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Abstract: This paper focuses on examining the boundedness and asymptotic behavior of all solutions of the neutral
difference equations

∆[xn − pnxn−κ] + qnxn−ℓ = 0 for n = 0, 1, · · · (⋆)

and
∆[xn − pxn−κ] + qnxn−ℓ = 0 for n = 0, 1, · · · , (⋆⋆)

where κ, ℓ ∈ N , {pn} ⊂ [0, 1) , p ∈ [0, 1) and {qn} ⊂ [0,∞) . Diverging from much of the existing literature, our results
accommodate the scenario where {pn} ⊂ [ 1

2
, 1) and p ∈ [ 1

2
, 1) for (⋆) and (⋆⋆), respectively. Furthermore, we underscore

the practical implications of our results through the presentation of numerical examples.

Key words: Neutral difference equations, variable coefficients, boundedness, asymptotic behavior

1. Introduction
In recent years, stability theory has developed as a versatile and effective tool for comprehending the dynamics
embedded in difference equations (DEs). Throughout the decades, several academics have worked carefully to
develop and formulate sufficient conditions to ensure that every solution of a delay difference equation (DDE)
converges to zero as the time variable approaches infinity. Some researchers have since extended and generalized
these analytical frameworks to examine neutral delay difference equations (NDDEs). It is important to note
that delays occur in both DDEs and NDDEs, with the latter adding complication due to the presence of neutral
terms. In this work, consider the following NDDE

∆[xn − pnxn−κ] + qnxn−ℓ = 0, n = 0, 1, 2, · · · , (1.1)

where κ, ℓ ∈ N , {pn} ⊂ R and {qn} ⊂ R+ ∪ {0} . When pn ≡ p ∈ R , (1.1) takes the form

∆[xn − pxn−κ] + qnxn−ℓ = 0, n = 0, 1, 2, · · · (1.2)

and if κ = 0 , then (1.2) can be written in the form

∆xn +
qn

1− p
xn−ℓ = 0, n = 0, 1, 2, · · · . (1.3)
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Furthermore, for pn ≡ 0 , the asymptotic behavior of the solutions for simplified delay difference equation by
(1.1), which can be expressed as

∆xn + qnxn−ℓ = 0, n = 0, 1, 2, · · · , (1.4)

has been thoroughly examined in many literature, refer to [1–8, 10, 11] for more details. We shall provide an
overview of the most notable results for (1.1), (1.2) and (1.4). Let us begin with the theorem that yields one
of the best results for the asymptotic behavior of (1.4), achieving the best possible stability with the constant
( 32 + 1

2[ℓ+1] ) , as mentioned in references [3, 6]. This emphasizes the importance and strength of the following

theorem in ensuring substantial stability in the absence of neutral elements in the equation.

Theorem A ([3]) Assume that
∞∑
j=0

qj = ∞ (1.5)

and

lim sup
n→∞

n∑
j=n−ℓ

qj <
3

2
+

1

2[ℓ+ 1]
. (1.6)

Then, every solution {xn} of (1.4) tends to zero as n→ ∞ .

The upper bound ( 32 + 1
2[ℓ+1] ) in (1.6) emerges naturally from the monotonicity property of a function

of the form Φ(λ) := aλ − b
2λ

2 , which plays a major role in the proof of [3]. Several authors later extended
and generalized this result by replacing (1.6) with a weaker condition or a condition of a slightly different type.
In [12], Zhou et al. make enhancements to Theorem A to achieve a better result for (1.2), which is stated as
follows:

Theorem B ([12]) Let p ∈ (− 1
2 ,

1
2 ) . Assume (1.5) and

lim sup
n→∞

n∑
j=n−ℓ

qj <
3

2
+

(1− 2|p|)2

2[ℓ+ 1]
− 2|p|(2− |p|). (1.7)

Then, every solution {xn} of (1.2) tends to zero as n→ ∞ .

It should be noted that in [12] the authors assume p ∈ (−1, 1) . However, (1.7) cannot hold when
p ∈ (−1,− 1

2 ] ∪ [ 12 , 1) . Additionally, condition (1.7) reduces to (1.6) for (1.4), i.e. when p = 0 . This highlights
some restriction on the applicability of the Theorem B for certain ranges of p . Applying Theorem A to
(1.3), which is also a particular case of (1.2), one can see that Theorem B is not the best result of asymptotic
behavior for (1.1). Subsequently, in [9], Tang identifies an opportunity to address some of this gap and enhances
Theorem A, ultimately achieving the best result to date for (1.1) involving the summation of (ℓ+1) consecutive
terms of the coefficient {qn} , which is quoted below.
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Theorem C ([9]) Assume that there exists p ∈ [0, 12 ) such that |pn| ≤ p for all large n . Further, assume (1.5)
and

lim sup
n→∞

n∑
j=n−ℓ

qj < φ(p) :=


3

2
− 2p+

1

2[ℓ+ 1]
, p ∈

[
0, ℓ

4[ℓ+1]

)√
2
ℓ+ 2

ℓ+ 1
(1− 2p), p ∈

[
ℓ

4[ℓ+1] ,
1
2

)
.

Then, every solution {xn} of (1.1) tends to zero as n→ ∞ .

Technically, very similar to that of Theorem A, the upper bound function φ originates due to the proof
technique used in [9, Theorem 2.2]. The separation point ℓ

4[ℓ+1] relates to the function Φ again. Examining

some fundamental properties of the function φ , we see that it is continuous, decreasing and concave down on
[0, 12 ) with φ(0) = 3

2 + 1
2[ℓ+1] and limp→ 1

2
φ(p) = 0 . It is worth mentioning that for ℓ ∈ N , ( 32 − 2p+ 1

2[ℓ+1] ) is

tangent to
√
2 ℓ+2
ℓ+1 (1− 2p) at p = ℓ

4[ℓ+1] . More precisely,
√

2 ℓ+2
ℓ+1 (1− 2p) ≤ 3

2 − 2p+ 1
2[ℓ+1] holds for p ∈ [0, 12 ]

and ℓ ∈ N with equality if and only if p = ℓ
4[ℓ+1] .

Therefore, in the following theorems, Tang [9] proceeds establishing two new results, wherein p ∈ [ 12 , 1)

is admissible. This is accomplished by using a smaller initial limit for the sum, while simultaneously increasing
the right-hand side to obtain more desirable results.

Theorem D ([9]) Assume that there exists p ∈ [0, 1) such that 0 ≤ pn ≤ p for all large n . Further, assume
(1.5) and

lim sup
n→∞

n∑
j=n−(3ℓ+(m−1)κ+1)

qj < (1− p)

(
1 +

ℓ+ 2

2[ℓ+ 1]
(1− p)

)
, (1.8)

where m ∈ N satisfies p+ 3
2p

m ≤ 1 . Then, every solution {xn} of (1.1) tends to zero as n→ ∞ .

Following this, Tang [9] employs an iterative technique to advance the result of Theorem C for (1.2) in
the following theorem.

Theorem E ([9]) Assume that p ∈ [0, 1) and (1.5) holds. Further, assume

lim sup
n→∞

n∑
j=n−(ℓ+(m−1)κ)

qj <
1− p

1− pm

(
3− 4pm

2
+

1

2[ℓ+ (m− 1)κ+ 1]

)
, (1.9)

where m ∈ N satisfies 4pm ≤ 1 . Then, every solution {xn} of (1.2) tends to zero as n→ ∞ .

The objective of this work is to replace the conditions p+ 3
2p

m ≤ 1 and 4pm ≤ 1 , as well as the right-hand
side conditions (1.8) and (1.9) outlined in Theorems D and E by weaker conditions p +

(
1 + (1 − p)2

)
pm ≤ 1

and 2pm < 1 , along with improved right-hand side conditions, respectively. Our theorems are expected to
provide enhanced insights into both boundedness and asymptotic behavior of all solutions of (1.1) and (1.2).
Additionally, we aim to rectify certain inaccuracies given in Theorems D and E.

The structure of the paper is as follows: In Section 2, we provide the results concerning the boundedness
and asymptotic behavior of solutions of (1.1) and (1.2). In Section 3, we offer numerical examples to illustrate
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the practical relevance and novelty of our main results. Section 4 contains discussion on the proofs of the results
presented in Section 2. Lastly, Section 5 comprises remarks and amendments for Theorems D and E, serving
as the concluding section of the paper.

2. Main results
We now present our main results on the boundedness and asymptotic behavior of all solutions of (1.1) and (1.2).

2.1. Results for boundedness
This subsection presents novel conditions that ensure the boundedness of all solutions of (1.1) and (1.2).

Theorem 2.1 Assume that there exists p ∈ [0, ℓ
ℓ+2 ] such that 0 ≤ pn ≤ p for all large n . Further, assume

n∑
j=n−(3ℓ+(m−1)κ+1)

qj ≤ (1− p)

(
1 +

ℓ+ 2

2[ℓ+ 1]
(1− p)

)
for all large n,

where m ∈ N satisfies p+
(
1 + (1− p)2

)
pm ≤ 1 . Then, every solution of (1.1) is bounded.

Let us define a number

φm(p, κ, ℓ) :=


1− p

1− pm

(
3− 4pm

2
+

1

2[ℓ+ (m− 1)κ+ 1]

)
, p ∈

[
0, m

√
ℓ+(m−1)κ

4[ℓ+(m−1)κ+1]

)
1− p

1− pm

√
2
ℓ+ (m− 1)κ+ 2

ℓ+ (m− 1)κ+ 1
(1− 2pm), p ∈

[
m

√
ℓ+(m−1)κ

4[ℓ+(m−1)κ+1] ,
1

m√2

)
.

Theorem 2.2 Assume that p ∈ [0, 1) . Further, assume

n∑
j=n−(ℓ+(m−1)κ)

qj ≤ φm(p, κ, ℓ) for all large n, (2.1)

where m ∈ N satisfies 2pm < 1 . Then, every solution of (1.2) is bounded.

2.2. Results for asymptotic behavior

This subsection outlines new conditions that govern the asymptotic behavior of all solutions of (1.1) and (1.2)
toward zero.

Theorem 2.3 Assume that there exists p ∈ [0, ℓ
ℓ+2 ] such that 0 ≤ pn ≤ p for all large n . Further, assume

(1.5) and

lim sup
n→∞

n∑
j=n−(3ℓ+(m−1)κ+1)

qj < (1− p)

(
1 +

ℓ+ 2

2[ℓ+ 1]
(1− p)

)
, (2.2)

where m ∈ N satisfies p+
(
1 + (1− p)2

)
pm ≤ 1 . Then, every solution of (1.1) tends to zero at infinity.
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Theorem 2.4 Assume that p ∈ [0, 1) and (1.5) holds. Further, assume

lim sup
n→∞

n∑
j=n−(ℓ+(m−1)κ)

qj < φm(p, κ, ℓ), (2.3)

where m ∈ N satisfies 2pm < 1 . Then, every solution of (1.2) tends to zero at infinity.

3. Numerical examples

In this section, we present two neutral difference equations for which, to the best of our knowledge, none of
the existing results can address the asymptotic nature of their solutions. However, our results in Theorems 2.3
and 2.4 can be applied to obtain positive outcomes.

Example 3.1 Consider the neutral difference equation

∆

[
xn − 7n

10n+ 1
xn−1

]
+

11(2 + (−1)n)

1250
xn−5 = 0 for n = 0, 1, · · · . (3.1)

• Theorem D: It is observed that

pn =
7n

10n+ 1
≤ 7

10
=: p < 1 for n = 0, 1, · · ·

and

p+
3

2
pm =

7

10
+

3

2

(
7

10

)m

≤ 1 =⇒ m = 5, 6, · · · .

Upon calculation, it is determined that

lim sup
n→∞

n∑
j=n−(3ℓ+(m−1)κ+1)

qj = lim sup
n→∞

n∑
j=n−(m+15)

qj

= lim sup
n→∞

11

2500

(
64 + 4m+ (−1)n

(
1− (−1)m

))
≥ 451

1250
≈ 0.36 for m = 5, 6, · · · ,

and

(1− p)

(
1 +

ℓ+ 2

2[ℓ+ 1]
(1− p)

)
=

141

400
≈ 0.3525.

Consequently, it is readily apparent that

lim sup
n→∞

11

2500

(
64 + 4m+ (−1)n

(
1− (−1)m

))
̸< 141

400
≈ 0.3525 for m = 5, 6, · · · .

Therefore, Theorem D does not provide any answers in this context.
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Figure 1. Some solutions of (3.1).

• Theorem 2.3: It is evident with m := 4 and ℓ = 5 that

pn =
7n

10n+ 1
≤ 7

10
= 0.7 =: p ≤ ℓ

ℓ+ 2
=

5

7
≈ 0.714286 for n = 0, 1, · · ·

and

p+
(
1 + (1− p)2

)
p4 =

7

10
+

(
1 +

(
1− 7

10

)2
)(

7

10

)4

=
961709

1000000
≈ 0.96 ≤ 1.

Furthermore, it is calculated that

lim sup
n→∞

n∑
j=n−(3ℓ+(m−1)κ+1)

qj = lim sup
n→∞

n∑
j=n−19

qj =
44

125
= 0.352 < 0.3525.

This demonstrates that the conditions stipulated in Theorem 2.3 are satisfied.

Furthermore, it is obvious to note that the condition (1.5) holds. Consequently, it is evident that Theorem 2.3
is invoked, whereas Theorem D is not invoked in this context. In Figure 1, a total of six (linearly independent)
particular solutions of (3.1) are plotted.

Example 3.2 Consider the neutral difference equation

∆

[
xn − 4

5
xn−2

]
+

9 + (−1)n5

400
xn−1 = 0 for n = 0, 1, · · · . (3.2)

• Theorem E: We observe that the inequality(
4

5

)m

≤ 1

4
for m = 7, 8, · · · ,

holds. Upon computation, it is found that

lim sup
n→∞

n∑
j=n−(ℓ+(m−1)κ)

qj = lim sup
n→∞

n∑
j=n−(2m−1)

9 + (−1)j5

400
=

9m

200
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Figure 2. Some solutions of (3.2).

and
1− p

1− pm

(
3− 4pm

2
+

1

2[ℓ+ (m− 1)κ+ 1]

)
=

5m(6m+ 1)− 8m4m

20m(5m − 4m)
for m = 7, 8, · · · .

It is noted that
9m

200
̸< 5m(6m+ 1)− 8m4m

20m(5m − 4m)
for m = 7, 8, · · · .

Consequently, Theorem E does not apply.

• Theorem 2.4: It is apparent with m := 4 that

(
4

5

)4

=
256

625
= 0.4096 and ℓ+ (m− 1)κ

4[ℓ+ (m− 1)κ+ 1]
=

7

32
= 0.21875 ≤

(
4

5

)4

<
1

2
,

and further, computation reveals that

lim sup
n→∞

n∑
j=n−(ℓ+(m−1)κ)

qj = lim sup
n→∞

n∑
j=n−7

9 + (−1)j5

400
=

9

50
= 0.18

<
1− p

1− pm

√
2
ℓ+ (m− 1)κ+ 2

ℓ+ (m− 1)κ+ 1
(1− 2pm)

=
5
√
113

246
≈ 0.21606,

satisfying the conditions of Theorem 2.4.
Therefore, while Theorem E does not apply, Theorem 2.4 does hold. Additionally, it is easy to see the condition
(1.5) is satisfied. In Figure 2, the graphic of solutions of (3.2) with the initial values x−2 = 0 , x−1 = 0 , x0 = 1 ,
y−2 = 0 , y−1 = 1 , y0 = 0 , z−2 = 1 , z−1 = 0 , z0 = 0 are plotted.

4. Proof of the main results
The proofs of Theorems 2.1 and 2.2 can be inferred from that of [9, Theorem 2.3] and [9, Theorem 3.1],
respectively. Hence, we will provide the details of the proofs for Theorems 2.3 and 2.4 in this section.

1116



ALSHARIF and KARPUZ/Turk J Math

Proof [Proof of Theorem 2.3] Let {xn} be any solution of Equation (1.1). We shall prove that

lim
n→∞

xn = 0. (4.1)

Consider the following two cases for the sequence {xn} .

Case 1. Let {xn} be nonoscillatory. That is, {xn} is either eventually positive or eventually negative. Without
loss of generality, we may assume that {xn} is eventually positive. We can find n0 ∈ N such that xn > 0 ,
xn−κ > 0 and xn−ℓ > 0 for n = n0, n0 + 1, · · · . Defining {zn} as

zn := xn − pnxn−κ for n = n0, n0 + 1, · · · , (4.2)

we see from (1.1) that {zn} is eventually nonincreasing. Set Lz := limn→∞ zn . Since {xn} is bounded by
Theorem 2.1, {zn} is also bounded, i.e. Lz is finite. Then,

∞∑
j=n0

qjxj−ℓ = zn0
− Lz <∞,

which shows by (1.5) that lim infn→∞ xn = 0 . Let Lx := lim supn→∞ xn . We select two increasing divergent
sequences {uk} ⊂ N and {vk} ⊂ N such that xuk

→ 0 and xvk → Lx as k → ∞ . Note that {xuk−κ}
and {xvk−κ} are bounded sequences, they have convergent subsequences by the Bolzano–Weierstrass theorem.
Without loss of generality, we denote these convergent subsequences by {xuk−κ} and {xvk−κ} , respectively.
Furthermore, note that the limit of the sequence {xvk−κ} cannot exceed Lx . Then, we estimate

zvk − zuk
= [xvk − pvkxvk−κ]− [xuk

− puk
xuk−κ]

≥ xvk − xuk
− pxvk−κ for k ∈ N.

Letting k → ∞ yields 0 = Lz − Lz ≥ (1 − p)Lx , which implies Lx = 0 , i.e. (4.1) holds. Thus, the proof is
complete for Case 1.

Case 2. Let {xn} be oscillatory. We set
Lx := lim sup

n→∞
|xn|.

Clearly, Lx ≥ 0 . We claim that Lx = 0 . Assume the contrary that Lx > 0 . Let {uk} ⊂ N be an increasing
divergent sequence such that xuk

→ Lx as k → ∞ . Note that {xuk−κ} is a bounded sequence, it has a
convergent subsequence by the Bolzano–Weierstrass theorem. Without loss of generality, we will denote this
convergent subsequence by {xuk−κ} . Further, note that the limit of the sequence {xuk−κ} cannot exceed Lx .
Consequently, by (4.2), we get

|zuk
| ≥ |xuk

| − p|xuk−κ| for k ∈ N.

Letting k → ∞ , we obtain
Lz ≥ Lx − pLx = (1− p)Lx > 0, (4.3)

where Lz := lim supn→∞ |zn| . Let us define

β(p, ℓ) := (1− p)

(
1 +

ℓ+ 2

2[ℓ+ 1]
(1− p)

)
for n = n0, n0 + 1, · · · . (4.4)
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From (2.2) and (4.4), there exist n0 ∈ N and ℓ+2
ℓ+1 (1− p) < B < β(p, ℓ) such that n0 ≥ 3ℓ+ (m− 1)κ+ 1 , and

n∑
j=n−(3ℓ−(m−1)κ+1)

qj ≤ B for n = n0, n0 + 1, · · · . (4.5)

For every ε ∈ (0, 1−p−pm

1−p+pmLx) , there exists n1 ∈ N such that n1 ≥ n0 ,

|xn| ≤ Lx + ε for n = n1, n1 + 1, · · · . (4.6)

Note that {∆zn} is oscillatory, and there exists an increasing divergent sequence {vk} ⊂ N such that vk > n1+

2[3ℓ+(m−1)κ+1]+κ for k ∈ N , vk → ∞ and |zvk | → Lz as k → ∞ with |zvk | > max{(1−p)(Lx−ε), |zvk−1|}
for k ∈ N . Without loss of generality, we may assume that {zvk} is a positive sequence. Now, we consider the
following two subcases.

Subcase 1. Let
zn > 0 for vk − [3ℓ+ (m− 1)κ+ 1] ≤ n ≤ vk.

Then, we have

−xn < pi(Lx + ε) for vk − [3ℓ+ (m− i)κ+ 1] ≤ n ≤ vk and i = 1, 2, · · · ,m. (4.7)

Define the sequence {yn} by

yn := zn − pm(Lx + ε) for n = n1, n1 + 1, · · · . (4.8)

Then, it follows from (1.1), (4.2) and (4.8) that

∆yn = ∆zn = qn(−zn−ℓ − pn−ℓxn−ℓ−κ) ≤ −qnyn−ℓ for vk − (2ℓ+ 1) ≤ n ≤ vk. (4.9)

Then, for k ∈ N , we deduce

yvk = zvk − pm(Lx + ε)

> (1− p)(Lx − ε)− pm(Lx + ε)

= (1− p− pm)Lx − (1− p+ pm)ε > 0.

On the other hand, from the fact that ∆yvk−1 = ∆zvk−1 > 0 and (4.9), we conclude that yvk−ℓ−1 < 0 . Hence,
there exists sk ∈ N such that vk − ℓ ≤ sk ≤ vk ,

ysk−1 < 0 and ysk ≥ 0.

Then, there exists ξ ∈ [0, 1) such that

ξ(ysk − ysk−1) = ysk or equivalently ysk = ξ∆ysk−1. (4.10)

Using (1.1), (4.7), and (4.8), we obtain

∆yn ≤ (Lx + ε)pmqn for n1 ≤ n ≤ vk. (4.11)
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We deduce from (4.5), (4.10), and (4.11) that

−yn−ℓ =

sk−1∑
j=n−ℓ

∆yj − ξ∆ysk−1

≤ pm(Lx + ε)

(
sk−1∑
j=n−ℓ

qj − ξqsk−1

)

≤ pm(Lx + ε)

(
B −

n∑
j=sk−1

ωj,sk−1(ξ)qj

)
for sk − 1 ≤ n ≤ vk − 1, (4.12)

where, for λ ∈ R+ , the weight sequence {ωn,s(λ)} is defined by

ωn,s(λ) :=

{
1, n ̸= s

λ, n = s.
(4.13)

Substituting (4.12) into (4.9), we have

∆yn ≤ pm(Lx + ε)qn

(
B −

n∑
j=sk−1

ωj,sk−1(ξ)qj

)
for sk − 1 ≤ n ≤ vk − 1.

Set

Λ1 := pm
(
max{B(1− p), B − p(1− p)} − ℓ+ 2

2[ℓ+ 1]
(1− p)2

)
.

Hence, Λ1 < pm(1 − p)2 ≤ 1 − p − pm . For this subcase, there are two possibilities for the number d :=∑vk−1
j=sk−1 ωj,sk−1(ξ)qj . Replacing |xn∗ | by (Lx + ε) and using similar arguments to that in the proof of [9,

Theorem 2.3], we can conclude that
yvk ≤ (Lx + ε)Λ1 for k ∈ N. (4.14)

It follows from (4.8) and (4.14) that

zvk = yvk + pm(Lx + ε) ≤ (Λ1 + pm)(Lx + ε) for k ∈ N.

Letting k → ∞ and ε→ 0 in the above equation, we have

Lz = lim sup
k→∞

zvk ≤ (Λ1 + pm)Lx < (1− p)Lx,

which leads to contradiction with (4.3). Hence, Lx = 0 . Thus, the proof is complete for Subcase 1.

Subcase 2. Let rk ∈ N satisfy vk − [3ℓ+ (m− 1)κ+ 1] ≤ rk ≤ vk ,

zrk−1 ≤ 0 and zrk > 0.

It should be noted that ∆zrk−1 ≥ 0 . Then, there exists ξ ∈ (0, 1] such that

ξ(zrk − zrk−1) = zrk or equivalently zrk = ξ∆zrk−1.
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From (1.1), (4.2) and (4.6), we have

∆zn ≤ qn(Lx + ε) for n0 + ℓ ≤ n ≤ vk − 1,

and
∆zn ≤ qnp(Lx + ε) for rk + ℓ ≤ n ≤ vk − 1.

Then, using similar arguments to that in the proof of [9, Theorem 2.3], we obtain

∆zn ≤ (Lx + ε)qn

(
B + p−

n∑
j=rk−1

ωj,rk−1(ξ)qj

)
for rk − 1 ≤ n ≤ rk + ℓ− 1.

Setting

Λ2 := B − ℓ+ 2

2[ℓ+ 1]
(1− p)2.

Consequently, Λ2 < 1 − p . There are also two possible subcases for the number h :=
∑rk+ℓ−1

j=rk−1 ωj,rk−1(ξ)qj .
Replacing |xn∗ | by (Lx + ε) and using similar arguments to that in the proof of [9, Theorem 2.3], we can
conclude that

zvk ≤ (Lx + ε)Λ2 for k ∈ N.

Letting k → ∞ and ε→ 0 in the above equation, we have

Lz = lim sup
k→∞

zvk ≤ Λ2Lx < (1− p)Lx,

which leads to contradiction with (4.3). Hence, we obtain Lx = 0 which is finalized the proof for Subcase 2.

Hence, the proof for Case 2 is also complete.

2

Proof [Proof of Theorem 2.4] Let {xn} be any solution of Equation (1.2). We will prove that (4.1) holds.
Consider the following two cases for the sequence {xn} .

Case 1. Let {xn} be nonoscillatory. Replacing pn by p and then using the same arguments to that in Case 1
in the proof of Theorem 2.3.

Case 2. Let {xn} be oscillatory. Set
Lx := lim sup

n→∞
|xn|.

It is easy to see that Lx ≥ 0 . We claim that Lx = 0 . Assume the contrary that Lx > 0 . Let {uk} ⊂ N be an
increasing divergent sequence such that xuk

→ Lx as k → ∞ . Note that {xuk−κ} is a bounded sequence, it
has a convergent subsequence by the Bolzano–Weierstrass theorem. Without loss of generality, we will denote
this convergent subsequence by {xuk−κ} . Further, note that the limit of the sequence {xuk−κ} cannot exceed
Lx . Consequently, we obtain

|zuk
| ≥ |xuk

| − p|xuk−κ| for k ∈ N,
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where
zn := xn − pxn−κ for n = n0, n0 + 1, · · · . (4.15)

Letting k → ∞ , we obtain
Lz ≥ Lx − pLx = (1− p)Lx > 0, (4.16)

where Lz := lim supn→∞ |zn| . Let us define

αm(p, κ, ℓ) :=
1− p

1− pm

(
3− 4pm

2
+

1

2[ℓ+ (m− 1)κ+ 1]

)
,

βm(p, κ, ℓ) :=
1− p

1− pm

√
2
ℓ+ κ(m− 1) + 2

ℓ+ κ(m− 1) + 1
(1− 2pm).

(4.17)

From (2.3) and (4.17), there exist n0 ∈ N , ℓ+(m−1)κ+2
ℓ+(m−1)κ+1

1−p
1−pm < A < αm(p, κ, ℓ) and 0 < B < βm(p, κ, ℓ) such

that n0 ≥ ℓ+ (m− 1)κ ,

n∑
j=n−ℓ−(m−1)κ

qj ≤ ψ :=


A, p ∈

[
0, m

√
ℓ+(m−1)κ

4[ℓ+(m−1)κ+1]

)
B, p ∈

[
m

√
ℓ+(m−1)κ

4[ℓ+(m−1)κ+1] ,
1

m√2

) for n = n0, n0 + 1, · · · .

For every ε ∈
(
0, (1− 2pm)Lx

)
, there exists n1 ∈ N such that n1 ≥ n0 such that

|xn| ≤ Lx + ε for n = n1, n1 + 1, · · · . (4.18)

Define the sequence {yn} by

yn := zn − (1− p)
pm

1− pm
(Lx + ε) for n = n1, n1 + 1, · · · . (4.19)

Then, we can derive

−xn−ℓ ≤ −
m−1∑
i=0

piyn−ℓ−iκ for n = n2, n2 + 1, · · · (4.20)

where n2 ≥ n1 + ℓ+mκ . From (1.2), (4.19) and (4.20), it follows that

∆yn = ∆zn = −qnxn−ℓ ≤ −qn
m−1∑
i=0

piyn−ℓ−iκ for n = n2, n2 + 1, · · · . (4.21)

It is noteworthy that {∆zn} is oscillatory, and there exists an increasing divergent sequence {vk} ⊂ N such that
vk > n0+2[(m−1)κ+ℓ] for k ∈ N , vk → ∞ and |zvk | → Lz as k → ∞ with |zvk | > max{(1−p)(Lx−ε), |zvk−1|}
for k ∈ N . Without loss of generality, we may assume that {zvk} is a positive sequence. Then, for k ∈ N , we
deduce

yvk = zvk − (1− p)
pm

1− pm
(Lx + ε)

> (1− p)(Lx − ε)− (1− p)
pm

1− pm
(Lx + ε)

= (1− p)
(1− 2pm)Lx − ε

1− pm
> 0.
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On the other hand, from the fact that ∆zvk−1 > 0 and (4.21), we conclude that yvk−ℓ−i0κ−1 < 0 for some
i0 ∈ {0, 1, · · · ,m− 1} . Hence, there exists sk ∈ N such that vk − ℓ− i0κ ≤ sk ≤ vk ,

ysk−1 < 0 and ysk ≥ 0.

Then, we can find ξ ∈ [0, 1) such that

ξ(ysk − ysk−1) = ysk or equivalently ysk = ξ∆ysk−1.

Considering (1.2) and (4.18), we conclude that

∆yn ≤ (Lx + ε)qn for n1 ≤ n ≤ vk.

We can show that

−yn−ℓ−i0κ ≤ (Lx + ε)

(
ψ −

n∑
j=sk−1

ωj,sk−1(ξ)qj

)
for sk − 1 ≤ n ≤ vk − 1. (4.22)

Substituting (4.22) into (4.21), we have

∆yn ≤ 1− pm

1− p
(Lx + ε)qn

(
ψ −

n∑
j=sk−1

ωj,sk−1(ξ)qj

)
for sk − 1 ≤ n ≤ vk − 1.

Set

Λ :=


A− ℓ+(m−1)κ+2

2[ℓ+(m−1)κ+1]
1−p
1−pm , p ∈

[
0, m

√
ℓ+(m−1)κ

4[ℓ+(m−1)κ+1]

)
ℓ+(m−1)κ+1

2[ℓ+(m−1)κ+2]
1−pm

1−p B
2, p ∈

[
m

√
ℓ+(m−1)κ

4[ℓ+(m−1)κ+1] ,
1

m√2

)
.

We simply have

Λ < (1− p)
1− 2pm

1− pm
.

There are three possible cases for the number d :=
∑vk−1

j=sk−1 ωj,sk−1(ξ)qj . Replacing |xn∗ | by (Lx + ε) and
using similar arguments to that in the proof of [9, Theorem 3.1], we can conclude that

yvk
≤ Λ(Lx + ε) for k ∈ N. (4.23)

Thus, for k ∈ N , we estimate from (4.19) and (4.23) that

zvk ≤ Λ(Lx + ε) + (1− p)
pm

1− pm
(Lx + ε) (4.24)

Letting k → ∞ and ε→ 0 in above equation, we have

Lz = lim sup
k→∞

zvk < (1− p)Lx,

which contradicts (4.16), i.e. Lx = 0 , and hence the proof is done.

2
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5. Discussion
Now, we focus our attention to the proofs of [9, Theorem 2.3, Theorem 2.4, Theorem 3.1 and Theorem 3.2].
Let us first consider the proofs of [9, Theorem 2.3 and Theorem 2.4] by comparing them with the proofs of [9,
Theorem 2.1 and Theorem 2.2] together. It is apparent that the main idea in the proof of [9, Theorem 2.3]
is very similar to that in the proof of [9, Theorem 2.1]. In the proof of [9, Theorem 2.3], the authors utilize
functions of the forms

f(x, p, ℓ) := β(p, ℓ)x− ℓ+ 2

2(ℓ+ 1)
x2 for x ∈ [0,∞), p ∈ [0, 1] and ℓ ∈ N

and
g(x, p, ℓ) := f(x, p, ℓ) + p

(
β(p, ℓ)− (1− p)

)
for x ∈ [0,∞), p ∈ [0, 1] and ℓ ∈ N,

where β(p, ℓ) is defined in (4.4). Readily, f(·, p, ℓ) and g(·, p, ℓ) are both increasing on [0, ℓ+1
ℓ+2β(p, ℓ)] . For

instance, in Subcase 1 in the proof of [9, Theorem 2.3], Tang uses the inequality f(x, p, ℓ) ≤ f(1 − p, p, ℓ) for
0 ≤ x ≤ 1 − p . However, p ∈ [0, 1) does not imply 1 − p ∈ [0, ℓ+1

ℓ+2β(p, ℓ)] , which is essential. Especially,

1− p ̸∈ [0, ℓ+1
ℓ+2β(p, ℓ)] when p ∈ ( ℓ

ℓ+2 , 1) . To guarantee f(·, p, ℓ) and g(·, p, ℓ) are both increasing on [0, 1− p] ,

we require that [0, 1 − p] ⊂ [0, ℓ+1
ℓ+2β(p, ℓ)] , i.e. p ∈ [0, ℓ

ℓ+2 ] . Hence, [9, Theorem 2.3 and Theorem 2.4] can be
corrected as follows:

Theorem F (Correction of [9, Theorem 2.3]) Assume that there exists p ∈ [0, ℓ
ℓ+2 ] such that 0 ≤ pn ≤ p

for all large n . Further, assume

n∑
j=n−(3ℓ+(m−1)κ+1)

qj ≤ (1− p)

(
1 +

ℓ+ 2

2[ℓ+ 1]
(1− p)

)
for all large n,

where m ∈ N satisfies p+ 3
2p

m ≤ 1 . Then, every solution of (1.1) is bounded.

Theorem G (Correction of Theorem D) Assume that there exist p ∈ [0, ℓ
ℓ+2 ] and m ∈ N such that

p + 3
2p

m ≤ 1 and 0 ≤ pn ≤ p for all large n . Further, assume (1.5) and (1.8). Then, every solution
{xn} of (1.1) tends to zero as n→ ∞ .

In the following remark, we compare Theorem 2.3 and Theorem G.

Remark 5.1 Readily, p + 3
2p

m ≤ 1 holds for m = ⌈logp( 23 (1 − p))⌉, ⌈logp( 23 (1 − p))⌉ + 1, · · · , while p +
(
1 +

(1− p)2
)
pm ≤ 1 holds for m = ⌈logp(

1−p
1+(1−p)2 )⌉, ⌈logp(

1−p
1+(1−p)2 )⌉+ 1, · · · .

From Figure 3, it is clear that ⌈logp(
1−p

1+(1−p)2 )⌉ ≤ ⌈logp( 23 (1 − p))⌉ for p ∈ [0, 1) (which covers

[0, ℓ
ℓ+2 ] ⊂ [0, 1) for any ℓ ∈ N). The condition (1.8) appears in both of these theorems but its left-hand

side becomes smaller for the smaller m values. This verifies that Theorem 2.3 improves Theorem G.

On the other hand, if we consider [9, Theorem 3.1] when m = 1 , it is just a restriction of [9, Theorem 2.1]
to (1.2), i.e. there is nothing new in its proof for this particular case. However, with m = 1 and p ∈ [ ℓ

4[ℓ+1] ,
1
4 ] ,
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Figure 3. Graphics of ⌈logp(
1−p

1+(1−p)2
)⌉ and ⌈logp( 23 (1− p))⌉ .

it appears that [9, Theorem 3.1] improves [9, Theorem 2.1]. This is due to a similar technical mistake mentioned
above, which also lies in the proof of [9, Theorem 3.1]. In the proof of [9, Theorem 3.1], we encounter a function
of the form

fm(x, p, κ, ℓ) := αm(p, κ, ℓ)x− ℓ+ (m− 1)κ+ 2

2[ℓ+ (m− 1)κ+ 1]
x2

for x ∈ [0,∞) , p ∈ [0, 1] and m,κ, ℓ ∈ N , where αm(p, κ, ℓ) is defined in (4.17). Note that fm(·, p, κ, ℓ) is

increasing on [0, ℓ+(m−1)κ+1
ℓ+(m−1)κ+2αm(p, ℓ, κ)] . As we see that 1−p

1−pm ̸∈ [0, ℓ+(m−1)κ+1
ℓ+(m−1)κ+2αm(p, ℓ, κ)] if p ∈ [0, 1) . For the

condition 1−p
1−pm ∈ [0, ℓ+(m−1)κ+1

ℓ+(m−1)κ+2αm(p, ℓ, κ)] to be held, it has to be assumed that 4pm ≤ ℓ+(m−1)κ
ℓ+(m−1)κ+1 . Hence,

corrections of [9, Theorem 3.1 and Theorem 3.2] are as follows:

Theorem H (Correction of [9, Theorem 3.1]) Assume that p ∈ [0, 1) . Further, assume

n∑
j=n−(ℓ+(m−1)κ)

qj ≤
1− p

1− pm

(
3− 4pm

2
+

1

2[ℓ+ (m− 1)κ+ 1]

)
for all large n, (5.1)

where m ∈ N satisfies 4pm ≤ ℓ+(m−1)κ
ℓ+(m−1)κ+1 . Then, every solution of (1.2) is bounded.

In the following remark, we compare Theorem 2.2 and Theorem H.

Remark 5.2 Consider the autonomous neutral difference equation

∆[xn − pxn−1] + qxn−2 = 0 for n = 0, 1, · · · , (5.2)

where p ∈ [0, 1) and q ∈ [0,∞) , κ = 1 and ℓ = 2 .
The conditions of Theorem 2.2 for (5.2) reduce to

q ≤ 1

m+ 2

1− p

1− pm


3− 4pm

2
+

1

2(m+ 2)
, p ∈

[
0, m

√
m+1

4(m+2)

)
√
2m+3
m+2 (1− 2pm), p ∈

[
m

√
m+1

4(m+2) ,
1

m√2

) (5.3)

for m = ⌊logp( 12 )⌋+ 1, ⌊logp( 12 )⌋+ 2, · · · since the condition 2pm < 1 hold for these m values.
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On the other hand, the conditions of Theorem H for (5.2) reduce to

4pm ≤ m+ 1

m+ 2
and q ≤ 1

m+ 2

1− p

1− pm

(
3− 4pm

2
+

1

2(m+ 2)

)
(5.4)

for suitable values of m ∈ N . Note that these m values are greater than
(
⌊logp( 12 )⌋+ 1

)
.

Figure 4 shows the region for possible values of the pairs (p, q) satisfying the conditions of Theorem 2.2
and Theorem H.

0 0.17 0.43 0.58 0.63 0.67
0

0.12

0.18

0.22

0.34

0.44

0.56

p

q

Figure 4. Theorem 2.2 supplies the union of the blue region and the yellow region for the (p, q) pairs satisfying (5.3),
and Theorem H only supplies the yellow region for the (p, q) pairs satisfying (5.4).

Theorem I (Correction of Theorem E) Assume that p ∈ [0, 1) , and there exists m ∈ N such that 4pm ≤
ℓ+(m−1)κ

ℓ+(m−1)κ+1 . Further, assume (1.5) and (1.9). Then, every solution {xn} of (1.2) tends to zero as n→ ∞ .
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