

Turkish Journal of Mathematics

Manuscript 3561

Free weakly k-nilpotent n-tuple semigroups

ANATOLII V. ZHUCHOK

JORG KOPPITZ

Follow this and additional works at: https://journals.tubitak.gov.tr/math

This work is licensed under a Creative Commons Attribution 4.0 International License.

Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Turk J Math (2024) 48: 1067 – 1078 © TÜBİTAK doi:10.55730/1300-0098.3561

Research Article

Free weakly k-nilpotent n-tuple semigroups

Anatolii V. ZHUCHOK^{1,*}, Jörg KOPPITZ²

¹Institute of Mathematics, Faculty of Science, University of Potsdam, Potsdam, Germany ²Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Sofia, Bulgaria

Received: 12.04.2024 •	Accepted/Published Online: 08.07.2024	•	Final Version: 14.11.2024
-------------------------------	---------------------------------------	---	----------------------------------

Abstract: In this paper, we construct a free object in the variety of weakly k-nilpotent n-tuple semigroups and characterize the least weakly k-nilpotent congruence on a free n-tuple semigroup. Moreover, we present separately free weakly k-nilpotent n-tuple semigroups of rank 1, calculate the cardinality of the free weakly k-nilpotent n-tuple semigroup are isomorphic and the automorphism group of the free weakly k-nilpotent n-tuple semigroup are isomorphic and the automorphism group of the free weakly k-nilpotent n-tuple semigroup are group. We also describe all maximal n-tuple subsemigroups of the free weakly k-nilpotent n-tuple semigroup and all regular elements of the endomorphism semigroup of the free weakly k-nilpotent n-tuple semigroup, and provide a criterion for an isomorphism of endomorphism semigroups of free weakly k-nilpotent n-tuple semigroups.

Key words: n-Tuple semigroup, free weakly k-nilpotent n-tuple semigroup, free n-tuple semigroup, semigroup, congruence

1. Introduction and preliminaries

The notion of an *n*-tuple semigroup was considered by Koreshkov [7] in the context of the theory of *n*-tuple algebras of associative type. There are sufficiently convincing motivations for studying these algebraic structures since *n*-tuple semigroups are closely related to interassociative semigroups [1, 4, 5], dimonoids [8, 13, 19], trioids [6, 9, 28], doppelsemigroups [21], duplexes [14], *g*-dimonoids [10, 29], restrictive bisemigroups [12], and bisemigroups [11]. If n = 1, *n*-tuple semigroups are semigroups. For n = 2, *n*-tuple semigroups become doppelsemigroups. The theory of doppelsemigroups has been developed in [2, 3, 15, 17, 20–23, 26, 30]. The theory of free systems in *n*-tuple semigroup varieties is still in progress [16, 18, 24, 25, 27]. In particular, in the latter five papers, the problem of the construction of free objects for the varieties of *n*-tuple semigroups and *k*-nilpotent *n*-tuple semigroups was solved; furthermore, certain least congruences on a free *n*-tuple semigroup were characterized. The present paper continues this trend of research by considering so-called weakly *k*-nilpotent *n*-tuple semigroups, i.e. *n*-tuple semigroups with *n k*-nilpotent semigroups. The class of such algebras forms a subvariety of the variety of *n*-tuple semigroups for which the problem of describing a free object remained open.

In this paper, we construct a free object in the variety of weakly k-nilpotent n-tuple semigroups and characterize the least weakly k-nilpotent congruence on a free n-tuple semigroup. We also focus on the

^{*}Correspondence: zhuchok.av@gmail.com

²⁰¹⁰ AMS Mathematics Subject Classification: 08B20, 20M10, 20M50, 17A30

description of free weakly k-nilpotent n-tuple semigroups of rank 1, calculate the cardinality of the free weakly k-nilpotent n-tuple semigroup for the finite case, emphasize that the semigroups of the free weakly k-nilpotent n-tuple semigroup are isomorphic and the automorphism group of the free weakly k-nilpotent n-tuple semigroup is isomorphic to the symmetric group. In addition, we characterize all maximal n-tuple subsemigroups of the free weakly k-nilpotent n-tuple semigroup and all regular elements of the endomorphism semigroup of the free weakly k-nilpotent n-tuple semigroup, and provide a criterion for an isomorphism of endomorphism semigroups of free weakly k-nilpotent n-tuple semigroups.

As usual, we denote the set of all positive integers by \mathbb{N} , and for $n \in \mathbb{N}$, denote the set $\{1, 2, \ldots, n\}$ by \overline{n} . Let us recall that a nonempty set G equipped with n binary operations $\boxed{1}$, $\boxed{2}$,..., \boxed{n} , satisfying the axioms (x[r]y)[s]z = x[r](y[s]z) for all $x, y, z \in G$ and $r, s \in \overline{n}$, is called an n-tuple semigroup [7]. In this section and Section 4, for an n-tuple semigroup, we will write G instead of $(G, \boxed{1}, \boxed{2}, \ldots, \boxed{n})$.

We need the following lemma.

Lemma 1.1 ([16], Lemma 1) In an n-tuple semigroup G, for any $m \in \mathbb{N} \setminus \{1\}$ and any $x_i \in G$, $1 \le i \le m+1$, and any $*_j \in \{1, [2], \ldots, [n]\}, 1 \le j \le m$, any parenthesization of

$$x_1 *_1 x_2 *_2 \dots *_m x_{m+1}$$

yields the same element from G.

Recall the definition of a k-nilpotent semigroup (see also [21, 22]). A semigroup S is called nilpotent if $S^{n+1} = 0$ for some $n \in \mathbb{N}$. The least such n is called the nilpotency index of S. For $k \in \mathbb{N}$, a nilpotent semigroup of nilpotency index $\leq k$ is called k-nilpotent. An element 0 of an n-tuple semigroup G is called zero [25] if x [i] 0 = 0 = 0 [i] x for all $x \in G$ and $i \in \overline{n}$. An n-tuple semigroup G with zero will be called weakly nilpotent if $(G, [1]), (G, [2]), \ldots, (G, [n])$ are nilpotent semigroups. A weakly nilpotent n-tuple semigroup G will be called weakly k-nilpotent if $(G, [1]), (G, [2]), \ldots, (G, [n])$ are k-nilpotent semigroups. If ρ is a congruence on an n-tuple semigroup G such that G/ρ is a weakly k-nilpotent n-tuple semigroup, we say that ρ is a weakly k-nilpotent congruence.

Note that the operations of any weakly 1-nilpotent n-tuple semigroup coincide and each operation results in a zero semigroup. It is not difficult to verify that the variety of k-nilpotent n-tuple semigroups introduced in [25] is a subvariety of the variety of weakly k-nilpotent n-tuple semigroups. An n-tuple semigroup which is free in the variety of weakly k-nilpotent n-tuple semigroups will be called a free weakly k-nilpotent n-tuple semigroup.

Denote the symmetric group on a set X by $\Im[X]$ and the automorphism group (the endomorphism semigroup) of an *n*-tuple semigroup G by Aut G (End G). If $\nu : G_1 \to G_2$ is a homomorphism of *n*-tuple semigroups, the kernel of ν is denoted by Δ_{ν} , that is, $\Delta_{\nu} = \{(x, y) \in G_1 \times G_1 | x\nu = y\nu\}$.

2. Constructions

In this section, we construct a free weakly k-nilpotent n-tuple semigroup of an arbitrary rank and consider separately free weakly k-nilpotent n-tuple semigroups of rank 1. Note that the free weakly k-nilpotent n-tuple semigroup over a set X is an algebra in the variety of weakly k-nilpotent n-tuple semigroups generated by X and such that every map of X into any other weakly k-nilpotent n-tuple semigroup K can be extended to a homomorphism of the free weakly k-nilpotent n-tuple semigroup over a set X into K. We also calculate the cardinality of the free weakly k-nilpotent n-tuple semigroup for the finite case and establish that the semigroups of the free weakly k-nilpotent n-tuple semigroup are isomorphic.

Let X be an arbitrary nonempty set and let ω be an arbitrary word in the alphabet X. The length of ω is denoted by l_{ω} . Fix $n \in \mathbb{N}$ and let $Y = \{y_1, y_2, \ldots, y_n\}$ be an arbitrary set consisting of n elements. Let further F[X] be the free semigroup on X and $F^{\theta}[Y]$ the free monoid on Y with the empty word θ . By definition, the length l_{θ} of θ is equal to 0. For $x \in Y$ and all $u \in F^{\theta}[Y]$, the number of occurrences of the element x in u is denoted by $d_x(u)$. Obviously, $d_x(\theta) = 0$ for any $x \in Y$. Fix $k \in \mathbb{N}$ and define n binary operations $[1], [2], \ldots, [n]$ on

$$\Omega_k = \{(w, u) \in F[X] \times F^{\theta}[Y] | l_w - l_u = 1,$$

$$d_x(u) + 1 \le k \quad \text{for all} \quad x \in Y\} \cup \{0\}$$

 (w_1, u_1) $i(w_2, u_2)$

by

$$= \begin{cases} (w_1w_2, u_1y_iu_2), \text{ if } d_x(u_1y_iu_2) + 1 \le k \text{ for all } x \in Y, \\ 0, \text{ in all other cases,} \\ (w_1, u_1) \boxed{i} 0 = 0 \boxed{i} (w_1, u_1) = 0 \boxed{i} 0 = 0 \end{cases}$$

for all (w_1, u_1) , $(w_2, u_2) \in \Omega_k \setminus \{0\}$ and all $i \in \overline{n}$. The algebra obtained in this manner will be denoted by $FNS_n^k(X)$. The main result of this paper is the following theorem:

Theorem 2.1 $FNS_n^k(X)$ is a free weakly k-nilpotent n-tuple semigroup.

Proof We first show that $FNS_n^k(X)$ is an *n*-tuple semigroup. Let

 $(w_1, u_1), (w_2, u_2), (w_3, u_3) \in \Omega_k \setminus \{0\}$ and $r, s \in \overline{n}$.

Suppose that

$$d_x(u_1y_ru_2y_su_3) + 1 \le k \tag{1}$$

for all $x \in Y$. Then we get

$$((w_1, u_1) \boxed{r}(w_2, u_2)) \boxed{s}(w_3, u_3) = (w_1 w_2, u_1 y_r u_2) \boxed{s}(w_3, u_3)$$
$$= (w_1 w_2 w_3, u_1 y_r u_2 y_s u_3)$$
$$= (w_1, u_1) \boxed{r}(w_2 w_3, u_2 y_s u_3)$$
$$= (w_1, u_1) \boxed{r}((w_2, u_2) \boxed{s}(w_3, u_3))$$

since (1) implies $d_x(u_1y_ru_2) + 1 \le k$ and $d_x(u_2y_su_3) + 1 \le k$ for all $x \in Y$. If

$$d_x(u_1y_ru_2y_su_3) + 1 > k$$

for some $x \in Y$, we have

$$((w_1, u_1) \boxed{r}(w_2, u_2)) \boxed{s}(w_3, u_3) = 0 = (w_1, u_1) \boxed{r}((w_2, u_2) \boxed{s}(w_3, u_3)) = 0$$

The proof of the case when the element 0 appears on both sides of the axioms of an n-tuple semigroup at least once is obvious.

Therefore, $FNS_n^k(X)$ is an *n*-tuple semigroup.

Take arbitrary elements $(w_i, u_i) \in \Omega_k \setminus \{0\}, 1 \le i \le k+1$. Since

$$d_{y_r}(u_1y_ru_2y_r\dots y_ru_{k+1}) + 1 > k$$

for any $r \in \overline{n}$, we conclude that

$$(w_1, u_1)$$
 $r(w_2, u_2)$ $r...r(w_{k+1}, u_{k+1}) = 0.$

At this point, assuming $x^0 = \theta$ for all $x \in Y$, for any $(x_i, \theta) \in \Omega_k \setminus \{0\}$, where $x_i \in X$, $1 \le i \le k$, we get

$$(x_1,\theta) \boxed{r} (x_2,\theta) \boxed{r} \dots \boxed{r} (x_k,\theta) = (x_1 x_2 \dots x_k, y_r^{k-1}) \neq 0.$$

The last arguments guarantee that $(\Omega_k, [r]), r \in \overline{n}$, is a nilpotent semigroup of nilpotency index k. Therefore, by definition, $FNS_n^k(X)$ is a weakly k-nilpotent n-tuple semigroup.

Let us show that $FNS_n^k(X)$ is free in the variety of weakly k-nilpotent n-tuple semigroups.

Obviously, $FNS_n^k(X)$ is generated by the set $X \times \{\theta\}$. Assume that (K, [1], [2], ..., [n]) is an arbitrary weakly k-nilpotent n-tuple semigroup. Let $\varphi' : X \times \{\theta\} \to K$ be an arbitrary map. Consider a map $\varphi : X \to K$ such that $x\varphi = (x, \theta)\varphi'$ for all $x \in X$ and define a map

$$\phi: FNS_n^k(X) \to (K, \boxed{1}, \boxed{2}, \dots, \boxed{n}): \omega \mapsto \omega \phi$$

as

$$\omega\phi = \begin{cases} x_1\varphi \boxed{i_1} x_2\varphi \boxed{i_2} \dots \boxed{i_{s-1}} x_s\varphi, & \text{if } \omega = (x_1x_2\dots x_s, y_{i_1}y_{i_2}\dots y_{i_{s-1}}), \\ x_j \in X, 1 \le j \le s, \\ x_1\varphi, & \text{if } \omega = (x_1, \theta), x_1 \in X, \\ 0, & \text{if } \omega = 0. \end{cases}$$

According to Lemma 1.1, ϕ is well-defined. We aim to demonstrate that ϕ is a homomorphism. For this, we will use the axioms of an *n*-tuple semigroup and the identities of a weakly *k*-nilpotent *n*-tuple semigroup. If s = 1, we will regard a sequence $y_{i_1}y_{i_2} \dots y_{i_{s-1}} \in F^{\theta}[Y]$ as θ . For arbitrary elements

$$r \in \overline{n}, \quad (w_1, u_1) = (x_1 x_2 \dots x_s, y_{i_1} y_{i_2} \dots y_{i_{s-1}}),$$
$$(w_2, u_2) = (z_1 z_2 \dots z_m, y_{c_1} y_{c_2} \dots y_{c_{m-1}}) \in \Omega_k \setminus \{0\},$$

where $x_d, z_t \in X$, $1 \le d \le s \in \mathbb{N}$, $1 \le t \le m \in \mathbb{N}$, $y_{i_p}, y_{c_b} \in Y$, $1 \le p \le s - 1$, $1 \le b \le m - 1$, we obtain

$$((x_1 x_2 \dots x_s, y_{i_1} y_{i_2} \dots y_{i_{s-1}}) \boxed{r} (z_1 z_2 \dots z_m, y_{c_1} y_{c_2} \dots y_{c_{m-1}}))\phi$$

$$= \begin{cases} (x_1 x_2 \dots x_s z_1 z_2 \dots z_m, y_{i_1} y_{i_2} \dots y_{i_{s-1}} y_r y_{c_1} y_{c_2} \dots y_{c_{m-1}}) \phi, \text{ if } \\ d_x (u_1 y_r u_2) + 1 \le k \quad \text{for all} \quad x \in Y, \\ 0\phi, \quad \text{in all other cases.} \end{cases}$$

In the case $d_x(u_1y_ru_2) + 1 \le k$ for all $x \in Y$, we have

$$(x_1x_2\dots x_sz_1z_2\dots z_m, y_{i_1}y_{i_2}\dots y_{i_{s-1}}y_ry_{c_1}y_{c_2}\dots y_{c_{m-1}})\phi$$

$$= x_1\varphi \boxed{i_1}\dots \boxed{i_{s-1}}x_s\varphi \boxed{r}z_1\varphi \boxed{c_1}\dots \boxed{c_{m-1}}z_m\varphi$$

$$= (x_1\varphi \boxed{i_1}\dots \boxed{i_{s-1}}x_s\varphi) \boxed{r}(z_1\varphi \boxed{c_1}\dots \boxed{c_{m-1}}z_m\varphi)$$

$$= (x_1x_2\dots x_s, y_{i_1}y_{i_2}\dots y_{i_{s-1}})\phi \boxed{r}(z_1z_2\dots z_m, y_{c_1}y_{c_2}\dots y_{c_{m-1}})\phi$$

If $d_x(u_1y_ru_2) + 1 > k$ for some $x \in Y$, we get

$$0\phi = 0 = x_1\varphi[i_1]\dots[i_{s-1}]x_s\varphi[r]z_1\varphi[c_1]\dots[c_{m-1}]z_m\varphi$$
$$= (x_1\varphi[i_1]\dots[i_{s-1}]x_s\varphi)[r](z_1\varphi[c_1]\dots[c_{m-1}]z_m\varphi)$$
$$= (x_1x_2\dots x_s, y_{i_1}y_{i_2}\dots y_{i_{s-1}})\phi[r](z_1z_2\dots z_m, y_{c_1}y_{c_2}\dots y_{c_{m-1}})\phi$$

The proofs of the remaining cases are obvious. Therefore, $(a[r]b)\phi = a\phi[r]b\phi$ for all $a, b \in FNS_n^k(X)$, all $r \in \overline{n}$, and hence, ϕ is a homomorphism. Clearly, $(x, \theta)\phi = (x, \theta)\varphi'$ for all $(x, \theta) \in X \times \{\theta\}$. Since $X \times \{\theta\}$ generates $FNS_n^k(X)$, the uniqueness of such homomorphism ϕ is obvious. Thus, $FNS_n^k(X)$ is free in the variety of weakly k-nilpotent n-tuple semigroups.

In order to calculate the cardinality of Ω_k , let $a_0 = \alpha_0 = \alpha_{-1} = 0$ and let $\alpha_p = \sum_{i=1}^{p} a_i$ for $p \in \overline{n}$ and $\alpha = (a_1, \dots, a_n) \in \{0, \dots, k-1\}^n.$

Corollary 2.2 The free weakly k-nilpotent n-tuple semigroup $FNS_n^k(X)$ generated by a finite set $X \times \{\theta\}$ is finite. Specifically, if |X| = m, then

$$|\Omega_k| = 1 + \sum_{\substack{\alpha = (a_1, \dots, a_n) \in \\ \{0, \dots, k-1\}^n}} \left(\prod_{l=0}^{n-1} \left(\begin{array}{c} \alpha_n - \alpha_{l-1} \\ a_l \end{array} \right) m^{(1+\alpha_n)} \right).$$

Proof Let $(w, u) \in \Omega_k \setminus \{0\}$. Then we denote $d_{y_i}(u)$ by a_i for all $i \in \overline{n}$. Clearly, $a_i \in \{0, \ldots, k-1\}$ for all $i \in \overline{n}$, and let $\alpha = (a_1, \ldots, a_n)$. Hence, there are $\prod_{l=0}^{n-1} \begin{pmatrix} \alpha_n - \alpha_{l-1} \\ a_l \end{pmatrix}$ possibilities for the word u. Since l_u е

$$l_{u} = \alpha_{n}$$
 and $l_{w} = l_{u} + 1$, there are $m^{(1+\alpha_{n})}$ possibilities for the word w . Thus, we have

$$\prod_{l=0}^{n-1} \left(\begin{array}{c} \alpha_n - \alpha_{l-1} \\ a_l \end{array}\right) m^{(1+\alpha_n)}$$

possibilities for an element $(w, u) \in \Omega_k \setminus \{0\}$ with $d_{y_i}(u) = a_i$ for all $i \in \overline{n}$, where $\alpha = (a_1, \ldots, a_n) \in \Omega_k \setminus \{0\}$ $\{0, \dots, k-1\}^n$. Let

$$W_{(a_1,\ldots,a_n)} = \{(w,u) \in \Omega_k \setminus \{0\} \mid d_{y_i}(u) = a_i \text{ for all } i \in \overline{n}\}.$$

It is easy to verify that

$$\{W_{(a_1,\ldots,a_n)} \mid (a_1,\ldots,a_n) \in \{0,\ldots,k-1\}^n\}$$

is a partition of $\Omega_k \setminus \{0\}$. Hence,

$$|\Omega_k| = 1 + \sum_{\substack{\alpha = (a_1, \dots, a_n) \in \\ \{0, \dots, k-1\}^n}} \left(\prod_{l=0}^{n-1} \left(\begin{array}{c} \alpha_n - \alpha_{l-1} \\ a_l \end{array} \right) m^{(1+\alpha_n)} \right).$$

Now we construct an n-tuple semigroup which is isomorphic to the free weakly k-nilpotent n-tuple semigroup of rank 1.

We put

$$Y(k) = \{ u \in F^{\theta}[Y] \mid d_x(u) + 1 \le k \text{ for all } x \in Y \} \cup \{0\}.$$

Define *n* binary operations $\boxed{1}, \boxed{2}, \ldots, \boxed{n}$ on Y(k) by

$$u_1 \boxed{\mathbf{i}} u_2 = \begin{cases} u_1 y_i u_2, \text{ if } d_x (u_1 y_i u_2) + 1 \le k & \text{for all} \quad x \in Y, \\ 0, & \text{in all other cases,} \end{cases}$$

$$u_1 \boxed{i} 0 = 0 \boxed{i} u_1 = 0 \boxed{i} 0 = 0$$

for all $u_1, u_2 \in Y(k) \setminus \{0\}$ and all $i \in \overline{n}$. The obtained algebra will be denoted by Y(n, k).

Corollary 2.3 If |X| = 1, then $Y(n,k) \cong FNS_n^k(X)$.

Proof Let $X = \{c\}$. One can show that the map

$$\alpha: Y(n,k) \to FNS_n^k(X): u \mapsto u\alpha,$$

defined by the rule

$$u\alpha = \begin{cases} (c^{l_u+1}, u), & \text{if } u \in Y(k) \setminus \{0\}, \\ 0, & \text{if } u = 0, \end{cases}$$

is an isomorphism.

The following statement establishes a relationship between the semigroups of the free weakly k-nilpotent n-tuple semigroup.

Corollary 2.4 For any $r, s \in \overline{n}$, the semigroups $(\Omega_k, [r])$ and $(\Omega_k, [s])$ of $FNS_n^k(X)$ are isomorphic.

Proof For any $x \in Y$, let

$$\widehat{x} = \begin{cases} s, & \text{if } x = r, \\ r, & \text{if } x = s, \\ x, & \text{otherwise}. \end{cases}$$

and define a map $\tau: (\Omega_k, [r]) \to (\Omega_k, [s]): q \mapsto q\tau$ by putting

$$q\tau = \begin{cases} (w, \widehat{y_1}\widehat{y_2}\dots \widehat{y_m}), \text{ if } q = (w, y_1y_2\dots y_m) \in \Omega_k \setminus \{0\}, \\ q, \text{ in all other cases.} \end{cases}$$

An immediate verification shows that τ is an isomorphism.

3. The least weakly k-nilpotent congruence on a free n-tuple semigroup

In this section, we present the least weakly k-nilpotent congruence on a free n-tuple semigroup. We will use the notation established in Sections 1 and 2. An n-tuple semigroup which is free in the variety of n-tuple semigroups is called a free n-tuple semigroup. Recall the construction of a free n-tuple semigroup [16].

We define *n* binary operations $[1, [2], \ldots, [n]$ on

$$XY_n = \{(w, u) \in F[X] \times F^{\theta}[Y] \mid l_w - l_u = 1\}$$

by

$$(w_1, u_1)$$
 i $(w_2, u_2) = (w_1w_2, u_1y_iu_2)$

for all $(w_1, u_1), (w_2, u_2) \in XY_n$ and all $i \in \overline{n}$. The algebra

$$(XY_n, \boxed{1}, \boxed{2}, \ldots, \boxed{n})$$

is denoted by $F_nTS(X)$. By Theorem 2 from [16], $F_nTS(X)$ is a free *n*-tuple semigroup. For $k \in \mathbb{N}$, let $\beta_{(n,k)}$ be the binary relation on $F_nTS(X)$ defined by

 $(w_1, u_1)\beta_{(n,k)}(w_2, u_2) \text{ if and only if } (w_1, u_1) = (w_2, u_2) \text{ or} \\ \begin{cases} d_x(u_1) + 1 > k \text{ for some } x \in Y, \\ d_y(u_2) + 1 > k \text{ for some } y \in Y. \end{cases}$

Theorem 3.1 The relation $\beta_{(n,k)}$ on the free *n*-tuple semigroup $F_nTS(X)$ is the least weakly *k*-nilpotent congruence.

Proof We define a map $\delta : F_n TS(X) \to FNS_n^k(X)$ by

$$(w, u) \delta = \begin{cases} (w, u), & \text{if } d_x(u) + 1 \le k \text{ for all } x \in Y, \\ 0, & \text{in all other cases.} \end{cases}$$

We need to show that δ is a homomorphism. Let $(w_1, u_1), (w_2, u_2) \in F_n TS(X)$ and $r \in \overline{n}$. Suppose that $d_x(u_1y_ru_2) + 1 \leq k$ for all $x \in Y$. The latter inequality implies $d_x(u_1) + 1 \leq k$ and $d_x(u_2) + 1 \leq k$ for all $x \in Y$. Then

$$((w_1, u_1) \boxed{r} (w_2, u_2))\delta = (w_1 w_2, u_1 y_r u_2)\delta = (w_1 w_2, u_1 y_r u_2)$$
$$= (w_1, u_1) \boxed{r} (w_2, u_2) = (w_1, u_1)\delta \boxed{r} (w_2, u_2)\delta.$$

In the case $d_x(u_1y_ru_2) + 1 > k$ for some $x \in Y$, we conclude that

$$((w_1, u_1) [r](w_2, u_2))\delta = (w_1 w_2, u_1 y_r u_2)\delta = 0 = (w_1, u_1)\delta [r](w_2, u_2)\delta.$$

Thus, δ is a homomorphism which is surjective since

$$\Omega_k = \{ (w, u) \in XY_n \, | \, d_x(u) + 1 \le k \quad \text{for all} \quad x \in Y \} \cup \{ 0 \}.$$

By Theorem 2.1, $FNS_n^k(X)$ is a free weakly k-nilpotent n-tuple semigroup. Therefore, Δ_{δ} is the least weakly k-nilpotent congruence on $F_nTS(X)$. It follows from the definition of δ that $\Delta_{\delta} = \beta_{(n,k)}$.

4. Some properties

In this section, we describe some properties of free weakly k-nilpotent n-tuple semigroups. More precisely, we characterize all maximal n-tuple subsemigroups of the free weakly k-nilpotent n-tuple semigroup and all regular elements of the endomorphism semigroup of the free weakly k-nilpotent n-tuple semigroup. We also demonstrate that the automorphism group of the free weakly k-nilpotent n-tuple semigroup is isomorphic to the symmetric group, and that $End(FNS_n^k(X))$ is isomorphic to $End(FNS_n^k(Z))$ if and only if |X| = |Z|.

Now, we describe all maximal *n*-tuple subsemigroups of the free weakly *k*-nilpotent *n*-tuple semigroup $FNS_n^k(X)$.

An *n*-tuple subsemigroup of an *n*-tuple semigroup G is called proper if it is not equal to G. An

n-tuple subsemigroup T of an *n*-tuple semigroup G is called maximal provided that $T \neq G$ and, for any *n*-tuple subsemigroup $M \leq G$, the inclusion $T \leq M$ implies M = T or M = G. Equivalently, an *n*-tuple subsemigroup of an *n*-tuple semigroup G is maximal if it is a proper *n*-tuple subsemigroup of G which is not contained in any other proper *n*-tuple subsemigroup of G.

Proposition 4.1 Let S be an n-tuple subsemigroup of $FNS_n^k(X)$. Then S is maximal if and only if there is an $x \in X$ such that $S = \Omega_k \setminus \{(x, \theta)\}$.

Proof Let $x \in X$. Further, let $i \in \overline{n}$ and $(w_1, u_1), (w_2, u_2) \in \Omega_k \setminus \{(x, \theta), 0\}$. Then $(w_1, u_1)[i](w_2, u_2) \in \{(w_1w_2, u_1y_iu_2), 0\}$ with $u_1y_1u_2 \neq \theta$. Moreover, $(w_1, u_1)[i]0 = 0[i](w_1, u_1) = 0[i]0 = 0$. This shows that $\Omega_k \setminus \{(x, \theta)\}$ forms an *n*-tuple subsemigroup of $FNS_n^k(X)$, which is clearly maximal.

Conversely, let S be a maximal n-tuple subsemigroup of $FNS_n^k(X)$. Since $X \times \{\theta\}$ is the least generating set of $FNS_n^k(X)$, we can conclude that $\{(x,\theta) \mid x \in X\} \not\subseteq S$, i.e. there is an $x \in X$ with $(x,\theta) \notin S$. Therefore, $S \subseteq \Omega_k \setminus \{(x,\theta)\}$. Since S is a maximal n-tuple subsemigroup of $FNS_n^k(X)$, we obtain $S = \Omega_k \setminus \{(x,\theta)\}$. \Box

Due to the fact that the set $X' = X \times \{\theta\}$ is the least generating for $FNS_n^k(X)$, we obtain the following description of the automorphism group of the free weakly k-nilpotent n-tuple semigroup: $Aut FNS_n^k(X) \cong \Im[X]$. It is natural to consider endomorphisms of the free weakly k-nilpotent n-tuple semigroup $FNS_n^k(X)$.

Since X' is the least generating set of $FNS_n^k(X)$, each map $\varphi: X' \to \Omega_k$ induces an endomorphism of $FNS_n^k(X)$, and conversely, every endomorphism of $FNS_n^k(X)$ is uniquely determined by a map from X' into $FNS_n^k(X)$. This yields the formula

$$\left| End(FNS_n^k(X)) \right| = \left| \Omega_k \right|^{|X|},$$

whenever X is finite, with $|\Omega_k|$ calculated by Corollary 2.2.

Let $a \in \Omega_k$. An endomorphism $f_a \in End(FNS_n^k(X))$ we call constant if $(x, \theta)f_a = a$ for all $x \in X$.

Proposition 4.2 The only constant idempotent endomorphisms of $FNS_n^k(X)$ are f_a for all $a \in X' \cup \{0\}$.

Proof Let $CI(X) = \{f_a \mid a \in X' \cup \{0\}\}$. Obviously, every element of CI(X) is a constant idempotent endomorphism of $FNS_n^k(X)$. Conversely, let $f \in End(FNS_n^k(X))$ be constant and idempotent. Suppose that $(x, \theta)f = a \in \Omega_k$ for all $x \in X$. Then $(x, \theta)f^2 = af = a = (x, \theta)f$. The equality af = a implies that $a \in X' \cup \{0\}$. Thus, $f = f_a \in CI(X)$.

The following statement provides the criterion for an isomorphism of the endomorphism semigroups of free weakly k-nilpotent n-tuple semigroups.

Proposition 4.3 Let X and Z be arbitrary nonempty sets. Then

 $End(FNS_n^k(X)) \cong End(FNS_n^k(Z))$ if and only if |X| = |Z|.

Proof Suppose that $\psi : End(FNS_n^k(X)) \to End(FNS_n^k(Z))$ is an isomorphism. By Proposition 4.2, CI(X) and CI(Z) are the sets of all constant idempotent endomorphisms of $FNS_n^k(X)$ and $FNS_n^k(Z)$, respectively. Then we can conclude that $CI(X)\psi = CI(Z)$. This yields |CI(X)| = |CI(Z)|, and thus, |X| = |Z|.

Let $f \in End(FNS_n^k(X))$ and $(y,\theta)f = (e_1,e_2)$ for some $y \in X$. We will denote e_1 and e_2 by $[y]_f$ and $(y]_f$, respectively. Suppose now that |X| = |Z|. Then there is a bijection $\sigma : X \to Z$. We define $\psi : End(FNS_n^k(X)) \to End(FNS_n^k(Z))$ in the following way: let $f\psi$ be the endomorphism of $FNS_n^k(Z)$ defined by $(x,\theta)f\psi = ([x\sigma^{-1}]_f\overline{\sigma}, (x\sigma^{-1}]_f)$ for all $(x,\theta) \in Z'$, where $\overline{\sigma}$ is the extension of σ to F[X]. Since σ is a bijection, we can conclude that ψ is a bijection from $End(FNS_n^k(X))$ in $End(FNS_n^k(Z))$ and let $a \in Z$. Then we have $(a,\theta)(f \circ g)\psi = ([a\sigma^{-1}]_{f\circ g}\overline{\sigma}, (a\sigma^{-1}]_{f\circ g})$. On the other hand, we get $(a,\theta)f\psi \circ g\psi =$ $([a\sigma^{-1}]_f\overline{\sigma}, (a\sigma^{-1}]_f)g\psi$. It is easy to verify that $([a\sigma^{-1}]_f\overline{\sigma}, (a\sigma^{-1}]_f)g\psi = ([a\sigma^{-1}]_{f\circ g}\overline{\sigma}, (a\sigma^{-1}]_{f\circ g})$. Hence, $(a,\theta)(f \circ g)\psi = (a,\theta)f\psi \circ g\psi$. Consequently, ψ is an isomorphism, i.e.

$$End(FNS_n^k(X)) \cong End(FNS_n^k(Z)).$$

Recall that an element a of a semigroup S is called regular provided that there exists $b \in S$ such that aba = a. A semigroup S is called regular provided that every element of S is regular. At the end of this section, we consider the question of regularity in $End(FNS_n^k(X))$.

Let ω be an arbitrary word in the alphabet X. The set of all elements $x \in X$ occurring in ω is denoted by $c(\omega)$. Let further Reg be the set of all $f \in End(FNS_n^k(X))$ with $(x,\theta) \in X'f = \{yf | y \in X'\}$, for all $x \in c(w)$, whenever $(w, u) \in X'f$. Denote the constant transformation of Ω_k with value 0 by f_0^X .

Proposition 4.4 $Reg \cup \{f_0^X\}$ is the set of all regular elements in $End(FNS_n^k(X))$. $Reg \cup \{f_0^X\}$ is not closed under composition, whenever $|X| \ge 2$.

Proof Clearly, f_0^X is idempotent and thus regular in $End(FNS_n^k(X))$. Let $f \in Reg$. Then we put

$$X_f = \{ (x, \theta) \in X' \, | \, x \in c(w) \text{ and } (w, u) \in X'f \}.$$

Since $f \in Reg$, for each $(x,\theta) \in X_f$, there is $(x,\theta)^* \in X'$ such that $(x,\theta)^*f = (x,\theta)$. Then let $g \in End(FNS_n^k(X))$ such that $(x,\theta)g = (x,\theta)^*$ for all $(x,\theta) \in X_f$ and $(x,\theta)g = 0$ for all $(x,\theta) \in X' \setminus X_f$. Let $(x,\theta) \in X'$ such that $(x,\theta)f \neq 0$. Then it is easy to verify that $(x,\theta)fgf = (x,\theta)f$. If $(x,\theta)f = 0$ then $(x,\theta)fgf = 0$ since an endomorphism maps 0 to 0. This shows that f is regular.

Let now $f \in End(FNS_n^k(X)) \setminus \{Reg \cup \{f_0^X\}\}$. Then there is a $(w, u) \in X'f$ and $x \in c(w)$ with $(x, \theta) \notin X'f$. Assume that there is a $g \in End(FNS_n^k(X))$ with fgf = f. Let $(a, \theta) \in X'$ such that $(a, \theta)f = (w, u) \in \Omega_k \setminus \{0\}$. Then $(a, \theta)fg = (w, u)g$, and thus, $(w, u)g \neq 0$ since otherwise $(a, \theta)fgf = 0$, a contradiction to $(a, \theta)fgf = (a, \theta)f = (w, u)$. Hence, there is $(w_1, u_1) \in \Omega_k \setminus \{\theta\}$ with $(w, u)g = (w_1, u_1)$. It is clear that $l_w \leq l_{w_1}$. Since $(x, \theta) \notin X'f$ and $(w_1, u_1)f = (w, u)$, we can conclude that $l_{w_1} < l_w$, i.e. $l_w < l_w$, a contradiction. This shows that f is not regular.

Finally, we demonstrate that $Reg \cup \{f_0^X\}$ is not closed under composition, whenever $|X| \ge 2$. For this let $x_1, x_2 \in X$. We put

$$(x_1, \theta)f_1 = (x_2x_2, y_1)$$
 and $(x, \theta)f_1 = (x_2, \theta)$

for all $(x, \theta) \in X' \setminus \{(x_1, \theta)\},\$

$$(x_2, \theta)f_2 = (x_1x_1, y_1)$$
 and $(x, \theta)f_2 = (x_1, \theta)$

for all $(x, \emptyset) \in X' \setminus \{(x_2, \theta)\}$. It is easy to verify that f_1 and f_2 define endomorphisms in Reg. We consider

$$(x_1, \theta)(f_1 \circ f_2) = (x_2 x_2, y_1)f_2 = (x_1 x_1 x_1 x_1, y_1 y_1 y_1)$$
 and
 $(x, \theta)(f_1 \circ f_2) = (x_2, \theta)f_2 = (x_1 x_1, y_1)$

for all $(x,\theta) \in X' \setminus \{(x_1,\theta)\}$. Since $x_1 \in c(x_1x_1x_1x_1)$, where $(x_1x_1x_1x_1, y_1y_1y_1) \in X(f_1 \circ f_2)$, but $(x_1,\theta) \notin X(f_1 \circ f_2)$ the endomorphism $f_1 \circ f_2$ does not belong to Reg.

Corollary 4.5 Let |X| = 1. The regular elements in $End(FNS_n^k(X))$ are exactly the zero f_0^X and the identity map on Ω_k which form a two-element subsemigroup of $End(FNS_n^k(X))$, in particular, a band.

Acknowledgment

The first named author was supported by a Philipp Schwartz Fellowship from the Alexander von Humboldt Foundation.

References

- [1] Boyd SJ, Gould M. Interassociativity and isomorphism. Pure Mathematics and Applications 1999; 10 (1): 23-30.
- [2] Gavrylkiv V. Note on cyclic doppelsemigroups. Algebra and Discrete Mathematics 2022; 34 (1): 15-21. https://doi.org/10.12958/adm1991
- [3] Gavrylkiv V, Rendziak D. Interassociativity and three-element doppelsemigroups. Algebra and Discrete Mathematics 2019; 28 (2): 224-247.

- [4] Givens BN, Linton K, Rosin A, Dishman L. Interassociates of the free commutative semigroup on n generators. Semigroup Forum 2007; 74: 370-378. https://doi.org/10.1007/s00233-006-0655-9
- Givens BN, Rosin A, Linton K. Interassociates of the bicyclic semigroup. Semigroup Forum 2017; 94: 104-122. https://doi.org/10.1007/s00233-016-9794-9
- [6] Huang J, Bai Y, Chen Y, Zhang Z. Constructions of free dibands and tribands. Semigroup Forum 2022; 104: 647-666. https://doi.org/10.1007/s00233-022-10270-w
- [7] Koreshkov NA. n-tuple algebras of associative type. Russian Mathematics (Izvestiya VUZ. Matematika) 2008; 52 (12): 28-35. https://doi.org/10.3103/S1066369X08120050
- [8] Loday J-L. Dialgebras. In: Loday J-L, Frabetti A, Chapoton F, Goichot F (authors). Dialgebras and Related Operads (Lecture Notes in Mathematics, 1763). Berlin, Germany: Springer-Verlag, 2001, pp. 1763: 7-66.
- [9] Loday J-L, Ronco MO. Trialgebras and families of polytopes. Contemporary Mathematics 2004; 346: 369-398.
- [10] Movsisyan Y, Davidov S, Safaryan M. Construction of free g-dimonoids. Algebra and Discrete Mathematics 2014; 18 (1): 138-148.
- [11] Schein BM. Restrictive semigroups and bisemigroups. Technical Report. Fayetteville, AR, USA: University of Arkansas, 1989.
- [12] Schein BM. Restrictive bisemigroups. Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika 1965; 1 (44): 168-179.
- [13] Smith JDH. Directional algebras. Houston Journal of Mathematics 2016; 42 (1): 1-22.
- [14] Pirashvili T. Sets with two associative operations. Central European Journal of Mathematics 2003; 2: 169-183. https://doi.org/10.2478/BF02476006
- [15] Zhuchok AV. Free left n-dinilpotent doppelsemigroups. Communications in Algebra 2017; 45 (11): 4960-4970. https://doi.org/10.1080/00927872.2017.1287274
- [16] Zhuchok AV. Free n-tuple semigroups. Mathematical Notes 2018; 103 (5): 737-744. https://doi.org/10.1134/S0001434618050061
- [17] Zhuchok AV. Free products of doppelsemigroups. Algebra Universalis 2017; 77 (3): 361-374. https://doi.org/10.1007/s00012-017-0431-6
- [18] Zhuchok AV. Free rectangular n-tuple semigroups. Chebyshevskii Sbornik 2019; 20 (3): 261-271. https://doi.org/10.22405/2226-8383-2019-20-3-261-271
- [19] Zhuchok AV. Semilatties of subdimonoids. Asian-Europian Journal of Mathematics 2011; 4 (2): 359-371. https://doi.org/10.1142/S1793557111000290
- [20] Zhuchok AV. Structure of free strong doppelsemigroups. Communications in Algebra 2018; 46 (8): 3262-3279. https://doi.org/10.1080/00927872.2017.1407422
- [21] Zhuchok AV. Relatively Free Doppelsemigroups. Lectures in Pure and Applied Mathematics. Potsdam, Germany: Potsdam University Press, 2018.
- [22] Zhuchok AV, Demko M. Free n-dinilpotent doppelsemigroups. Algebra and Discrete Mathematics 2016; 22 (2): 304-316.
- [23] Zhuchok AV, Knauer K. Abelian doppelsemigroups. Algebra and Discrete Mathematics 2018; 26 (2): 290-304.
- [24] Zhuchok AV, Koppitz J. Free products of n-tuple semigroups. Ukrainian Mathematical Journal 2019; 70 (11): 1710-1726. https://doi.org/10.1007/s11253-019-01601-2
- [25] Zhuchok AV, Zhuchok YV. Free k-nilpotent n-tuple semigroups. Communications in Algebra 2023; 51 (9): 3972-3980. https://doi.org/10.1080/00927872.2023.2195000
- [26] Zhuchok AV, Zhuchok YV, Koppitz J. Free rectangular doppelsemigroups. Journal of Algebra and Its Applications 2020; 19 (11): 2050205. https://doi.org/10.1142/S0219498820502059

- [27] Zhuchok AV, Zhuchok YV, Odintsova OO. Free left *k*-nilpotent *n*-tuple semigroups. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica 2020; 94 (3): 29-38.
- [28] Zhuchok AV, Zhuchok YV, Zhuchok YV. Certain congruences on free trioids. Communiations in Algebra 2019; 47 (12): 5471-5481. https://doi.org/10.1080/00927872.2019.1631322
- [29] Zhuchok YV. On one class of algebras. Algebra and Discrete Mathematics 2014; 18 (2): 306-320.
- [30] Zhuchok YV, Koppitz J. Representations of ordered doppelsemigroups by binary relations. Algebra and Discrete Mathematics 2019; 27 (1): 144-154.