidal model category with the Quillen
model structure in which every object is fibrant. The path space object is given by the usual path space, which
is given by the internal hom T op([0, 1],−) in T op . Note also that the interval I = [0, 1] fits into the obvious
factorization ∗ q ∗ → [0, 1]→ ∗ and each inclusion ∗ → [0, 1] are cofibrations (and hence, pseudo-cofibrations)
and [0, 1]→ ∗ is an acyclic fibration. Thus, by Theorem 1.1, we have the following:

Corollary 4.2 Let C be either of Ban , BanAlg , C∗Alg . Then C is a category of fibrant objects in which
f ∈ C is a weak equivalence (fibration) if C(X, f) is a weak homotopy equivalence (resp. Serre fibration) for
every X ∈ C .

The case C = C∗Alg is already well-known, see [30], [28] and the cases C = Ban and C = BanAlg also follow
from the unpublished preprint “A Baues fibration category structure on Banach and C∗ -algebras” by Andersen
and Grodal ‡.

‡Andersen KKS, Grodal J (1997). A Baues fibration category structure on Banach and C∗ -algebras [online]. Website
https://web.math.ku.dk/~jg/papers/fibcat.pdf [accessed 22 April 2024].
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Recall that a functor between fibration categories is exact if it preserves fibrations, acyclic fibrations,
terminal objects and pullbacks along fibrations. The following corollary is immediate from the definition:

Corollary 4.3 The inclusions C∗Alg ↪→ BanAlg ↪→ Ban are exact.

The corollary implies that we have inclusions

HoC∗Alg ↪→ HoBanAlg ↪→ HoBan.

4.2. Equivariant operator algebras

Let G be a group. Let again C be either of Ban , BanAlg or C∗Alg . Recall that GC denotes the category of
G -objects in C ; i.e. the functor category [BG, C] where BG denotes the delooping groupoid of G .

Let F be a collection of subgroups of G . Then, from Theorem 1.2 combined with the nonequivariant
case as discussed in the previous section, we obtain the the following corollary:

Corollary 4.4 Let C be either of Ban , BanAlg , C∗Alg . Then GC is a category of fibrant objects where f in
GC is a weak equivalences (resp. fibration) if for every D ∈ GC and H ≤ G GC(D, f)H is a weak homotopy
equivalence (resp. Serre fibration).

As before, the following corollary is immediate.

Corollary 4.5 The inclusions GC∗Alg ↪→ GBanAlg ↪→ GBan are exact.

Remark 4.6 Using remarks of subsection 3.1.1, one can take G here to be a topological group and F be a
collection of closed subgroups of G .

Let CC∗Alg denote the full subcategory of commutative C∗ -algebras. Note that the inclusion CC∗Alg →
Ban admits a left adjoint Ban → CC∗Alg by the Adjoint functor theorem (see also [17, Thm. 11]). Moreover,
by definition the loop object Ω : Ban → Ban as powering by S1 restrict to Ω : CC∗Alg → CC∗Alg , which
is also defined as powering by S1 . By combining the exactness of the inclusion, if HoΩ : HoBan → HoBan
admits a left adjoint, then so does HoΩ : HoCC∗Alg → HoCC∗Alg (see also [30, Corollary A.4]). But it is
due to [30, Corollary A.5] that such a left adjoinf for the latter does not exist. Thus, the category of fibrant
objects Ban is not a full subcategory of fibrant objects in a model category. Same is true for the category of
fibrant object BanAlg .

4.3. Metric spaces

Let Met denote the category of metric spaces and short maps (i.e. maps that do not increase distance). This
category has finite limits. The terminal object is the point with the trivial metric. If f : (A, dA)→ (B, dB) and
g : (C, dC)→ (B, dB) are short maps, then their pullback is the usual pullback in the category of sets with the
sup-metric; that is,

A×B C = {(a, c) ∈ A× C : f(a) = g(c)}

with the metric
df,g((a, c), (a

′, c′)) = max{dA(a, a′), dA(c, c′)}.
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Any metric space with the metric topology is first-countable. Thus, there is a forgetful functor F :Met → T op
sending a metric space to the underlying topological space with the metric topology. For all metric spaces A
and B , Met(A,B) is a closed subspace of T op(FA,FB). We can define a T op -enrichment by inducing the
subspace topology on the subset Met(A,B) from T op(FA,FB). The composition

Met(B,C)×Met(A,B)→Met(A,C)

is the restriction of the composition in T op and hence is continuous. Besides, just as in the case of
Banach spaces, Met is powered over compact Hausdorff spaces. If X is in Comp and A is in Met ,
then define ⋔ (X,A) = C0(X,FA) , the set of continuous functions from X to A endowed with the sup-
metric; d(f, g) = supx∈X d(f(x), g(x)) . Then for every X in T op and A,B in Met , the isomorphism
T op(X, T op(FA,FB)) ∼= T op(FA, T op(X,FB)) in T op (note that T op is cartesian closed) gives rise to
an isomorphism θ : T op(X,Met(A,B))↔Met(A,⋔ (X,B)) : ψ . In fact, if g : A→⋔ (X,B) is a short map,
then for all x ∈ X and a1, a2 ∈ A

d(θ(f)(x)(a1), θ(f)(x)(a2)) = d(f(a1)(x), f(a2)(x)) ≤ sup
y∈X

d(f(a1)(y), f(a2)(y)) = d(f(a1), f(a2)) ≤ d(a1, a2).

Here we use d for all metrics but it is clear from the context that which metric space it is associated to. The
last equality follows from shortness of f . Similarly, if g : X →Met(A,B) is in T op(X,Met(A,B)) , then

d(ψ(g)(a1), ψ(g)(a2)) = sup
x∈X

d(ψ(g)(a1)(x), ψ(g)(a2)(x)) = sup
x∈X

d(g(x)(a1), g(x)(a2)) ≤ d(a1, a2),

where the last equality follows due to shortness of g(x) for all x ∈ X . Continuity of these maps follows due
to the fact that Met(A,B) is closed in T op(FA,FB). Therefore, Theorem 1.1 applies to Met as well. Since
Met lacks finite colimits (e.g., coproducts), it cannot be a model category.

For a group G , the G -equivariant version also holds for GMet (similar to the previous section) since
H -fixed points exists in Met for all H ≤ G .

4.4. Algebras and G-algebras over a ring
Another example is the category of associative algebras over a ring R . An associative unital algebra is a monoid
in the category RMod of R -modules. The category AlgR of R -algebras is enriched over simplicial sets where
the hom-object is given by the functor

Alg∗R : AlgopR ×AlgR → sSet

defined as Alg∗R(A,B)n = homAlgR
(A,B ⊗ Z∆n

) where

Z∆n

= Z[x0, · · · , xn]/〈1−
∑
i

xi〉,

see [7, 3.1 (14)]. Besides, AlgR is powered over simplexes as

⋔ (∆n, A) = A ⊗ Z∆n

where A is an R -algebra. The category sSet is a cartesian closed monoidal model category with the Kan–
Quillen model structure. However, not every object is fibrant. Therefore, by considering the underlying
prefibration category structure, we apply Corollary 3.9 to AlgR .
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Corollary 4.7 The category AlgR is a prefibration category of in which a homomorphism f is a weak
equivalence (resp. fibration) if for every X ∈ AlgR , AlgR(X, f) is a weak equivalence (resp. a Kan fibration)
of simplicial sets in the Kan-Quillen model structure.

An R -algebra that is fibrant in this prefibration category will be called a fibrant R -algebra, and the
full-subcategory of fibrant R -algebras is denoted by AlgfibR . Note that an R -algebra A is fibrant if AlgR(D,A)

is a Kan complex for every R -algerba R . Recall that AlgfibR is a category of fibrant objects [26, Prop. 2.1.2].

Moreover, AlgfibR ↪→ AlgR induces an equivalence on homotopy categories.
For any group G and a collection F of subgroups of G , the G -equivariant version of Corollary 3.9 applies

to GAlgR .

Corollary 4.8 The category GAlgR is a prefibration category in which a G-homomorphism f is a weak
equivalence (resp. fibration) if for every D ∈ GAlgR and H ∈ F , GAlgR(X, f)H is a weak equivalence (resp.
Kan fibration) of simplicial sets.

A G -R -algebra is fibrant if its underlying R -algebra is in the prefibration category given in the previous
corollary. Again, due to [26, Thm. 5.5.1 and 6.1.6] the inclusion of its full subcategory of fibrant objects in
GAlgR induces an equivalence on homotopy categories.

5. Some applications

The main applications we focus on are triangulated structures for the (equivariant) KK -theory and E -theory.
We recover some known results bu using the category of fibrant objects structures that we have developed.

5.1. On equivariant KK -theory
For convenience, in this section, every C∗ -algebra is assumed to be separable. Every G -Banach space with the
norm topology is a G -anr, hence has the homotopy type of a G -CW -complex, see [3, Thm. 2.1 and 2.4, pp
10-11]. This, in particular, implies that a weak equivalence in GC∗Alg with the fibration category structure of
Corollary 4.4 for F the collection of all closed subgroups of G is a homotopy equivalence.

Let K = K(`2(G× N)) . We follow equivariant version of Cuntz’s picture, which is given by [25, pp. 68].
Let qA be the kernel of the codiagonal on A in GC∗Alg ; i.e. the limit of A ? A → A ← 0 in GC∗Alg , see
[19, 5.2]. The G -equivariant KK -theory group KKG(A,B) is defined as the set of G -homotopy classes of
G -∗ -homomorphisms from q(A⊗K) to B ⊗K [22, Thm. 4.3] (see also [8, 16, 19]). We have −⊗K preserve
pullbacks since this is true nonequivariantly and since limits in GC∗Alg are defined in the ambient category
C∗Alg . Recall that GC∗Alg is a category of fibrant objects in which f ∈ GC∗Alg is a weak equivalences
(resp. fibration) if for every D ∈ C and H ≤ G the map GC(D, f)H is a weak homotopy equivalence (resp.
Serre fibration) in T op . Then, one defines a category of fibrant objects structure on GC∗Alg with the same
fibrations and with weak equivalences being those maps that are sent to isomorphisms by the composition

GC∗Alg Q−→ HoGC∗Alg [qD,−⊗K]−→ HoGC∗Alg ,

where Q denotes the localization. Denote by Ho(GKK) the homotopy category of this category of fibrant
objects. Then, KKG(A,B) := Ho(GKK)(A,B) . Moreover, due to stability of equivariant KK -theory with
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respect to K , we obtain that the category Ho(GKK) is a triangulated category. This also recovers that
equivariant KK -theory is triangulated (see [20, Appendix A]). See also Section 2 of [6].

Repeating similar arguments for Banach algebras and G -Banach algebras, one can also recover the
analogues results of [23, Thm. 4.15] and [24, Thm. 2.1] for Banach Algebras. Note that the homotopy of maps
of Banach algebras defined in loc. cit. is the same as the right homotopy for the category of fibrant objects of
Corollaries 4.2 and 4.4, respectively.

5.2. On equivariant E -theory

The equivariant E -theory for separable G -C∗ -algebras is well studied. For the definition and details we refer to
[13, Ch. 6]. By using the last example of the previous section, we can give a definition of equivariant E -theory
groups as hom-spaces in the stable homotopy category of a category of fibrant objects.

Then, GC∗Alg admits a structure of a category of fibrant objects where f is a weak equivalence (resp.
a fibration) if f ⊗K(H) is a weak equivalence (resp. a fibration) in GC∗Alg with the structure of the category
of fibrant objects from Corollary 4.8. This is the equivariant analogue of [30, Proposition 2.24]. Denote this

new category of fibrant objects by GC∗AlgK(H) . Following the definition of equivariant E -theory in [13, Ch.

6], we see that EG(A,B) = Ho(GC∗AlgK(H))(ΩA⊗K(H),ΩB) ; i.e. the equivariant E -theory can be obtained

as a hom-set in the stable homotopy category of a category of fibrant objects GC∗AlgK(H) .

5.3. On (equivariant) bivariant algebraic k -theory

We can also recover that the kk -category as defined in [7, Sec. 4] and its equivariant version in [10] are
triangulated categories obtained as stabilizations of categories of fibrant objects given in subsection 4.4. Most
of the material given here are present in [7], except the fibration category structures.

First observe that the notion of elementary homotopy for R -algebras as given in [7, Def. 3.1.1] coincides
with the right homotopy for fibrant objects in the prefibration category given in Corollary 4.7, and same is true
for the homotopy classes of homomorphisms. Moreover, due to the prefibration category structure on AlgR
as given in Corollary 4.7, we can put a bound on the length of the zigzags that appear in the definition of
the homotopy in [7, Def. 3.1.1]. In fact, between fibrant R -algebras, notions of elementary homotopy and
homotopy coincides due to Corollary 3.7 (note also that sSet is a cartesian closed monoidal model category
with Kan–Quillen model structure).

In [7] bivariant k -theory kk for R -algebras is defined and it is shown (in Cor. 6.3.4 loc. cit.) that for
every D in AlgR , the functor kk(D,−) is homological. Then, the prefibration category structure on AlgR
induces a prefibration category structure on the quotient category kk := AlgR/ ∼

kk
where f ∼

kk
g in AlgR if

kk(D, f) = kk(D, g) for every D in AlgR . Note that the loop objects in kk and AlgR coincides and it is
also shown therein that kk(A,B) ∼= kk(ΩA,ΩB) . Therefore, StHo kk ∼= Ho kk . Being the stable homotopy
category of a category of fibrant objects, Ho kk is triangulated. This gives [7, 6.2.4].

The equivariant version is given in [10], and it can be shown in the same way that equivariant kk -theory
is also obtained as hom-space in the stable homotopy category of a category of fibrant objects.
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