

[Turkish Journal of Mathematics](https://journals.tubitak.gov.tr/math)

Manuscript 3561

Free weakly k-nilpotent n-tuple semigroups

ANATOLII V. ZHUCHOK

JORG KOPPITZ

Follow this and additional works at: [https://journals.tubitak.gov.tr/math](https://journals.tubitak.gov.tr/math?utm_source=journals.tubitak.gov.tr%2Fmath%2Fvol48%2Fiss6%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages)

This work is licensed under a [Creative Commons Attribution 4.0 International License](https://creativecommons.org/licenses/by/4.0/).

Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Turk J Math (2024) 48: 1067 – 1078 © TÜBİTAK doi:10.55730/1300-0098.3561

Research Article

Free weakly *k***-nilpotent** *n***-tuple semigroups**

Anatolii V. ZHUCHOK¹*,*[∗]**, Jörg KOPPITZ**²

¹Institute of Mathematics, Faculty of Science, University of Potsdam, Potsdam, Germany 2 Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Sofia, Bulgaria

Abstract: In this paper, we construct a free object in the variety of weakly *k* -nilpotent *n*-tuple semigroups and characterize the least weakly *k* -nilpotent congruence on a free *n*-tuple semigroup. Moreover, we present separately free weakly *k* -nilpotent *n*-tuple semigroups of rank 1, calculate the cardinality of the free weakly *k* -nilpotent *n*-tuple semigroup for the finite case, emphasize that the semigroups of the free weakly *k* -nilpotent *n*-tuple semigroup are isomorphic and the automorphism group of the free weakly *k* -nilpotent *n*-tuple semigroup is isomorphic to the symmetric group. We also describe all maximal *n*-tuple subsemigroups of the free weakly *k* -nilpotent *n*-tuple semigroup and all regular elements of the endomorphism semigroup of the free weakly *k* -nilpotent *n*-tuple semigroup, and provide a criterion for an isomorphism of endomorphism semigroups of free weakly *k* -nilpotent *n*-tuple semigroups.

Key words: *n*-Tuple semigroup, free weakly *k* -nilpotent *n*-tuple semigroup, free *n*-tuple semigroup, semigroup, congruence

1. Introduction and preliminaries

The notion of an *n*-tuple semigroup was considered by Koreshkov [\[7](#page-11-0)] in the context of the theory of *n*-tuple algebras of associative type. There are sufficiently convincing motivations for studying these algebraic structures since *n*-tuple semigroups are closely related to interassociative semigroups $[1, 4, 5]$ $[1, 4, 5]$ $[1, 4, 5]$ $[1, 4, 5]$ $[1, 4, 5]$ $[1, 4, 5]$, dimonoids $[8, 13, 19]$ $[8, 13, 19]$ $[8, 13, 19]$ $[8, 13, 19]$ $[8, 13, 19]$, trioids [[6,](#page-11-6) [9](#page-11-7), [28](#page-12-0)], doppelsemigroups [\[21](#page-11-8)], duplexes [[14\]](#page-11-9), *g* -dimonoids [[10,](#page-11-10) [29](#page-12-1)], restrictive bisemigroups [[12\]](#page-11-11), and bisemigroups [[11\]](#page-11-12). If $n = 1$, *n*-tuple semigroups are semigroups. For $n = 2$, *n*-tuple semigroups become doppelsemigroups. The theory of doppelsemigroups has been developed in [\[2](#page-10-1), [3](#page-10-2), [15,](#page-11-13) [17,](#page-11-14) [20](#page-11-15)[–23](#page-11-16), [26,](#page-11-17) [30\]](#page-12-2). The theory of free systems in *n*-tuple semigroup varieties is still in progress [\[16](#page-11-18), [18,](#page-11-19) [24](#page-11-20), [25,](#page-11-21) [27](#page-12-3)]. In particular, in the latter five papers, the problem of the construction of free objects for the varieties of *n*-tuple semigroups, commutative *n*-tuple semigroups, rectangular *n*-tuple semigroups, left (right) *k* -nilpotent *n*-tuple semigroups and *k* -nilpotent *n*-tuple semigroups was solved; furthermore, certain least congruences on a free *n*-tuple semigroup were characterized. The present paper continues this trend of research by considering so-called weakly *k* -nilpotent *n*-tuple semigroups, i.e. *n*-tuple semigroups with *n k* -nilpotent semigroups. The class of such algebras forms a subvariety of the variety of *n*-tuple semigroups for which the problem of describing a free object remained open.

In this paper, we construct a free object in the variety of weakly *k* -nilpotent *n*-tuple semigroups and characterize the least weakly *k* -nilpotent congruence on a free *n*-tuple semigroup. We also focus on the

[∗]Correspondence: zhuchok.av@gmail.com

²⁰¹⁰ *AMS Mathematics Subject Classification:* 08B20, 20M10, 20M50, 17A30

description of free weakly *k* -nilpotent *n*-tuple semigroups of rank 1, calculate the cardinality of the free weakly *k* -nilpotent *n*-tuple semigroup for the finite case, emphasize that the semigroups of the free weakly *k* -nilpotent *n*-tuple semigroup are isomorphic and the automorphism group of the free weakly *k* -nilpotent *n*-tuple semigroup is isomorphic to the symmetric group. In addition, we characterize all maximal *n*-tuple subsemigroups of the free weakly *k* -nilpotent *n*-tuple semigroup and all regular elements of the endomorphism semigroup of the free weakly *k* -nilpotent *n*-tuple semigroup, and provide a criterion for an isomorphism of endomorphism semigroups of free weakly *k* -nilpotent *n*-tuple semigroups.

As usual, we denote the set of all positive integers by N, and for $n \in \mathbb{N}$, denote the set $\{1, 2, \ldots, n\}$ by \overline{n} . Let us recall that a nonempty set *G* equipped with *n* binary operations $\boxed{1}$, $\boxed{2}$,..., \boxed{n} , satisfying the axioms $(x \nvert \nvert y) \nvert s \nvert z = x \nvert \nvert (y \nvert s) \nvert z$ for all $x, y, z \in G$ and $r, s \in \overline{n}$, is called an *n*-tuple semigroup [[7\]](#page-11-0). In this section and Section 4, for an *n*-tuple semigroup, we will write *G* instead of $(G, \boxed{1}, \boxed{2}, \ldots, \boxed{n})$.

We need the following lemma.

Lemma 1.1 ([\[16](#page-11-18)], Lemma 1) In an n-tuple semigroup G, for any $m \in \mathbb{N}\setminus\{1\}$ and any $x_i \in G$, $1 \le i \le m+1$, *and any* $*_j \in \{ \boxed{1}, \boxed{2}, \ldots, \boxed{n} \}$, $1 \leq j \leq m$, any parenthesization of

$$
x_1 *_1 x_2 *_2 \ldots *_m x_{m+1}
$$

yields the same element from G.

Recall the definition of a k -nilpotent semigroup (see also [[21,](#page-11-8) [22](#page-11-22)]). A semigroup S is called nilpotent if $S^{n+1} = 0$ for some $n \in \mathbb{N}$. The least such *n* is called the nilpotency index of *S*. For $k \in \mathbb{N}$, a nilpotent semigroup of nilpotency index $\leq k$ is called *k*-nilpotent. An element 0 of an *n*-tuple semigroup *G* is called zero [\[25](#page-11-21)] if $x[i]0 = 0 = 0[i]x$ for all $x \in G$ and $i \in \overline{n}$. An *n*-tuple semigroup *G* with zero will be called weakly nilpotent if $(G, \boxed{1})$, $(G, \boxed{2})$, ..., (G, \boxed{n}) are nilpotent semigroups. A weakly nilpotent *n*-tuple semigroup *G* will be called weakly *k*-nilpotent if $(G, \boxed{1})$, $(G, \boxed{2})$,..., (G, \boxed{n}) are *k*-nilpotent semigroups. If ρ is a congruence on an *n*-tuple semigroup *G* such that G/ρ is a weakly *k*-nilpotent *n*-tuple semigroup, we say that ρ is a weakly *k*-nilpotent congruence.

Note that the operations of any weakly 1-nilpotent *n*-tuple semigroup coincide and each operation results in a zero semigroup. It is not difficult to verify that the variety of *k* -nilpotent *n*-tuple semigroups introduced in [\[25](#page-11-21)] is a subvariety of the variety of weakly *k* -nilpotent *n*-tuple semigroups. An *n*-tuple semigroup which is free in the variety of weakly *k* -nilpotent *n*-tuple semigroups will be called a free weakly *k* -nilpotent *n*-tuple semigroup.

Denote the symmetric group on a set X by $\Im[X]$ and the automorphism group (the endomorphism semigroup) of an *n*-tuple semigroup *G* by $Aut G$ (*End G*). If $\nu : G_1 \to G_2$ is a homomorphism of *n*-tuple semigroups, the kernel of ν is denoted by Δ_{ν} , that is, $\Delta_{\nu} = \{(x, y) \in G_1 \times G_1 \mid x\nu = y\nu\}$.

2. Constructions

In this section, we construct a free weakly *k* -nilpotent *n*-tuple semigroup of an arbitrary rank and consider separately free weakly *k* -nilpotent *n*-tuple semigroups of rank 1. Note that the free weakly *k* -nilpotent *n*-tuple semigroup over a set *X* is an algebra in the variety of weakly *k* -nilpotent *n*-tuple semigroups generated by *X* and such that every map of *X* into any other weakly *k* -nilpotent *n*-tuple semigroup *K* can be extended to a homomorphism of the free weakly *k* -nilpotent *n*-tuple semigroup over a set *X* into *K* . We also calculate the cardinality of the free weakly *k* -nilpotent *n*-tuple semigroup for the finite case and establish that the semigroups of the free weakly *k* -nilpotent *n*-tuple semigroup are isomorphic.

Let X be an arbitrary nonempty set and let ω be an arbitrary word in the alphabet X. The length of ω is denoted by l_{ω} . Fix $n \in \mathbb{N}$ and let $Y = \{y_1, y_2, \ldots, y_n\}$ be an arbitrary set consisting of *n* elements. Let further $F[X]$ be the free semigroup on *X* and $F^{\theta}[Y]$ the free monoid on *Y* with the empty word θ . By definition, the length l_{θ} of θ is equal to 0. For $x \in Y$ and all $u \in F^{\theta}[Y]$, the number of occurrences of the element *x* in *u* is denoted by $d_x(u)$. Obviously, $d_x(\theta) = 0$ for any $x \in Y$. Fix $k \in \mathbb{N}$ and define *n* binary operations $\boxed{1}, \boxed{2}, \ldots, \boxed{n}$ on

$$
\Omega_k = \{(w, u) \in F[X] \times F^{\theta}[Y] | l_w - l_u = 1,
$$

$$
d_x(u) + 1 \le k \quad \text{for all} \quad x \in Y\} \cup \{0\}
$$

 $(w_1, u_1) \mid i \mid (w_2, u_2)$

by

$$
= \begin{cases} (w_1w_2, u_1y_iu_2), \text{ if } d_x(u_1y_iu_2) + 1 \le k \quad \text{for all} \quad x \in Y, \\ 0, \qquad \text{in all other cases,} \end{cases}
$$

$$
(w_1, u_1) \boxed{i} 0 = 0 \boxed{i} (w_1, u_1) = 0 \boxed{i} 0 = 0
$$

for all (w_1, u_1) , $(w_2, u_2) \in \Omega_k \setminus \{0\}$ and all $i \in \overline{n}$. The algebra obtained in this manner will be denoted by $F N S_n^k(X)$. The main result of this paper is the following theorem:

Theorem 2.1 $FNS_n^k(X)$ is a free weakly k *-nilpotent* n *-tuple semigroup.*

Proof We first show that $F N S_n^k(X)$ is an *n*-tuple semigroup. Let

 $(w_1, u_1), (w_2, u_2), (w_3, u_3) \in \Omega_k \setminus \{0\}$ and $r, s \in \overline{n}$.

Suppose that

$$
d_x(u_1y_ru_2y_su_3) + 1 \le k \tag{1}
$$

for all $x \in Y$. Then we get

$$
((w_1, u_1)\boxed{r}(w_2, u_2))\boxed{s}(w_3, u_3) = (w_1w_2, u_1y_ru_2)\boxed{s}(w_3, u_3)
$$

$$
= (w_1w_2w_3, u_1y_ru_2y_su_3)
$$

$$
= (w_1, u_1)\boxed{r}(w_2w_3, u_2y_su_3)
$$

$$
= (w_1, u_1)\boxed{r}((w_2, u_2)\boxed{s}(w_3, u_3))
$$

since (1) implies $d_x(u_1y_ru_2) + 1 \leq k$ and $d_x(u_2y_su_3) + 1 \leq k$ for all $x \in Y$. If

$$
d_x(u_1y_ru_2y_su_3) + 1 > k
$$

for some $x \in Y$, we have

$$
((w_1, u_1) [r](w_2, u_2)) [s](w_3, u_3) = 0 = (w_1, u_1) [r] ((w_2, u_2) [s](w_3, u_3)).
$$

The proof of the case when the element θ appears on both sides of the axioms of an n -tuple semigroup at least once is obvious.

Therefore, $FNS_n^k(X)$ is an *n*-tuple semigroup.

Take arbitrary elements $(w_i, u_i) \in \Omega_k \setminus \{0\}$, $1 \leq i \leq k + 1$. Since

$$
d_{y_r}(u_1y_ru_2y_r\ldots y_ru_{k+1})+1>k
$$

for any $r \in \overline{n}$, we conclude that

$$
(w_1, u_1)\boxed{r}(w_2, u_2)\boxed{r} \ldots \boxed{r}(w_{k+1}, u_{k+1}) = 0.
$$

At this point, assuming $x^0 = \theta$ for all $x \in Y$, for any $(x_i, \theta) \in \Omega_k \setminus \{0\}$, where $x_i \in X$, $1 \le i \le k$, we get

$$
(x_1,\theta)\boxed{r}(x_2,\theta)\boxed{r} \ldots \boxed{r}(x_k,\theta) = (x_1x_2\ldots x_k,y_r^{k-1}) \neq 0.
$$

The last arguments guarantee that $(\Omega_k, \lceil r \rceil)$, $r \in \overline{n}$, is a nilpotent semigroup of nilpotency index *k*. Therefore, by definition, $F N S_n^k(X)$ is a weakly *k*-nilpotent *n*-tuple semigroup.

Let us show that $F N S_n^k(X)$ is free in the variety of weakly *k*-nilpotent *n*-tuple semigroups.

Obviously, $FNS_n^k(X)$ is generated by the set $X \times {\theta}$. Assume that $(K, \lfloor 1 \rfloor, \lfloor 2 \rfloor, \ldots, \lfloor n \rfloor)$ is an arbitrary weakly *k*-nilpotent *n*-tuple semigroup. Let $\varphi': X \times {\theta} \to K$ be an arbitrary map. Consider a map $\varphi: X \to K$ such that $x\varphi = (x, \theta)\varphi'$ for all $x \in X$ and define a map

$$
\phi: FNS_n^k(X) \to (K, \boxed{1}, \boxed{2}, \dots, \boxed{n}): \omega \mapsto \omega\phi
$$

as

$$
\omega \phi = \begin{cases} x_1 \varphi \overline{\begin{matrix} i_1 \ x_2 \varphi \overline{\begin{matrix} i_2 \end{matrix}} \end{matrix}} \dots \overline{\begin{matrix} i_{s-1} \ x_{s+1} \end{matrix}} \end{cases}} x_s \varphi, & \text{if } \omega = (x_1 x_2 \dots x_s, y_{i_1} y_{i_2} \dots y_{i_{s-1}}), \\ x_j \in X, 1 \leq j \leq s, \\ x_1 \varphi, & \text{if } \omega = (x_1, \theta), x_1 \in X, \\ 0, & \text{if } \omega = 0. \end{cases}
$$

According to Lemma 1.1, ϕ is well-defined. We aim to demonstrate that ϕ is a homomorphism. For this, we will use the axioms of an *n*-tuple semigroup and the identities of a weakly *k* -nilpotent *n*-tuple semigroup. If $s = 1$, we will regard a sequence $y_{i_1} y_{i_2} \dots y_{i_{s-1}} \in F^{\theta}[Y]$ as θ . For arbitrary elements

$$
r \in \overline{n}, \quad (w_1, u_1) = (x_1 x_2 \dots x_s, y_{i_1} y_{i_2} \dots y_{i_{s-1}}),
$$

$$
(w_2, u_2) = (z_1 z_2 \dots z_m, y_{c_1} y_{c_2} \dots y_{c_{m-1}}) \in \Omega_k \setminus \{0\},
$$

where $x_d, z_t \in X$, $1 \le d \le s \in \mathbb{N}$, $1 \le t \le m \in \mathbb{N}$, $y_{i_p}, y_{c_b} \in Y$, $1 \le p \le s-1$, $1 \le b \le m-1$, we obtain

$$
((x_1x_2...x_s, y_{i_1}y_{i_2}...y_{i_{s-1}})\boxed{r}(z_1z_2...z_m, y_{c_1}y_{c_2}...y_{c_{m-1}}))\phi
$$

=
$$
\begin{cases} (x_1x_2...x_sz_1z_2...z_m, y_{i_1}y_{i_2}...y_{i_{s-1}}y_ry_{c_1}y_{c_2}...y_{c_{m-1}})\phi, \text{ if } \\ d_x(u_1y_ru_2)+1 \leq k \text{ for all } x \in Y, \\ 0\phi, \text{ in all other cases.} \end{cases}
$$

1070

In the case $d_x(u_1y_ru_2) + 1 \leq k$ for all $x \in Y$, we have

$$
(x_1x_2 \dots x_sz_1z_2 \dots z_m, y_{i_1}y_{i_2} \dots y_{i_{s-1}}y_ry_{c_1}y_{c_2} \dots y_{c_{m-1}})\phi
$$

$$
= x_1\phi \boxed{i_1} \dots \boxed{i_{s-1}} x_s\phi \boxed{r} z_1\phi \boxed{c_1} \dots \boxed{c_{m-1}} z_m\phi
$$

$$
= (x_1\phi \boxed{i_1} \dots \boxed{i_{s-1}} x_s\phi \boxed{r} \boxed{z_1\phi \boxed{c_1} \dots \boxed{c_{m-1}} z_m\phi}
$$

$$
= (x_1x_2 \dots x_s, y_{i_1}y_{i_2} \dots y_{i_{s-1}})\phi \boxed{r} \boxed{z_1z_2 \dots z_m, y_{c_1}y_{c_2} \dots y_{c_{m-1}}\phi}.
$$

If $d_x(u_1y_ru_2) + 1 > k$ for some $x \in Y$, we get

$$
0\phi = 0 = x_1\varphi \boxed{i_1} \cdots \boxed{i_{s-1}} x_s\varphi \boxed{r} z_1\varphi \boxed{c_1} \cdots \boxed{c_{m-1}} z_m\varphi
$$

$$
= (x_1\varphi \boxed{i_1} \cdots \boxed{i_{s-1}} x_s\varphi) \boxed{r} (z_1\varphi \boxed{c_1} \cdots \boxed{c_{m-1}} z_m\varphi)
$$

$$
= (x_1x_2 \cdots x_s, y_{i_1}y_{i_2} \cdots y_{i_{s-1}})\varphi \boxed{r} (z_1z_2 \cdots z_m, y_{c_1}y_{c_2} \cdots y_{c_{m-1}})\varphi.
$$

The proofs of the remaining cases are obvious. Therefore, $(a \n\overline{r} \n\overline{b}) \phi = a \phi \n\overline{r} \n\overline{b} \phi$ for all $a, b \in FNS_n^k(X)$, all $r \in \overline{n}$, and hence, ϕ is a homomorphism. Clearly, $(x, \theta)\phi = (x, \theta)\varphi'$ for all $(x, \theta) \in X \times {\theta}$. Since $X \times {\theta}$ generates $FNS_n^k(X)$, the uniqueness of such homomorphism ϕ is obvious. Thus, $FNS_n^k(X)$ is free in the variety of weakly k -nilpotent n -tuple semigroups.

In order to calculate the cardinality of Ω_k , let $a_0 = \alpha_0 = \alpha_{-1} = 0$ and let $\alpha_p = \sum^p$ *i*=1 a_i for $p \in \overline{n}$ and $\alpha = (a_1, \ldots, a_n) \in \{0, \ldots, k-1\}^n$.

Corollary 2.2 *The free weakly k*-nilpotent *n*-tuple semigroup $F N S_n^k(X)$ generated by a finite set $X \times {\theta}$ is *finite. Specifically, if* $|X| = m$ *, then*

$$
|\Omega_k| = 1 + \sum_{\substack{\alpha = (a_1, \dots, a_n) \\ \{0, \dots, k-1\}^n}} \left(\prod_{l=0}^{n-1} {\alpha_n - \alpha_{l-1} \choose a_l} m^{(1+\alpha_n)} \right).
$$

Proof Let $(w, u) \in \Omega_k \setminus \{0\}$. Then we denote $d_{y_i}(u)$ by a_i for all $i \in \overline{n}$. Clearly, $a_i \in \{0, ..., k-1\}$ for all $i \in \overline{n}$, and let $\alpha = (a_1, \ldots, a_n)$. Hence, there are \prod^{n-1} *l*=0 $\int \alpha_n - \alpha_{l-1}$ *al* $\overline{ }$ possibilities for the word *u.* Since $l_u = \alpha_n$ and $l_w = l_u + 1$, there are $m^{(1+\alpha_n)}$ possibilities for the word *w*. Thus, we have

$$
F
$$

$$
\prod_{l=0}^{n-1} \left(\begin{array}{c} \alpha_n - \alpha_{l-1} \\ a_l \end{array} \right) m^{(1+\alpha_n)}
$$

possibilities for an element $(w, u) \in \Omega_k \setminus \{0\}$ with $d_{y_i}(u) = a_i$ for all $i \in \overline{n}$, where $\alpha = (a_1, \ldots, a_n) \in$ *{*0*, . . . , k −* 1*} ⁿ* . Let

$$
W_{(a_1,...,a_n)} = \{(w, u) \in \Omega_k \setminus \{0\} \, | \, d_{y_i}(u) = a_i \text{ for all } i \in \overline{n}\}.
$$

1071

It is easy to verify that

$$
\{W_{(a_1,...,a_n)} \mid (a_1,...,a_n) \in \{0,...,k-1\}^n\}
$$

is a partition of $\Omega_k \setminus \{0\}$. Hence,

$$
|\Omega_k| = 1 + \sum_{\substack{\alpha = (a_1, \dots, a_n) \in \{0, \dots, k-1\}^n}} \left(\prod_{l=0}^{n-1} {\alpha_l - \alpha_{l-1} \choose a_l} m^{(1+\alpha_n)} \right).
$$

Now we construct an *n*-tuple semigroup which is isomorphic to the free weakly *k* -nilpotent *n*-tuple semigroup of rank 1.

We put

$$
Y(k) = \{ u \in F^{\theta}[Y] \mid d_x(u) + 1 \le k \text{ for all } x \in Y \} \cup \{ 0 \}.
$$

Define *n* binary operations $\boxed{1}, \boxed{2}, \ldots, \boxed{n}$ on $Y(k)$ by

$$
u_1[i]u_2 = \begin{cases} u_1y_iu_2, \text{ if } d_x(u_1y_iu_2) + 1 \le k \quad \text{for all} \quad x \in Y, \\ 0, \quad \text{in all other cases,} \end{cases}
$$

$$
u_1 \overline{a_1} = 0 \overline{a_1} = 0 \overline{a_1} = 0
$$

for all $u_1, u_2 \in Y(k) \setminus \{0\}$ and all $i \in \overline{n}$. The obtained algebra will be denoted by $Y(n, k)$.

Corollary 2.3 *If* $|X| = 1$ *, then* $Y(n, k) \cong FNS_n^k(X)$ *.*

Proof Let $X = \{c\}$. One can show that the map

$$
\alpha: Y(n,k) \to FNS_n^k(X) : u \mapsto u\alpha,
$$

defined by the rule

$$
u\alpha = \begin{cases} (c^{l_u+1}, u), & \text{if } u \in Y(k) \backslash \{0\}, \\ 0, & \text{if } u = 0, \end{cases}
$$

is an isomorphism. \Box

The following statement establishes a relationship between the semigroups of the free weakly *k* -nilpotent *n*-tuple semigroup.

Corollary 2.4 For any $r, s \in \overline{n}$, the semigroups $(\Omega_k, \lfloor r \rfloor)$ and $(\Omega_k, \lfloor s \rfloor)$ of $FNS_n^k(X)$ are isomorphic.

Proof For any $x \in Y$, let

$$
\widehat{x} = \begin{cases} s, & \text{if } x = r, \\ r, & \text{if } x = s, \\ x, & \text{otherwise,} \end{cases}
$$

 \Box

and define a map $\tau : (\Omega_k, \boxed{r}) \to (\Omega_k, \boxed{s}) : q \mapsto q\tau$ by putting

$$
q\tau = \begin{cases} (w, \widehat{y_1}\widehat{y_2} \dots \widehat{y_m}), \text{ if } q = (w, y_1y_2 \dots y_m) \in \Omega_k \backslash \{0\}, \\ q, \text{ in all other cases.} \end{cases}
$$

An immediate verification shows that τ is an isomorphism.

 \Box

3. The least weakly *k* **-nilpotent congruence on a free** *n***-tuple semigroup**

In this section, we present the least weakly *k* -nilpotent congruence on a free *n*-tuple semigroup. We will use the notation established in Sections 1 and 2. An *n*-tuple semigroup which is free in the variety of *n*-tuple semigroups is called a free *n*-tuple semigroup. Recall the construction of a free *n*-tuple semigroup [[16\]](#page-11-18).

We define *n* binary operations $\boxed{1}, \boxed{2}, \ldots, \boxed{n}$ on

$$
XY_n = \{(w, u) \in F[X] \times F^{\theta}[Y] | l_w - l_u = 1\}
$$

by

$$
(w_1, u_1) \overline{\left[i\right]} (w_2, u_2) = (w_1 w_2, u_1 y_i u_2)
$$

for all (w_1, u_1) , $(w_2, u_2) \in XY_n$ and all $i \in \overline{n}$. The algebra

$$
(XY_n, \boxed{1}, \boxed{2}, \ldots, \boxed{n})
$$

is denoted by $F_n TS(X)$. By Theorem 2 from [[16\]](#page-11-18), $F_n TS(X)$ is a free *n*-tuple semigroup. For $k \in \mathbb{N}$, let $\beta_{(n,k)}$ be the binary relation on $F_n TS(X)$ defined by

 $(w_1, u_1)\beta_{(n,k)}(w_2, u_2)$ if and only if $(w_1, u_1) = (w_2, u_2)$ or

$$
\begin{cases} d_x(u_1) + 1 > k \text{ for some } x \in Y, \\ d_y(u_2) + 1 > k \text{ for some } y \in Y. \end{cases}
$$

Theorem 3.1 *The relation* $\beta_{(n,k)}$ *on the free n-tuple semigroup* $F_n TS(X)$ *is the least weakly k-nilpotent congruence.*

Proof We define a map $\delta: F_n TS(X) \to FNS_n^k(X)$ by

$$
(w, u) \delta = \begin{cases} (w, u), \text{ if } d_x(u) + 1 \le k \text{ for all } x \in Y, \\ 0, \text{ in all other cases.} \end{cases}
$$

We need to show that δ is a homomorphism. Let $(w_1, u_1), (w_2, u_2) \in F_n TS(X)$ and $r \in \overline{n}$. Suppose that $d_x(u_1y_ru_2)+1 \leq k$ for all $x \in Y$. The latter inequality implies $d_x(u_1)+1 \leq k$ and $d_x(u_2)+1 \leq k$ for all $x \in Y$. Then

$$
((w_1, u_1)\boxed{r}(w_2, u_2))\delta = (w_1w_2, u_1y_ru_2)\delta = (w_1w_2, u_1y_ru_2)
$$

$$
= (w_1, u_1)\boxed{r}(w_2, u_2) = (w_1, u_1)\delta\boxed{r}(w_2, u_2)\delta.
$$

In the case $d_x(u_1y_ru_2) + 1 > k$ for some $x \in Y$, we conclude that

$$
((w_1, u_1)\boxed{r}(w_2, u_2))\delta = (w_1w_2, u_1y_ru_2)\delta = 0 = (w_1, u_1)\delta\boxed{r}(w_2, u_2)\delta.
$$

Thus, δ is a homomorphism which is surjective since

$$
\Omega_k = \{(w, u) \in XY_n \, | \, d_x(u) + 1 \le k \quad \text{for all} \quad x \in Y\} \cup \{0\}.
$$

By Theorem 2.1, $FNS_n^k(X)$ is a free weakly *k*-nilpotent *n*-tuple semigroup. Therefore, Δ_{δ} is the least weakly *k*-nilpotent congruence on $F_n TS(X)$. It follows from the definition of δ that $\Delta_{\delta} = \beta_{(n,k)}$.

 \Box

4. Some properties

In this section, we describe some properties of free weakly *k* -nilpotent *n*-tuple semigroups. More precisely, we characterize all maximal *n*-tuple subsemigroups of the free weakly *k* -nilpotent *n*-tuple semigroup and all regular elements of the endomorphism semigroup of the free weakly *k* -nilpotent *n*-tuple semigroup. We also demonstrate that the automorphism group of the free weakly *k* -nilpotent *n*-tuple semigroup is isomorphic to the symmetric group, and that $End(FNS_n^k(X))$ is isomorphic to $End(FNS_n^k(Z))$ if and only if $|X| = |Z|$.

Now, we describe all maximal *n*-tuple subsemigroups of the free weakly *k* -nilpotent *n*-tuple semigroup $FNS_n^k(X)$.

An *n*-tuple subsemigroup of an *n*-tuple semigroup *G* is called proper if it is not equal to *G*. An

n-tuple subsemigroup *T* of an *n*-tuple semigroup *G* is called maximal provided that $T \neq G$ and, for any *n*-tuple subsemigroup $M \leq G$, the inclusion $T \leq M$ implies $M = T$ or $M = G$. Equivalently, an *n*-tuple subsemigroup of an *n*-tuple semigroup *G* is maximal if it is a proper *n*-tuple subsemigroup of *G* which is not contained in any other proper *n*-tuple subsemigroup of *G*.

Proposition 4.1 Let S be an *n*-tuple subsemigroup of $FNS_n^k(X)$. Then S is maximal if and only if there is $an x \in X$ *such that* $S = \Omega_k \setminus \{(x, \theta)\}.$

Proof Let $x \in X$. Further, let $i \in \overline{n}$ and $(w_1, u_1), (w_2, u_2) \in \Omega_k \setminus \{(x, \theta), 0\}$. Then $(w_1, u_1) | i | (w_2, u_2) \in \Omega_k$ $\{(w_1w_2, u_1y_iu_2), 0\}$ with $u_1y_1u_2 \neq \theta$. Moreover, $(w_1, u_1) \mid i \mid 0 = 0 \mid i \mid (w_1, u_1) = 0 \mid i \mid 0 = 0$. This shows that $\Omega_k \setminus \{(x, \theta)\}\)$ forms an *n*-tuple subsemigroup of $FNS_n^k(X)$, which is clearly maximal.

Conversely, let *S* be a maximal *n*-tuple subsemigroup of $FNS_n^k(X)$. Since $X \times {\theta}$ is the least generating set of $FNS_n^k(X)$, we can conclude that $\{(x,\theta) \mid x \in X\} \nsubseteq S$, i.e. there is an $x \in X$ with $(x,\theta) \notin S$. Therefore, $S \subseteq \Omega_k \setminus \{(x,\theta)\}\.$ Since S is a maximal *n*-tuple subsemigroup of $FNS_n^k(X)$, we obtain $S = \Omega_k \setminus \{(x,\theta)\}\.$

Due to the fact that the set $X' = X \times {\theta}$ is the least generating for $FNS_n^k(X)$, we obtain the following description of the automorphism group of the free weakly *k*-nilpotent *n*-tuple semigroup: $Aut FNS_n^k(X) \cong \Im[X]$. It is natural to consider endomorphisms of the free weakly *k*-nilpotent *n*-tuple semigroup $F N S_n^k(X)$.

Since *X'* is the least generating set of $FNS_n^k(X)$, each map $\varphi: X' \to \Omega_k$ induces an endomorphism of $FNS_n^k(X)$, and conversely, every endomorphism of $FNS_n^k(X)$ is uniquely determined by a map from X' into $FNS_n^k(X)$. This yields the formula

$$
\left| End(FNS_n^k(X)) \right| = |\Omega_k|^{|X|},
$$

whenever *X* is finite, with $|\Omega_k|$ calculated by Corollary 2.2.

Let $a \in \Omega_k$. An endomorphism $f_a \in End(FNS_n^k(X))$ we call constant if $(x, \theta) f_a = a$ for all $x \in X$.

Proposition 4.2 The only constant idempotent endomorphisms of $F N S_n^k(X)$ are f_a for all $a \in X' \cup \{0\}$.

Proof Let $CI(X) = \{f_a \mid a \in X' \cup \{0\}\}\.$ Obviously, every element of $CI(X)$ is a constant idempotent endomorphism of $FNS_n^k(X)$. Conversely, let $f \in End(FNS_n^k(X))$ be constant and idempotent. Suppose that $(x, \theta)f = a \in \Omega_k$ for all $x \in X$. Then $(x, \theta)f^2 = af = a = (x, \theta)f$. The equality $af = a$ implies that *a* ∈ *X*^{*'*} ∪ {0}. Thus, *f* = *f*_{*a*} ∈ *CI*(*X*).

The following statement provides the criterion for an isomorphism of the endomorphism semigroups of free weakly *k* -nilpotent *n*-tuple semigroups.

Proposition 4.3 *Let X and Z be arbitrary nonempty sets. Then*

 $End(FNS^k_n(X)) \cong End(FNS^k_n(Z))$ *if and only if* $|X| = |Z|$ *.*

Proof Suppose that ψ : $End(FNS_n^k(X)) \to End(FNS_n^k(Z))$ is an isomorphism. By Proposition 4.2, $CI(X)$ and $CI(Z)$ are the sets of all constant idempotent endomorphisms of $FNS_n^k(X)$ and $FNS_n^k(Z)$, respectively. Then we can conclude that $CI(X)\psi = CI(Z)$. This yields $|CI(X)| = |CI(Z)|$, and thus, $|X| = |Z|$.

Let $f \in End(FNS_n^k(X))$ and $(y, \theta)f = (e_1, e_2)$ for some $y \in X$. We will denote e_1 and e_2 by $[y]_f$ and $(y]_f$, respectively. Suppose now that $|X| = |Z|$. Then there is a bijection $\sigma : X \to Z$. We define $\psi: End(FNS_n^k(X)) \to End(FNS_n^k(Z))$ in the following way: let $f\psi$ be the endomorphism of $FNS_n^k(Z)$ defined by $(x,\theta)f\psi = ([x\sigma^{-1}]_f\overline{\sigma}, (x\sigma^{-1}]_f)$ for all $(x,\theta) \in Z'$, where $\overline{\sigma}$ is the extension of σ to $F[X]$. Since *σ* is a bijection, we can conclude that ψ is a bijection from $End(FNS_n^k(X))$ in $End(FNS_n^k(Z))$ and let $a \in Z$. Then we have $(a, \theta)(f \circ g)\psi = ([a\sigma^{-1}]_{f \circ g}\overline{\sigma}, (a\sigma^{-1}]_{f \circ g})$. On the other hand, we get $(a, \theta)f\psi \circ g\psi =$ $([a\sigma^{-1}]_f\overline{\sigma},(a\sigma^{-1}]_f)g\psi$. It is easy to verify that $([a\sigma^{-1}]_f\overline{\sigma},(a\sigma^{-1}]_f)g\psi = ([a\sigma^{-1}]_{f\circ g}\overline{\sigma},(a\sigma^{-1}]_{f\circ g})$. Hence, $(a, \theta)(f \circ g)\psi = (a, \theta)f\psi \circ g\psi$. Consequently, ψ is an isomorphism, i.e.

$$
End(FNS_n^k(X)) \cong End(FNS_n^k(Z)).
$$

 \Box

 \Box

Recall that an element *a* of a semigroup *S* is called regular provided that there exists $b \in S$ such that $aba = a$. A semigroup *S* is called regular provided that every element of *S* is regular. At the end of this section, we consider the question of regularity in $End(FNS_n^k(X))$.

Let ω be an arbitrary word in the alphabet *X*. The set of all elements $x \in X$ occurring in ω is denoted by $c(\omega)$. Let further Reg be the set of all $f \in End(FNS_n^k(X))$ with $(x,\theta) \in X'f = \{yf | y \in X'\}$, for all $x \in c(w)$, whenever $(w, u) \in X'f$. Denote the constant transformation of Ω_k with value 0 by f_0^X .

Proposition 4.4 Reg \cup { f_0^X } is the set of all regular elements in $End(FNS_n^k(X))$. Reg \cup { f_0^X } is not closed *under composition, whenever* $|X| \geq 2$.

Proof Clearly, f_0^X is idempotent and thus regular in $End(FNS_n^k(X))$. Let $f \in Reg$. Then we put

$$
X_f = \{(x, \theta) \in X' \mid x \in c(w) \text{ and } (w, u) \in X'f\}.
$$

Since $f \in Reg$, for each $(x, \theta) \in X_f$, there is $(x, \theta)^* \in X'$ such that $(x, \theta)^* f = (x, \theta)$. Then let $g \in End(FNS_n^k(X))$ such that $(x, \theta)g = (x, \theta)^*$ for all $(x, \theta) \in X_f$ and $(x, \theta)g = 0$ for all $(x, \theta) \in X' \setminus X_f$. Let $(x, \theta) \in X'$ such that $(x, \theta)f \neq 0$. Then it is easy to verify that $(x, \theta)fgf = (x, \theta)f$. If $(x, \theta)f = 0$ then (x, θ) *fgf* = 0*gf* = 0 since an endomorphism maps 0 to 0. This shows that *f* is regular.

Let now $f \in End(FNS_n^k(X)) \setminus \{Reg \cup \{f_0^X\}\}\$. Then there is a $(w, u) \in X'f$ and $x \in c(w)$ with $(x, \theta) \notin X'f$. Assume that there is a $g \in End(FNS_n^k(X))$ with $fgf = f$. Let $(a, \theta) \in X'$ such that $(a, \theta)f = (w, u) \in \Omega_k \setminus \{0\}$. Then $(a, \theta)fg = (w, u)g$, and thus, $(w, u)g \neq 0$ since otherwise $(a, \theta)fgf = 0$, a contradiction to $(a, \theta)fgf = (a, \theta)f = (w, u)$. Hence, there is $(w_1, u_1) \in \Omega_k \setminus \{\theta\}$ with $(w, u)g = (w_1, u_1)$. It is clear that $l_w \leq l_{w_1}$. Since $(x, \theta) \notin X'f$ and $(w_1, u_1)f = (w, u)$, we can conclude that $l_{w_1} < l_w$, i.e. $l_w < l_w$, a contradiction. This shows that *f* is not regular.

Finally, we demonstrate that $Reg \cup \{f_0^X\}$ is not closed under composition, whenever $|X| \geq 2$. For this let $x_1, x_2 \in X$. We put

$$
(x_1, \theta)f_1 = (x_2x_2, y_1)
$$
 and $(x, \theta)f_1 = (x_2, \theta)$

for all $(x, \theta) \in X' \setminus \{(x_1, \theta)\},\$

$$
(x_2, \theta)f_2 = (x_1x_1, y_1)
$$
 and $(x, \theta)f_2 = (x_1, \theta)$

for all $(x, \emptyset) \in X' \setminus \{(x_2, \theta)\}\.$ It is easy to verify that f_1 and f_2 define endomorphisms in *Reg*. We consider

$$
(x_1, \theta)(f_1 \circ f_2) = (x_2 x_2, y_1)f_2 = (x_1 x_1 x_1 x_1, y_1 y_1 y_1)
$$
 and

$$
(x, \theta)(f_1 \circ f_2) = (x_2, \theta)f_2 = (x_1 x_1, y_1)
$$

for all $(x, \theta) \in X' \setminus \{(x_1, \theta)\}\$. Since $x_1 \in c(x_1x_1x_1x_1)$, where $(x_1x_1x_1x_1, y_1y_1y_1) \in X(f_1 \circ f_2)$, but $(x_1, \theta) \notin X(f_1 \circ f_2)$ the endomorphism $f_1 \circ f_2$ does not belong to *Reg.*

$$
\Box
$$

Corollary 4.5 Let $|X| = 1$. The regular elements in $End(FNS_n^k(X))$ are exactly the zero f_0^X and the identity *map on* Ω_k *which form a two-element subsemigroup of* $End(FNS_n^k(X))$ *, in particular, a band.*

Acknowledgment

The first named author was supported by a Philipp Schwartz Fellowship from the Alexander von Humboldt Foundation.

References

- [1] Boyd SJ, Gould M. Interassociativity and isomorphism. Pure Mathematics and Applications 1999; 10 (1): 23-30.
- [2] Gavrylkiv V. Note on cyclic doppelsemigroups. Algebra and Discrete Mathematics 2022; 34 (1): 15-21. https://doi.org/10.12958/adm1991
- [3] Gavrylkiv V, Rendziak D. Interassociativity and three-element doppelsemigroups. Algebra and Discrete Mathematics 2019; 28 (2): 224-247.
- [4] Givens BN, Linton K, Rosin A, Dishman L. Interassociates of the free commutative semigroup on *n* generators. Semigroup Forum 2007; 74: 370-378. https://doi.org/10.1007/s00233-006-0655-9
- [5] Givens BN, Rosin A, Linton K. Interassociates of the bicyclic semigroup. Semigroup Forum 2017; 94: 104-122. https://doi.org/10.1007/s00233-016-9794-9
- [6] Huang J, Bai Y, Chen Y, Zhang Z. Constructions of free dibands and tribands. Semigroup Forum 2022; 104: 647-666. https://doi.org/10.1007/s00233-022-10270-w
- [7] Koreshkov NA. *n*-tuple algebras of associative type. Russian Mathematics (Izvestiya VUZ. Matematika) 2008; 52 (12): 28-35. https://doi.org/10.3103/S1066369X08120050
- [8] Loday J-L. Dialgebras. In: Loday J-L, Frabetti A, Chapoton F, Goichot F (authors). Dialgebras and Related Operads (Lecture Notes in Mathematics, 1763). Berlin, Germany: Springer-Verlag, 2001, pp. 1763: 7-66.
- [9] Loday J-L, Ronco MO. Trialgebras and families of polytopes. Contemporary Mathematics 2004; 346: 369-398.
- [10] Movsisyan Y, Davidov S, Safaryan M. Construction of free *g* -dimonoids. Algebra and Discrete Mathematics 2014; 18 (1): 138-148.
- [11] Schein BM. Restrictive semigroups and bisemigroups. Technical Report. Fayetteville, AR, USA: University of Arkansas, 1989.
- [12] Schein BM. Restrictive bisemigroups. Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika 1965; 1 (44): 168-179.
- [13] Smith JDH. Directional algebras. Houston Journal of Mathematics 2016; 42 (1): 1-22.
- [14] Pirashvili T. Sets with two associative operations. Central European Journal of Mathematics 2003; 2: 169-183. https://doi.org/10.2478/BF02476006
- [15] Zhuchok AV. Free left *n*-dinilpotent doppelsemigroups. Communications in Algebra 2017; 45 (11): 4960-4970. https://doi.org/10.1080/00927872.2017.1287274
- [16] Zhuchok AV. Free *n*-tuple semigroups. Mathematical Notes 2018; 103 (5): 737-744. https://doi.org/10.1134/S0001434618050061
- [17] Zhuchok AV. Free products of doppelsemigroups. Algebra Universalis 2017; 77 (3): 361-374. https://doi.org/10.1007/s00012-017-0431-6
- [18] Zhuchok AV. Free rectangular *n*-tuple semigroups. Chebyshevskii Sbornik 2019; 20 (3): 261-271. https://doi.org/10.22405/2226-8383-2019-20-3-261-271
- [19] Zhuchok AV. Semilatties of subdimonoids. Asian-Europian Journal of Mathematics 2011; 4 (2): 359-371. https://doi.org/10.1142/S1793557111000290
- [20] Zhuchok AV. Structure of free strong doppelsemigroups. Communications in Algebra 2018; 46 (8): 3262-3279. https://doi.org/10.1080/00927872.2017.1407422
- [21] Zhuchok AV. Relatively Free Doppelsemigroups. Lectures in Pure and Applied Mathematics. Potsdam, Germany: Potsdam University Press, 2018.
- [22] Zhuchok AV, Demko M. Free *n*-dinilpotent doppelsemigroups. Algebra and Discrete Mathematics 2016; 22 (2): 304-316.
- [23] Zhuchok AV, Knauer K. Abelian doppelsemigroups. Algebra and Discrete Mathematics 2018; 26 (2): 290-304.
- [24] Zhuchok AV, Koppitz J. Free products of *n*-tuple semigroups. Ukrainian Mathematical Jourmal 2019; 70 (11): 1710-1726. https://doi.org/10.1007/s11253-019-01601-2
- [25] Zhuchok AV, Zhuchok YV. Free *k* -nilpotent *n*-tuple semigroups. Communications in Algebra 2023; 51 (9): 3972- 3980. https://doi.org/10.1080/00927872.2023.2195000
- [26] Zhuchok AV, Zhuchok YV, Koppitz J. Free rectangular doppelsemigroups. Journal of Algebra and Its Applications 2020; 19 (11): 2050205. https://doi.org/10.1142/S0219498820502059
- [27] Zhuchok AV, Zhuchok YV, Odintsova OO. Free left *k* -nilpotent *n*-tuple semigroups. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica 2020; 94 (3): 29-38.
- [28] Zhuchok AV, Zhuchok YV, Zhuchok YV. Certain congruences on free trioids. Communiations in Algebra 2019; 47 (12): 5471-5481. https://doi.org/10.1080/00927872.2019.1631322
- [29] Zhuchok YV. On one class of algebras. Algebra and Discrete Mathematics 2014; 18 (2): 306-320.
- [30] Zhuchok YV, Koppitz J. Representations of ordered doppelsemigroups by binary relations. Algebra and Discrete Mathematics 2019; 27 (1): 144-154.