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Abstract: In this paper we concern further results of [32, 33] by using the method mainly related to the finite part of divergent
integral, in fact, we consider the powers for positive integers of the composition of the Dirac delta function and an infinitely
differentiable function having any number of distinct multiple roots which will be defined as the neutrix limit of the regular
sequence δkn(f(x)) . Moreover we show that the powers of the composition δ(f(x)) for negative integers can be also defined via
neutrix settings. Some compositions as examples to better understand will be given.
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1. Introduction
Many scientists have long been using singular functions, even though these cannot be properly defined within
the framework of classical function theory. The simplest of the singular function is the Dirac delta function
which had been used in physics before the formal work of L. Schwartz. It appears with its derivative and even
some powers, in many specific problems of mathematical physics and engineering, especially, of quantum field
theory, quantum mechanics, quantum electrodynamics and signal processing. So it is of central importance in
many branches of physics and engineering. For instance, the Dirac delta function was used to represent matter
in the field equations by A. Einstein. Besides the symbol δ2(x) often appears in quantum mechanics which
leads to reasonable results and one needs to evaluate its square when calculating the transition rates of certain
particle interactions.

Now, let us get started by bringing to the reader’s mind some results on the compositions of the Dirac
delta function with summable functions. First Koh and Li [26] used the fixed δ -sequence and gave meaning
to the symbol δk. Later Accardi and Boukas [1] gave meaning to the expression δn =

∑n−1
k=1 ckδ

(k) (n ≥ 2) in
order to establish a fock representaition of the renormalized higher powers of white noise. Borys et al. defined
the k -th power of Dirac delta impulse in terms of Neutrix notation while the linear system was extended to
nonlinear Volterra system described by Volterra and Taylor series [4]. Lately Chenkuan Li and Changpin Li [30]
used the Caputo fractional derivatives to redefine δk(x) for all k ∈ R. The symbol δk(f(x)) for the infinitely
differentiable function f having single simple root or multiple root at x0 is meaningfully defined in [34] and has
been shown that δk(f(x)) = 0 for even k. Further the author proved in [33] that if f has any number of simple
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root, then the composition δk(f(x)) exists on the interval (a, b) and also equals to zero for even k. Recently
the composition of Dirac delta function and an infinitely differentiable function f having distinct multiple roots
is meaningfully defined in [32].

Now we assume that f(x) is an infinitely differentiable real valued function having multiple root at
x0 ∈ R with multiplicity n. Then f(x) can be factorized as

f(x) = (x− x0)
nh(x)

where h(x) is continuous and infinitely differentiable on the real line defined by

h(x) =

{
f(x)

(x−x0)n
, x ̸= x0,

f(n)(x0)
n! , x = x0,

(1.1)

and the sth derivative of t at x0 is equal to h(s)(x0) =
f(s+n)(x0)

(s+n)! (s ∈ Z+), and clearly it is irreducible [32].

Further similarly if the function f(x) has distinct multiple roots at the points x1, x2, . . . , xn of R with the
multiplicities r1, r2, . . . , rn respectively, then we can this time factorize f(x) as

f(x) = (x− x1)
r1(x− x2)

r2 . . . (x− xn)
rnt(x)

where ri ∈ Z+ and t(x) is infinitely differentiable function on the real line defined by the equation [32]

t(x) =


f(x)

(x−x1)r1 (x−x2)r2 ...(x−xn)rn
, x ̸= xi, i = 1, 2, . . . , n

f(ri)(xi)
ri!

∏
i ̸=k(xi−xk)

rk
, x = xi, i = 1, 2, . . . , n.

(1.2)

As to get the main results we will need the Fa á di Bruno’s formulae which defines an equation of the kth
derivative of a smooth composite function φ ◦ f stated by Bruno [7] as

[
φ(f(x))

](k)
=

k∑
r=1

φ(r)(f)Bk,r(f
′(x), f ′′(x), . . . , f (k−r+1)(x)) (1.3)

where Bk,r(f
′(x), f ′′(x), . . . , f (k−r+1)(x)) are the Bell polynomials [5] defined by the equation

Bk,r

(
f ′(x), f ′′(x), . . . , f (k−r+1)(x)

)
=

=
∑ k!

b1!b2! . . . bk−r+1!

(f ′(x)
1!

)b1(f ′′(x)
2!

)b2
. . .

(f (k−r+1)(x)

(k − r + 1)!

)bk−r+1

(1.4)

where the sum is over all possible combinations of nonnegative integers b1, b2, . . . , bk−r+1 satisfying two condi-
tions b1 + b2 + . . .+ bk−r+1 = r and b1 + 2b2 + 3b− 3 . . .+ (k − r + 1)bk−r+1 = k .

Now D denotes the space of infinitely differentiable functions with compact support and D′ denotes the
space of distributions defined on D. Let f(x) be locally summable function that means absolutely integrable
in every bounded region Rn , then we can associate every φ ∈ D with

⟨f, φ(x)⟩ =
∫
Rn

f(x)φ(x) dx (1.5)
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where the integral is actually taken over the bounded region in which φ(x) fails to vanish. Equation 1.5
represents a very special kind of continuous linear functional on D called regular, all other not giving by
equation 1.5, ( including the delta function) will be called singular. One important property of the space D′

is that every distribution is the limit of a regular sequence, will be defined as below, of infinitely differentiable
functions with compact support [19].

To construct such a sequence of regular functions which converges to δ(x) we assume that ρ is a fixed
infinitely differentiable function having the properties:

(i) ρ(x) = 0 for |x| ≥ 1 , (ii) ρ(x) ≥ 0, (iii) ρ(x) = ρ(−x) , (iv)
∫ 1

−1

ρ(x) dx = 1.

Then putting δn(x) = nρ(nx) for n = 1, 2, . . . , we have that δn(x) is a regular sequence [38] of infinitely
differentiable functions converging to Dirac delta-function δ(x) and this sequence is called δ -sequence.

It should be emphasized that the distributions play crucial role in the theory of Partial differential and
integral equations theory [28].The reader may refer to [8] as to see a description of distributional point values
via delta sequence.

Further if f is a distribution in D′ and fn(x) = ⟨f(t), δn(x− t)⟩, then {fn(x)} is a regular sequence of
infinitely differentiable functions and converges to f(x).

If f(x) is an infinitely differentiable function having simple roots at the points x1, x2, . . . , the composition
δ(f(x)) is defined by Gel’fand and Shilov [19] as

δ(f(x)) =
∑
n

δ(x− xn)

|f ′(xn)|
.

Differentiating this equation, we obtain the distribution δ(k)(f(x)) as

δ(k)(f(x)) =
∑
n

1

|f ′(xn)|

(
1

|f ′(xn)|
d

dx

)k

δ(x− xn).

Antosik [2] defines the composition g(f(x)) of distributions f and g as the limit of the sequence of
composition {gn(fn)} on R proving that the limit exists and converges to a distribution h(x). By this definition
he obtained

(i)
√
δ = 0, (ii)

√
δ2 + 1 = 1 + δ, (iii) log(1 + δ) = 0, (iv) sin δ = 0, (v) 1

1+δ = 1.

In addition Antosik introduced the interesting formulas in [2], which may be a matter of interest for
physicits,

n

√√√√ n∑
i=0

aiδi =
n
√
an + δ, log

( n∑
i=0

aiδ
i
)
= 0,

Where ai > 0 for i = 0, . . . , n. Notice that the powers of δi of δ should be meant as results of the operation
of substitution of δ into a certain continuous function, not the operation of product of distributions. In
addition Antosik assumed in [3] that g(x) is continuous function from R in to R such that limx→−∞(g(x)/x) =

a, limx→∞(g(x)/x) = b and f is a measure with Lebesgue decomposition, then he proved that the composition
g(f) existed.
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2. The expression δk(f(x)) for a function having multiple roots
The method of the discarding of unwanted infinite quantities from divergent integrals resulting finite value is
known Hadamard’s finite part [8, 9, 39–41], related ideas have been explored by van der Corput [6] who similarly
noticed that functions of certain type can be neglected in the study of the asymptotic behaviour integrals, while
Fisher has approched the subject via the theory of neutrices [13, 15–18], Raju [37] has tackled the problem
by nonstandard analysis. Some of the recent results on the finite part of divergent integrals can be found in
[10, 11, 22, 27, 31, 40].

In general, by Antosik’s definition above, it is not possible to define the composition for many pairs
of distributions. Nevertheless, Fisher [15] gave the following definition enabling the composition defined for
larger class of distributions, but before we let N denotes the neutrix having domain N ′ = {1, 2, . . . , n, . . .} ,
range the real numbers with negligible functions which are finite linear sums of the functions nλ lnr−1 n, lnr n

(λ > 0, r = 1, 2, . . .) and all functions which converge to zero in the usual sense as n tends to infinity, [6, 13].

Definition 2.1 Let F be distributions in D′ and let f be infinitely differentiable function. We say that the
distribution F (f(x)), the neutrix composition of F and f, exists and is equal to h(x) on the interval (a, b) if
the neutrix limit

N−lim
n→∞

[∫ ∞

−∞
Fn(f(x))φ(x) dx

]
= ⟨h(x), φ(x)⟩

for all φ in D with support contained in the interval (a, b), where Fn(x) = (F ∗ δn)(x), and N is defined as
above [6, 15, 16].

The reader can find some examples of the neutrix limit and some examples of compositions and some
applications of the neutrix limit in conjunction with special functions in [15, 17, 23, 36] respectively. It should
be pointed out that the essential use of the neutrix limit is to extract an appropriate finite part from a divergent
quantity as one has usually done to subtract the divergent terms via rather complicated procedures in the
renormalization theory [9, 10, 27].

In order to obtain more results on compositions of distributions we first recall the following proposition
given in [34].

Proposition 2.2 Let f(x) be an infinitely differentiable function on the interval (a, b). Assume that f(x) does
not have any root in the interval (a, b) . Then the distribution δk(f(x)) exists on the interval (a, b) and

δk(f(x)) = 0. (2.1)

for all k ∈ Z+.
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Theorem 2.3 Let f(x) be an infinitely differentiable function having multiple root at x0 with multiplicity s on
the open interval (a, b). Then the k -th power of the composition δ(f(x)) of Dirac delta function and f exists
in the sense of Fisher’s definition and for φ ∈ D

⟨δk(f(x)), φ(x)⟩ =
ks−1∑
r=0

(
ks− 1

r

)
2ck,ρ

s(ks− 1)!|f (ks−r)(x0)|
×

×
r∑

i=1

(−1)iBr,i

( 1

|f ′(x0)|
,

1

|f ′′(x0)|
, . . . ,

1

|f (r−i+1)(x0)|

)
⟨δ(i)(x− x0), φ(x)⟩ (2.2)

for k, s = 1, 3, . . . , and otherwise δk(f(x)) = 0, where Fa á di Bruno’s formulae is used in terms of exponential

Bell polynomials Br,i(x1, x2, . . . , xr−i+1) defined as in equation 1.4 and ck,ρ =
∫ 1

0
uk−1ρk(u) du. In particular

for k = s = 1, δ(f(x)) = 1
|f ′(x0)|δ(x− x0).

Proof For the sake of completeness, we prove the theorem for the case x0 = 0, the case x0 ̸= 0 will then
follow by translation. It now follows that we may write f(x) = xsh(x) where h(x) is defined as in equation 1.1.

Let us write f1(x) = xh1/s(x) and we assume that the interval (a, b) containing origin is bounded and
f ′1(x) ̸= 0 on this interval.Then the equation y = f1(x) will have inverse x = g(y) ∈ C∞ on the interval (a, b).

Now let φ ∈ D with sup(φ) ⊂ (a, b). Then

∫ ∞

−∞
δkn(f(x))φ(x) dx =

∫ ∞

0

δkn(f(x))φ(x) dx+

∫ ∞

0

δkn(f(−x))φ(−x) dx. (2.3)

On making the substitution t1/s = f1(x) or x = g(t1/s) we have

∫ ∞

0

δkn(f(x))φ(x) dx =
1

s

∫ ∞

0

δkn(t)φ(g(t
1/s)|g′(t1/s)|t1/s−1 dt.

The function Ψ(y) = φ(g(y))|g′(y)| is infinitely differentiable function it follows from Taylor’s formulae that

Ψ(y) =

ks−1∑
i=0

Ψ(i)(0)

i!
yi +

Ψ(ks)(ξy)

(ks)!
yks (0 < ξ < 1).

Thus we have on making the substitution nt = u

s

∫ ∞

0

δkn(f(x))φ(x) dx =

ks−1∑
i=0

Ψ(i)(0)

i!

∫ ∞

0

δkn(t)t
i+1
s −1 dt+

∫ ∞

0

Ψ(ks)(ξt1/s))

(ks)!
δn(t)t

k−1+1/s dt

=

ks−2∑
i=0

Ψ(i)(0)

i!
nk−1

∫ 1

0

ρk(u)(
u

n
)

i+1
s −1 du+

Ψ(ks−1)(0)

(ks− 1)!

∫ 1

0

uk−1ρk(u) du+

+nk
∫ 1

0

Ψ(ks)(ξ(u/n)1/s)

(ks)!
ρk(u)(u/n)ks du
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and it now follows that the neutrix limit of
∫∞
0
δkn(f(x))φ(x) dx exists and is equal to

N−lim
n→∞

∫ ∞

0

δkn(f(x))φ(x) dx =
Ψ(ks−1)(0)

s(ks− 1)!

∫ 1

0

uk−1ρk du

= ck,ρ
Ψ(ks−1)(0)

s(ks− 1)!
. (2.4)

Next consider the integral
∫∞
0
δkn(f(−x))φ(−x) dx. Similarly we have on making the substitution −t1/s =

f1(−x), where t1/s ≥ 0, that

s

∫ ∞

0

δkn(f(−x))φ(−x) dx =

∫ ∞

0

δkn((−1)st)φ(g(−t1/s))|g′(−t1/s)|t1/s−1 dt

=

∫ ∞

0

δkn(t)Ψ(−t1/s)t1/s−1 dt

where Ψ is the function defined above. Thus as similar to equation 2.3, we get by taking the neutrix limit that

N−lim
n→∞

∫ ∞

0

δkn(f(−x))φ(−x) dx =
(−1)ks−1Ψ(ks−1)(0)

s(ks− 1)!

∫ 1

0

uk−1ρ(u) du

=
(−1)ks−1ck,ρΨ

(ks−1)(0)

s(ks− 1)!
. (2.5)

It now follows from equations 2.3 - 2.5 that

N−lim
n→∞

∫ ∞

−∞
δkn(f(x))φ(x) dx =

{
2ck,ρΨ

(ks−1)(0)
s(ks−1)! , k, s = 1, 3, . . . ,

0, otherwise

proving the existence of δk(f(x)) on the interval (a, b) for s ∈ N. As to evaluate Ψ(ks−1)(0) we use Fa ȧ di
Brono’s formulae in terms of exponential Bell polynomials. It now follows that

Ψ(ks−1)(0) =
{
Ψ(ks−1)(y)

}
y=0

= {φ(g(y))|g′(y)|}(ks−1)
⌋
y=0

=

ks−1∑
r=0

(
ks− 1

r

)
{φ(g(y))}(r) |g(ks−r)(y)|

⌋
y=0

=

ks−1∑
r=0

(
ks− 1

r

) r∑
i=1

φ(i)(x0)Br,i

(
g′, g′′, . . . , g(r−i+1)

)
|g(ks−r)(y)|

⌋
y=0

=

ks−1∑
r=0

(
ks− 1

r

)
1

|f (ks−r)(x0)|
×

×
r∑

i=1

Br,i

( 1

|f ′(x0)|
,

1

|f ′′(x0)|
, . . . ,

1

|f (r−i+1)(x0)|

)
φ(i)(x0)

where Br,i is the incomplete exponential Bell polynomial. What we have proved that the composition δk(f(x))
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exists and equals to

⟨δk(f(x)), φ(x)⟩ =
ks−1∑
r=0

(
ks− 1

r

)
2ck,ρ

s(ks− 1)!|f (ks−r)(x0)|
×

×
r∑

i=1

(−1)iBr,i

( 1

|f ′(x0)|
,

1

|f ′′(x0)|
, . . . ,

1

|f (r−i+1)(x0)|

)
⟨δ(i)(x− x0), φ(x)⟩ (2.6)

for k, s = 1, 3, . . . , and otherwise δk(f(x)) = 0. □

The reader easily notices that if k /∈ Z+, then the neutrix limit of the equations 2.3 and 2.4 equal to
zero which results δk(f(x)) = 0 and also notices that if k = 1 then the theorem 2.3 is in agreement with the
theorem 2.3 of [32]. 2

Example 2.4 Let f(x) = xr and assume that k and r are odd. Then for any φ ∈ D, the function Ψ is
identical to φ. Thus

⟨δk(f(x)), φ⟩ =
2ckρφ

(kr−1)(0)

r(kr − 1)!

=
2(−1)kr−1ckρ

r(kr − 1)!
⟨δ(kr−1)(x), φ(x)⟩

and so

δk(xr) =
2(−1)kr−1ckρ

r(kr − 1)!
δ(kr−1)(x)

on the real line for odd k, r. If k = 1 then δ(xr) = (−1)r−1

r! δ(r−1)(x) which is in aggrement with the result given
in [14]. If r = 2, then δ(x2) = 0. This is in agreement with the result given in [12].

Example 2.5 Let us consider the function f(x) = tanh3 x. Then by the notation of the proof of Theorem 2.3,
we have f1(x) = tanhx which has simple roots at the points x = 0 and

g(y) = tanh−1 y =
1

2
ln

1 + y

1− y
=

∞∑
n=0

y2n+1

2n+ 1

= y +
1

3
y3 +

1

5
y5 +

1

7
y7, . . . ,

g′(y) = − 1

1− y2
= 1 + y2 + y4 + y6, . . .

on the interval (−1, 1) and so Ψ(y) = φ(tanh−1 y)(1− y2)−1 and it can be shown that Ψ′′(0) = 2φ(0) +φ′′(0).
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It follows from the proof of Theorem 2.3 that

⟨δ(tanh3 x), φ(x)⟩ =
1

6
Ψ′′(0) =

1

3
φ(0) +

1

6
φ′′(0)

= =
1

3
⟨δ(x), φ(x)⟩+ 1

6
⟨δ′′(x), φ(x)⟩. □

Example 2.6 Let us define the composition δ[ln(1 + |x|)]. So we evaluate the neutrix limit of ⟨δn[ln(1 +

|x|)], φ(x)⟩ for φ ∈ D[−1, 1]. We may write from Taylor’s theorem that φ(x) = φ(0) + xφ(ξx) (0 < ξ < 1).

Then

⟨δn[ln(1 + |x|)], φ(x)⟩ = φ(0)

∫ 1

−1

δn[ln(1 + |x|)] dx+

∫ 1

−1

δn[ln(1 + |x|)]xφ(ξx) dx.

For large enough n ∫ 1

−1

δn[ln(1 + |x|)] dx = n

∫ 1

−1

ρ[ln(1 + |x|)] dx = 2n

∫ 1

0

ρ[ln(1 + |x|)] dx

and making the substitution t = n ln(1 + |x|) we have

n

∫ 1

0

ρ[ln(1 + |x|)] dx =

∫ 1

0

ρ(t)et/n dt =

∞∑
k=0

1

nkk!

∫ 1

0

ρ(t)tk dt = o(1/n) +

∫ 1

0

ρ(t) dt.

It now follows that lim
n→∞

∫ 1

−1
δn[ln(1 + |x|)] dx = 1, where

∫ 1

0
ρ(t) dt = 1/2. Finally since xδn[ln(1 + |x|)] is odd

function then
∫ 1

−1
δn[ln(1 + |x|)]x dx = 0. Thus if ψ is continuous function then

lim
n→∞

∫ 1

−1

δn[ln(1 + |x|)]ψ(x) dx = 0.

So what we have proved that for φ ∈ D[−1, 1]

lim
n→∞

⟨δn[ln(1 + |x|)], φ(x)⟩ = lim
n→∞

∫ 1

−1

δn[ln(1 + |x|)]φ(x) dx = φ(0)

⟨δ[ln(1 + |x|)], φ(x)⟩ = ⟨δ(x), φ(x)⟩. □

The other main contribution of this paper is the following result.

Theorem 2.7 Let f(x) be an infinitely differentiable function having distinct multiple roots at x1, x2, . . . , xn
with multiplicities α1, α2, α3, . . . , αn, (n, αi ∈ Z+) respectively on the open interval (a, b). Then the k -th power
of the composition δ(f(x)) exists for positive integers on the interval (a, b) and

⟨δk(f(x)), φ(x)⟩ =
n∑

i=1

kαi−1∑
r=0

(
kαi − 1

r

)
2ck,ρ

αi(kαi − 1)!|f (kαi−r)(xi)|
×

×
r∑

m=1

(−1)mBr,m

( 1

|f ′(xi)|
,

1

|f ′′(xi)|
, . . . ,

1

|f (r−m+1)(xi)|

)
⟨δ(m)(x− xi), φ(x)⟩ (2.7)
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for all kαi−1 ∈ 2Z, i = 1, 2, . . . , n, where Br,m(x1, x2, . . . , xr−m+1) are again the exponential Bell polynomials.
In particular for k = α1 = α2 = α3 = . . . = αn = 1, then

δ(f(x)) =
∑
n

1

|f ′(xn)|
δ(x− xn).

Further if kαi ∈ 2Z for all i = 1, 2, . . . , n then δk(f(x)) = 0.

Proof We may write f(x) = (x− x1)
α1(x− x2)

α2(x− x3)
α3 . . . (x− xn)

αnt(x) where t(x) ∈ C∞ defined as
in equation 1.2.

Let (λi, µi) be disjoint open subintervals of (a, b) containing xi such that A = ∪n
i=1(λi, µi) for i =

1, 2, . . . , n. Let us write fi(x) = {(x− x1)
α1(x− x2)

α2(x− x3)
α3 . . . (x− xn)

αnt(x)}1/αi and assume that the
interval (λi, µi) is bounded and since xi is simple root we have f ′i(x) ̸= 0 on (λi, µi) and also assume that
fi(x) is increasing. Then the equation y = fi(x) will have inverse x = gi(y) ∈ C∞ on the interval (λi, µi).

Now let φ(x) ∈ D with supp(φ) ⊂ (a, b), then we have

∫ ∞

−∞
δkn(f(x))φ(x) dx =

∫ µ1

λ1

δkn(f(x))φ(x) dx+

∫ µ2

λ2

δkn(f(x))φ(x) dx+

+ . . .+

∫ µn

λn

δkn(f(x))φ(x) dx+

∫
R\A

δkn(f(x))φ(x) dx. (2.8)

Now it follows from proposition 2.2 that the last integral on the right hand side of equation 2.8 equals zero.

Next for each i we consider the following integral

∫ µi

λi

δkn(f(x))φ(x) dx =

∫ xi

λi

δkn(f(x))φ(x) dx+

∫ µi

xi

δkn(f(x))φ(x) dx. (2.9)

Making the substitution t1/αi = fi(x) or x = gi(t
1/αi) for the second integral on the right-hand side of equation

2.9 then we have ∫ µi

xi

δkn(f(x))φ(x) dx =
1

αi

∫ νi

0

δkn(t)φ(gi(t
1/αi))|g′i(t1/αi)|t1/αi−1 dt

where νi = f(µi).

The function Ψ(y) = φ(gi(y))|g′i(y)| is infinitely differentiable and it follows from Taylor’s theorem that

Ψ(y) =

kαi−1∑
i=0

Ψ(i)(0)

i!
yi +

Ψ(kαi)(ξy)

(kαi)!
ykαi (0 < ξ < 1).
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Thus

αi

∫ µi

xi

δkn(f(x))φ(x) dx =

kαi−1∑
j=0

Ψ(j)(0)

j!

∫ νi

0

δkn(t)t
j+1
αi

−1
dt+

+

∫ νi

0

Ψ(kαi)(ξt1/αi))

(kαi)!
δkn(t)t

k+1/αi−1 dt

=

kαi−2∑
j=0

Ψ(j)(0)

j!
nk−1

∫ 1

0

ρ(u)(
u

n
)

i+1
αi

−1
du+

Ψ(kαi−1)(0)

(kαi − 1)!

∫ 1

0

uk−1ρk(u) du+

+nk
∫ 1

0

Ψ(kαi)(ξ(u/n)1/αi)

(kαi)!
ρk(u)(u/n)k+1/αi−1 du

on making the substitution nt = u for n−1 < αi. Passing on the neutrix limit of the integral
∫ µi

xi
δkn(f(x))φ(x) dx

we get

N−lim
n→∞

∫ µi

xi

δkn(f(x))φ(x) dx =
ck,ρΨ

(kαi−1)(0)

αi(kαi − 1)!
(2.10)

where ck,ρ =
∫ 1

0
uk−1nρk(u) du.

Now consider the integral
∫ xi

λi
δkn(f(x))φ(x) dx. Similarly making another substitution −t1/αi = fi(−x) or −

x = gi(−t1/αi) where t1/αi ≥ 0, that

αi

∫ xi

λi

δkn(f(x))φ(x) dx =

∫ βi

0

δkn(f(−x))φ(−x) dx

=

∫ βi

0

δkn((−1)αit)φ(gi(−t1/αi))|g′i(−t1/αi)|t1/αi−1 dt

=

∫ βi

0

δkn(t)Ψ(−t1/αi)t1/αi−1 dt

where βi = −f(λi) and Ψ is defined above.

Thus with n−1 < βi

N−lim
n→∞

∫ xi

λi

δkn(f(x))φ(x) dx =
(−1)kαi−1Ψ(kαi−1)(0)

αi(kαi − 1)!

∫ 1

0

uk−1ρk(u) du

=
(−1)kαi−1ck,ρΨ

(kαi−1)(0)

(kαi − 1)!
. (2.11)

It now follows from equations 2.8 - 2.11 that

N−lim
n→∞

∫ µi

λi

δkn(f(x))φ(x) dx =

{
0, kαi − 1 /∈ 2Z

2ck,ρΨ
(kαi−1)(0)

αi(kαi−1)! , kαi − 1 ∈ 2Z
(2.12)

proving the existence of the composition δk(f(x)) on the interval (λi, µi) for i = 1, 2, . . . , n. Consequently it
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follows from equations 2.8 and 2.12 that the composition δk(f(x)) exists on the interval (a, b) and equals to

⟨δk(f(x)), φ(x)⟩ =
n∑

i=1

{
2ck,ρΨ

(kαi−1)(y)

αi(kαi − 1)!

}
y=0

=

n∑
i=1

kαi−1∑
r=0

(
kαi − 1

r

)
2ck,ρ

αi(kαi − 1)!
{φ(gi(y))}(r) |g(kαi−r)

i (y)|
⌋
y=0

=

n∑
i=1

kαi−1∑
r=0

(
kαi − 1

r

)
2ck,ρ

αi(kαi − 1)!
×

×
r∑

m=1

φ(m)(gi(y))Br,m

(
g′i, g

′′
i , . . . , g

(r−m+1)
i

)
|g(kαi−r)

i (y)|
⌋
y=0

=

n∑
i=1

kαi−1∑
r=0

(
kαi − 1

r

)
2ck,ρ

αi(kαi − 1)!
|f (kαi−r)(xi)| ×

×
r∑

m=1

Br,m

( 1

|f ′(xi)|
,

1

|f ′′(xi)|
, . . . ,

1

|f (r−m+1)(xi)|

)
φ(m)(xi)

=

n∑
i=1

kαi−1∑
r=0

(
kαi − 1

r

)
2ck,ρ

αi(kαi − 1)!
|f (kαi−r)(xi)| ×

×
r∑

m=1

(−1)mBr,m

( 1

|f ′(xi)|
,

1

|f ′′(xi)|
, . . . ,

1

|f (r−m+1)(xi)|

)
⟨δ(m)(x− xi), φ(x)⟩

for i = 1, 2, . . . , n, kαi − 1 ∈ 2Z+ where Br,m(x1, x2, . . . , xr−m+1) are again the exponential Bell polynomials.
If kαi ∈ 2Z for all i = 1, 2, . . . , n then the second sum of equation 2.12 is equal to zero, so we have δk(f(x)) = 0.

This completes the proof. 2

Example 2.8 Let us consider the function f(x) = cot3 x. Using the notation of the proof of Theorem 2.3 so
that f1(x) = cotx which has simple roots at the points x = ±π

2 ,±
3π
2 ,±

5π
2 ,±

7π
2 , . . . and

g(y) = cot−1 y =
π

2
− y +

1

3
y3 − 1

5
y5 +

1

7
y7 − . . . ,

g′(y) = − 1

1 + y2
= −1 + y2 − y4 + y6 − . . .

on the interval (−∞,∞). Thus Ψ(y) = −φ(cot−1 y)(1+y2)−1 and it can be shown that Ψ′′(0) = 2φ(π2 )−φ
′′(π2 )

on the open interval (0, π). It follows from the proof of Theorem 2.3 that

⟨δ(cot3 x), φ(x)⟩ = 1

6
Ψ′′(0) =

1

3
φ(
π

2
)− 1

6
φ′′(

π

2
)

and so

δ(cot3 x) =
1

3
δ(x− π

2
)− 1

6
δ′′(x− π

2
). □
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We now extend definition 2.1 with the following definition given in [15].

Definition 2.9 Let F be distribution in D′ and let f be locally summable function. We say that the distribution
F (f(x)), the neutrix composition of F and f, exists and is equal to G(x) on the interval (a, b) if the neutrix
limit

N−lim
n→∞

[∫ ∞

−∞
Fn(f(x))φ(x) dx

]
= ⟨G(x), φ(x)⟩

for all φ in D with support contained in the interval (a, b), where again Fn(x) = (F ∗ δn)(x), and N is the
same neutrix as in definition 2.1.

For a summable function f(x) the functions f+ and f− are defined by

f+(x) =

{
f(x), x ≥ 0,
0, x < 0,

and f−(x) =

{
f(x), x ≤ 0,
0, x > 0.

In accordance with the usual practice, we define the summable functions xr+ and xr− by

xr+ =

{
xr, x ≥ 0,
0, x < 0,

and xr− =

{
|x|r, x ≤ 0,
0, x > 0.

If the term infinitely differentiable function is replaced by a summable function in proposition 2.2, then it
becomes as;

Proposition 2.10 Let f(x) be a summable function and suppose that f is continuous on [a, b] and f(x) ̸= 0

on this interval, where a < 0 < b. Then the composition δk(f+(x)) exists and

δk(f+(x)) = 0

on the interval (−∞, b) for all k ∈ Z+, in particular δk(H(x)) = 0 on the interval (−∞,∞), where H denotes
Heaviside’s function.

Proof Let φ ∈ D′ with compact support contained in the interval (−∞, b). Then

∫ ∞

−∞
δkn(f+(x))φ(x) dx =

∫ 0

−∞
δkn(0)φ(x) dx+

∫ ∞

0

δkn(f(x))φ(x) dx

= nkρk(0)

∫ 0

−∞
φ(x) dx+ nk

∫ b

0

ρk(nf(x))φ(x) dx

where nkρk(0)
∫ 0

−∞ φ(x) dx is either negligible or zero. Further, since f is continuous and nonzero on [0, b], we

can find an integer N such that |nf(x)| ≥ 1 for n > N. It follows that we have ρk(nf(x)) = 0 for n > N.

Thus
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N−lim
n→∞

∫ ∞

−∞
δkn(f+(x))φ(x) dx =

= N−lim
n→∞

nkρk(0)

∫ 0

−∞
φ(x) dx+ lim

n→∞
nk

∫ b

0

ρk(ng(x))φ(x) dx = ⟨0, φ(x)⟩

and so δk(f+(x)) = 0. □
Let f(x) be as in the proposition 2.10 and by writing g(x) = f(−x), then g(x) is continuous and nonzero

for −b ≤ x ≤ −a and so by the proposition 2.9, we have δk(g+(x)) = 0 on the interval (−∞,−a). Now replacing
x by −x we see that δk(g+(−x)) = δk(f−(x)) = 0. Thus we arrive the following result. 2

Corollary 2.11 Let f(x) be a summable function and suppose that f is continuous and nonzero on the interval
[a, b],where a < 0 < b. Then δk(f−(x)) exists and

δk(f−(x)) = 0

on the interval (a,∞) for all k ∈ Z+.

Proof It is evident. 2

Corollary 2.12 Let f(x) be a summable function and suppose that f is continuous and nonzero on the interval
[a, b],where a < 0 < b. Then the composition δk(f+(x)− f−(x)) exists and

δk(f+(x)) = δk(f+(x)− f−(x)) = 0

on the interval (a, b) for all k ∈ Z+.

Proof It is evident. 2

Theorem 2.13 let F be a summable function which is s+ 1 times continuously differentiable on the interval
[a, b], where a < 0 < b. Suppose that the equation F (x) = 0 has a single simple root at the point x0 = 0 in the
interval [a, b]. If f = F s, then the composition δk(f+(x)) exists on the interval (−∞, b)

⟨δk(f+(x)), φ(x)⟩ =
ks−1∑
r=0

(
ks− 1

r

)
ck,ρ

s(ks− 1)!|f (ks−r)(x0)|
×

×
r∑

i=1

(−1)iBr,i

( 1

|f ′(x0)|
,

1

|f ′′(x0)|
, . . . ,

1

|f (r−i+1)(x0)|

)
⟨δ(i)(x− x0), φ(x)⟩ (2.13)
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and the composition δk(f−(x)) exists on the interval (a,∞)

⟨δk(f−(x)), φ(x)⟩ =
ks−1∑
r=0

(
ks− 1

r

)
ck,ρ

s(ks− 1)!|f (ks−r)(x0)|
×

×
r∑

i=1

Br,i

( 1

|f ′(x0)|
,

1

|f ′′(x0)|
, . . . ,

1

|f (r−i+1)(x0)|

)
⟨δ(i)(x− x0), φ(x)⟩ (2.14)

for s, k = 1, 2, . . . , where Br,i(x1, x2, . . . , xr−i+1) was defined as in theorem 2.3 and ck,ρ =
∫ 1

0
uk−1ρk(u) du. In

particular

δ(xs+) =
(−1)s−1

2s!
δ(s−1)(x) and δ(xs−) =

1

2s!
δ(s−1)(x) (2.15)

on the interval (−∞,∞) for s = 1, 2, . . . .

Proof The proof is as similar as the proof of theorem 2.3. Since x = 0 is a simple root of the equation
F (x) = 0, this implies that F ′(x) ̸= 0 on the interval [o, c], where 0 < c ≤ b. The equation F (x) = y will
therefore have inverse x = g(y) on the interval [0, c] and the function g will be s + 1 times continuously
differentiable. Let φ ∈ D′ with supp(φ) ⊂ (−∞, c). Then

∫ ∞

−∞
δkn(f+(x))φ(x) dx =

∫ 0

−∞
δkn(0)φ(x) dx+

∫ ∞

0

δkn(f(x))φ(x) dx =

= nkρk(0)

∫ 0

−∞
φ(x) dx+

∫ ∞

0

δkn(f(x))φ(x) dx (2.16)

where again nkρk(0)
∫ 0

−∞ φ(x) dx is either negligible or zero. For the second integral in the right hand side of

equation 2.16, we have exactly have from equation 2.4 that the neutrix limit of
∫∞
0
δkn(f(x))φ(x) dx exists and

equal to

N−lim
n→∞

∫ ∞

0

δkn(f(x))φ(x) dx =
Ψ(ks−1)(0)

s(ks− 1)!

∫ 1

0

uk−1ρk(u) du

= ck,ρ
Ψ(ks−1)(0)

s(ks− 1)!
. (2.17)

It now follows from equations 2.16 and 2.17 that

N−lim
n→∞

∫ ∞

−∞
δkn(f(x))φ(x) dx =

ck,ρΨ
(ks−1)(0)

s(ks− 1)!

proving the existence of δk(f(x)) on the interval (−∞, b) for k, s ∈ Z+.
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The expression Ψ(ks−1)(0) has been already evaluated in theorem 2.3 as

Ψ(ks−1)(0) =
{
Ψ(ks−1)(y)

}
y=0

=

ks−1∑
r=0

(
ks− 1

r

) r∑
i=1

φ(i)(x0)Br,i

(
g′, g′′, . . . , g(r−i+1)

)
|g(ks−r)(y)|

⌋
y=0

=

ks−1∑
r=0

(
ks− 1

r

)
1

|f (ks−r)(x0)|
×

×
r∑

i=1

Br,i

( 1

|f ′(x0)|
,

1

|f ′′(x0)|
, . . . ,

1

|f (r−i+1)(x0)|

)
φ(i)(x0)

where Br,i is again the incomplete exponential Bell polynomial. Thus we have proved that the composition
δk(f+(x)) exists and equals to

⟨δk(f+(x)), φ(x)⟩ =
ks−1∑
r=0

(
ks− 1

r

)
ck,ρ

s(ks− 1)!|f (ks−r)(x0)|
×

×
r∑

i=1

(−1)iBr,i

( 1

|f ′(x0)|
,

1

|f ′′(x0)|
, . . . ,

1

|f (r−i+1)(x0)|

)
⟨δ(i)(x− x0), φ(x)⟩. (2.18)

The equation 2.14 follows from the fact that δk(f−(x)) = δk(f+(−x)). If F (x) = x and f(x) = F s(x) = xs,

then for any φ ∈ D, the function Ψ is identical to φ so that equation 2.15 now follows from the fact that
cρ,1 = 1

2 . □ 2

Equation 2.15 is in agreement with result given in the results given in [15].

Theorem 2.14 Let F be a summable function which is s+ 1 times continuously differentiable on the interval
[a, b], where a < 0 < b. Suppose that the equation F (x) = 0 has a single simple root at the point x0 = 0 in the
interval [a, b]. Then if f = F s, the compositions δk(f(x)) and δk(f+(x) − f−(x)) exist on the interval (a, b)

for k = 1, 2, . . . . In particular
δk(sgn(x)|x|s) = 0 (2.19)

on the interval (−∞,∞) for k = 0, 2, 4, 6 . . . , and and s = 2, 4, . . .

δk(|x|s) = 0 (2.20)

on the interval (−∞,∞) for k, s = 1, 3, . . .

δ(sgn(x)|x|s) = (−1)s

s!
δ(s−1)(x) (2.21)

on the interval (−∞,∞) for for k = 1, 3, . . . , and s = 2, 4, . . .

δ(|x|s) = (−1)s

s!
δ(s−1)(x) (2.22)

on the interval (−∞,∞) for k = 0, 2, . . . , and s = 1, 3, . . . .
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Proof We have∫ ∞

−∞
δkn(f(x))φ(x) dx =

∫ 0

−∞
δkn(f(x))φ(x) dx+

∫ ∞

0

δkn(f(x))φ(x) dx =

=

∫ ∞

−∞
δkn(f−(x))φ(x) dx+

∫ ∞

−∞
δkn(f+(x))φ(x) dx−

∫ ∞

−∞
δkn(0)φ(x) dx

the last term again being either negligible or zero. Thus

N−lim
n→∞

∫ ∞

−∞
δkn(f(x))φ(x) dx = ⟨δk(f+(x) + δk(f−(x)), φ(x)⟩

⟨δk(f(x)), φ(x)⟩ = ⟨δk(f+(x) + δk(f−(x)), φ(x)⟩.

Similarly

δk(f+(x)− f−(x)) = δk(f+(x)) + δk(−f−(x))

= δk(f+(x)) + (−1)kδk(f−(x)).

Equations 2.19 - 2.22 follow from these results and on using theorems 2.7 and 2.13. □

Letting F (x) = sinx and f(x) = sin2 x Then, by setting Φ(y) = φ(sin−1(y)(1 − y2)−1/2, it was shown
in Example 3.8 of [32] that

⟨δ(sin2 x), φ(x)⟩ = 0

⟨δ(sin2+ x), φ(x)⟩ = −1

4
δ′(x),

⟨δ(sin2− x), φ(x)⟩ =
1

4
δ′(x),

⟨δ′(sin2+ x), φ(x)⟩ =
1

6
δ′(x) +

1

24
δ′′′(x),

⟨δ′(sin2− x), φ(x)⟩ = −1

6
δ′(x)− 1

24
δ′′′(x),

⟨δ(sgnx. sin2 x), φ(x)⟩ = −1

2
δ′(x),

⟨δ′(sgnx. sin2 x), φ(x)⟩ =
1

3
δ′(x) +

1

24
δ′′′(x)

on the interval (−∞,∞). □ 2

3. The composition δk(f(x)) for negative integers

The meaning given to expression δ−k(x) for real variable x by equation

δ−k(x) = 0

for k = 1, 2, . . . , see [35].
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In fact, the symbol δ−1 recently appeared in the cosmological models based on the mixture of the anti-
Chaplying gas and the paradox of soft singularity crossing, see [24, 25] in which the distributional identities

[
f(τ) + Cδ(τ)

]−1
= f−1(τ),

d

dτ

[
f(τ) + Cδ(τ)

]−1
=

d

dτ
f−1(τ)

were used. There are several attempts to give meaning to the powers of Dirac delta function, one by using
fixed δ -sequnces [26] and fractional and Caputo fractional derivatives [29, 30] respectively and another one
by normalization [1]. In [37] Raju evaluated the square of x−n by his definition of the pointwise product of
distributions. The author defined the powers of Dirac- delta function for negative integers by δ−k = 0 in [35].
Further he proved in [33] that if f is an infinitely differentiable function having n distinct simple roots in the
open interval (a, b), then the composition δ−k(f(x)) exists on the interval (a, b) and defined by δ−k(f(x)) = 0

for k ∈ Z+.

In this section by using the alternative definition of composition of distributions [21] also given by Fisher,
we give a meaning to the powers of some compositions of singular distributions for negative integers.

Definition 3.1 Let F and f be distributions in D′. We say that the distribution F (f(x)) exists and is equal
to G(x) on the interval (a, b) if the double neutrix limit

N−lim
n→∞

[
N−lim
m→∞

∫ ∞

−∞
Fn(fm(x))φ(x) dx

]
= ⟨G(x), φ(x)⟩

for all φ in D with support contained in the interval (a, b), where

Fn(x) = (F ∗ δn)(x), fm(x) = (f ∗ δm)(x)

for m,n = 1, 2, . . . , and N is the neutrix defined in the begining of the section 2.

It is an open question as to whether definition 3.1 is a generalization of definition 2.1 for locally summable
functions.

Theorem 3.2 Let f1(x) be an infinitely differentiable function and suppose that the equation f1(x) = 0 has a
single simple root at x0 in the open interval (a, b). If f(x) = fs1 (x) (s ∈ Z+) then distribution δ−k(f(x)) exists
and

δ−k(f(x)) = 0

for k, s = 1, 2, . . . .

Proof As in Theorem 2.3 we prove the theorem for x0 = 0, then the case x0 ̸= 0 follows by translation. Since
x0 is simple root, we may assume that f ′1(x) ̸= 0 on the interval (a, b) containing the origin. So the equation
f1(x) = t then has an inverse x = g1(t).
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Writing x−k = (−1)k−1

(k−1)! (lnx)
(k), we have

(x−k)n = x−k ∗ δn(x) =
(−1)k−1

(k − 1)!

∫ 1/n

−1/n

ln |t− x|δ(k)n (t) dt.

Let φ ∈ D with supp(φ) ⊂ (a, b)〈 [
(δm(f(x))−k

]
n
, φ(x)

〉
=

=
(−1)k−1

(k − 1)!

∫
|x|≥g1(1/m1/s)

φ(x)

∫ 1/n

−1/n

ln |t− δm(f(x))|δ(k)n (t) dt dx+

+
(−1)k−1

(k − 1)!

∫
|x|<g1(1/m1/s)

φ(x)

∫ 1/n

−1/n

ln |t− δm(f(x))|δ(k)n (t) dt dx. (3.1)

The function δm(f(x)) is equal to zero on the set {x : |x| ≥ g1(1/m
1/s)}. Thus

lim
m→∞

∫
|x|≥f1(1/m1/s)

φ(x)

∫ 1/n

−1/n

ln |t− δm(f(x))|δ(k)n (t) dt dx =

=

∫ ∞

−∞
φ(x) dx

∫ 1/n

−1/n

ln |t|δ(k)n (t) dt

where g1(1/m1/s) tends to zero as m→ ∞ and making the substitution nt = u, we have

N−lim
n→∞

[
lim

m→∞

∫
|x|≥g1(1/m1/s)

φ(x)

∫ 1/n

−1/n

ln |t− δm(f(x))|δ(k)n (t) dt dx

]
=

=

∫ ∞

−∞
φ(x) dx

[
N−lim
n→∞

nk
∫ 1

−1

[ln |u| − lnn]ρ(k)(u) du

]
= 0. (3.2)

Next ∫ 1/n

−1/n

| ln |t− δm(f(x))|δ(k)n (t)| dt ≤ nk+1 sup
t
{|ρ(k)(t)|}

∫ 1/n

−1/n

| ln |t− δm(f(x))|| dt

≤ nk+1 sup
t
{|ρ(k)(t)|}{|(1/n− δm(f(x))) ln |1/n− δm(f(x))|+

−(1/n+ δm(f(x))) ln |1/n+ δm(f(x))|+ 2/n|}

≤ nk sup
t
{|ρ(k)(t)|}(3 lnn+ 5) (3.3)

for g1
(

1
m1/s (ρ

−1)1/s( 1
mn )

)
≤ |x| < g1(

1
m1/s ).

If |x| < g1

(
1

m1/s (ρ
−1)1/s( 1

mn )
)

we have 1/n < δm(f(x)) ≤ mρ(0) and

ln(1 + ρ(0)m) = sup
t

 sup

|x|<g1

(
1

m1/s
(ρ−1)1/s( 1

mn )

)∣∣∣ln |t− δm(f(x))|
∣∣∣
 .
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Thus ∣∣∣∣∣
∫
|x|<g1(

1

m1/s
)

φ(x)

∫ 1/n

−1/n

ln |t− δm(f(x))|δ(k)n (t) dt dx

∣∣∣∣∣ =
=

∣∣∣∣∣∣
∫
|x|<g1

(
1

m1/s
(ρ−1)1/s( 1

mn )

) φ(x) ∫ 1/n

−1/n

ln |t− δm(f(x))|δ(k)n (t) dt dx +

+

∫
g1

(
1

m1/s
(ρ−1)1/s( 1

mn )

)
≤|x|<g1(

1

m1/s
)

φ(x)

∫ 1/n

−1/n

ln |t− δm(f(x))|δ(k)n (t) dt dx

∣∣∣∣∣∣
≤ 4nk sup

t
{|ρ(k)(t)|} sup |φ(x)|

{
g1

( 1

m1/s
(ρ−1)1/s(

1

mn
)
)
ln(1 + ρ(0)m) +

+
[
g1(

1

m1/s
)− g1

( 1

m1/s
(ρ−1)1/s(

1

mn
)
)]

(3 lnn+ 5)

}
→ 0 (3.4)

as m→ ∞.

It now obtain from equations 3.1 - 3.4 that

N−lim
n→∞

[
N−lim
m→∞

〈 [
(δm(f(x)))−k

]
n
, φ(x)

〉]
= 0

for all φ ∈ D. □ 2

Before giving the generalization of theorem 3.2 we will give the following proposition [33].

Proposition 3.3 Let f(x) be an infinitely differentiable function on the real line and suppose that f does not
have any root. Then the distribution δ−k(f(x)) exists and

δ−k(f(x)) = 0

for k = 1, 2, . . . .

Theorem 3.4 Let f(x) be an infinitely differentiable function having distinct multiple roots at x1, x2, . . . , xn
with multiplicities r1, r2, r3, . . . , rn; n, ri ∈ Z+ respectively on the open interval (a, b). Then the distribution
δ−k(f(x)) exists on the interval (a, b) and

δ−k(f(x)) = 0 (3.5)

for k = 1, 2, . . . .

Proof We use the same argument of the proof of theorem 2.7 to show the validity of equation 3.5. Let (µi, τi)

be disjoint open subintervals of (a, b) for i = 1, 2, . . . , n containing xi such that A = ∪n
i=1(µi, τi).
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Now let φ(x) ∈ D with support contained in the interval (a, b), then we have∫ ∞

−∞

[
(δm(f(x))−k

]
n
φ(x) dx =

∫ τ1

µ1

[
(δm(f(x))−k

]
n
φ(x) dx+

+

∫ τ2

µ2

[
(δm(f(x))−k

]
n
φ(x) dx+ . . .+

∫ τn

µn

[
(δm(f(x))−k

]
n
φ(x) dx+

+

∫
R\A

[
(δm(f(x))−k

]
n
φ(x) dx (3.6)

where [
(δm(f(x))−k

]
n
=

(−1)k−1

(k − 1)!

∫ 1/n

−1/n

ln |t− δm(f(x))|δ(k)n (t) dt.

By taking the double neutrix limit of the both sides of equation 3.6 as m → ∞ and n → ∞ respectively, we
arrive equation 3.5 by using proposition 3.3 and theorem 2.13. □ 2

Example 3.5 Let us consider the function f(x) = (sinh−1 x)3. Using the notation of the proof of theorem 2.3,
the equation f1(x) = sinhx has simple root at the point x = 0 and will have an inverse

g1(y) = sinh y = y +
1

3!
y3 +

1

5!
y5 +

1

7!
y7 + . . . =

∞∑
n=0

1

(2n+ 1)!
y2n+1

g′1(y) = cosh y = 1 +
1

2!
y2 +

1

4!
y4 +

1

6!
y6 + . . . =

∞∑
n=0

1

(2n)!
y2n

on the open interval (−∞,∞). Thus Φ(y) = φ(sinh y) cosh y and it can be shown that Φ′′(0) = φ(0) + φ′′(0).

It follows from the proof of theorem 3.4 that

⟨δ(sinh−1 x)3, φ(x)⟩ = 1

6
Φ′′(0) =

1

6
φ(0) +

1

6
φ′′(0)

and so

δ(sinh−1 x)3 =
1

6
δ(x) +

1

6
δ′′(x)

on the interval (−∞,∞). Additionally it follows from theorem 3.4 that

δ−k(sinh−1 x)3 = 0

for k ∈ Z+. □

Conclusion. In the classical theory of distributions, the composition δ(f(x)) is defined for infinitely differ-
entiable function having simple roots at x1, x2, . . . , xn by Gelfand and Shilov and its k -th power is defined in
[33, 34] and the case of f having distinct multiple roots is considered in this study by means of the notion of
neutrix introduced by van der Corput and some compositions as an example are evaluated for particular f .
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Finally the meaning to the symbol δ−k(f(x)) is given by taking double neutrix limit of the regular sequence[
(δm(f(x))−k

]
n

for infinitely differentiable function having multiple distinct roots.

Declarations

Conflict of interest
The author declares that there is no conflict of interest.

References

[1] Accardi L, Boukas A. Powers of the delta function. Quantum Probability and Infinite Dimensional Analysis
Proceedings, 2007; 33-44.

[2] Antosik P. Composition of Distributions. Technical Report no.9 University of Wisconsin, Milwaukee 1988-89 : 3
pp.1-30.

[3] Antosik P. On Composition of distributions. Proceedings of Steklov Institute of Mathematics 1995; 3: 175-180.

[4] Borys A, Kaminski A, Sorek S. Volterra systems and powers of Dirac delta impulses. Integral Transforms and
Special Functions 2009; 20 (3-4): 301–308.

[5] Comtet L. Advanced Combinatorics. D. Reidel Publishing Co. Dordrecht 1974.

[6] van der Corput JG. Introduction to the neutrix calculus. Journal D Analyse Mathematique 1959; 7: 291-398.
https://doi.org/10.1007/BF02787689

[7] Craik ADD. Prehistory of Faa di Bruno’s Formula. American Mathematical Monthly 2005; 112 (2): 119-130.
https://doi.org/10.2307/30037410

[8] Estrada R, Vindas J. A generalization of the Banach-Steinhaus theorem for finite part limits. Bulletin of the
Malaysian Mathematical Sciences Society. 2017; 40 (2): 907-918. https://doi.org/10.1007/s40840-017-0450-7

[9] Estrada R, Kanwal RP. Regularization, Pseudofunction and Hadamard Finite Part. Journal of Mathematical
Analysis Applications. 1989; 141: 195-207.

[10] Felder G, Kazhdan D. Regularization of divergent integrals. Selecta Mathematica New Series. 2018; 24: 157-186.
https://doi.org/10.1007/s00029-017-0323-9

[11] Galapon EA. Regularized limit, analytic continuation and finite-part integration. Analysis and Applications. 2023;
21 (4): 841-900. https://doi.org/10.1142/S021953052350001X

[12] Fisher B. Distributions and the change of variable. Bulletin Mathématique de la Société des Sciences Mathématiques
de la République Socialiste de Roumaine. Nouvelle Série. 1975; 67 (1-2): 11-20.

[13] Fisher B. Neutrices and the product of distributions. Studia Mathematica. 1976; 57(3): 263-274.
https://dio.org/10.4064/sm-57-3-263-274

[14] Fisher B. On defining the distribution δ(r)(f(x)), . Rostocker Mathematisches Kolloquium 1983; 23: 73-80.

[15] Fisher B. On defining the distribution δ(r)(f(x)) for summable f . Publicationes Mathematicae Debrecen. 1985;
32: 117-123.

[16] Fisher B. On the neutrix product of distributions. Mathematische Nachrichten. 1982; 108: 117-127.

[17] Fisher B, Taş K. On the composition of the distributions xλ
+ and xµ

+ . Journal of Mathematical Analysis and
Applications. 2006; 318 (1): 102–111. https://doi.org/10.1016/j.jmaa.2005.05.022

1021



ÖZÇAĞ/Turk J Math

[18] Fisher B, Taş K. The convolution of functions and distributions. Journal of Mathematical Analysis and Applications.
2005; 306(1): 364–374. https://doi.org/10.1016/j.jmaa.2005.01.004

[19] Gel’fand IM, Shilov GE. Generalized Functions. Volume I, Academic Press 1964.

[20] Hadamard J. Lectures on Cauchy’s problem in linear hyperbolic differential equations. Dover, New York 1953.

[21] Huaizhong K, Fisher B. On Composition of Distributions. Publicationes Mathematicae Debrecen. 1992; 40(3-4):
279-290.

[22] Jones DS. Hadamard’s Finite Part. Mathematical Methods in the Applied Sciences. 1996; 19(13): 1017-1052.
https://doi.org/10.1002/(SICI)1099-1476(19960910)19:13<1017::AID-MMA723>3.0.CO;2-2

[23] Jolevska-Tuneska B, Takaci A, Fisher B. On some neutrix convolution products of distributions. Integral Transforms
and Special Functions. 2003; 14(3): 243–250. https://doi.org/10.1080/1065246031000081634

[24] Kamenshchik AY. Quantum cosmology and late time singularities. Classical and Quantum Gravity. 2013; 30: 173001,
44pp. https://doi.org/10.1088/0264-9381/30/17/173001

[25] Keresztes Z, Gergely AL, Kamenshchik AY. Paradox of soft singularity crossing and its resolution by distributional
cosmological quantities. Physics Review D 2012; 86: 063522 12pp.

[26] Koh EL, Chenkuan L. On the distributions δk and (δ′)k, . Mathematische Nachrichten. 1992; 157: 243-248.
https://doi.org/10.1002/mana.19921570120

[27] Laforgia A. A theory of divergent integrals. Applied Mathematics Letters. 2009; 22(6):834-840.
https://doi.org/10.1016/j.aml.2008.06.045

[28] Li Chenkuan. Uniqueness of the Hadamard-type integral equations. Advances in Difference Equations. 2021; Paper
No 40. https://doi.org/10.1186/s13662-020-03205-8

[29] Li Chenkuan. The Powers of Dirac delta Function by Caputo Fractional Derivatives. Journal of Fractional Calculus
and Applications. 2016; 7(1): 12-23.

[30] Li Chenkuan, Li Changpin. On defining the distributions δk and (δ′)k by fractional derivatives. Applied Mathe-
matics and Computation. 2014; 246: 502-513. https://doi.org/10.1016/j.amc.2014.08.068

[31] Monegato G. Definitions, properties and applications of finite-part integrals. Journal of Computational and Applied
Mathematics. 2009; 229(2): 425-430. https://doi.org/10.1016/j.cam.2008.04.006

[32] Özçağ, E. An extension of the definition on the compositions of the singular distributions Turkish Journal of
Mathematics 2024; 48 (2): Article 12. https://doi.org/10.55730/1300-0098.3506

[33] Özçağ E. Interpretations of some distributional compositions related to Dirac delta function via Fisher’s method.
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matematicas. RACSAM 114 2020;
(4): Paper No. 170, 15 pp. https://doi.org/10.1007/s13398-020-00904-5

[34] Özçağ E. On powers of the compositions involving Dirac-delta and infinitely differentiable functions. Results in
Mathematics 2018; 73 (1); Article number: UNSP 6: 18pp. https://doi.org/10.1007/s00025-018-0766-0

[35] Özçağ E. On defining the k-th powers of the Dirac-delta distribution for negative integers. Applied Mathematics
Letters. 2001; 14: 419-423. https://doi.org/10.1016/S0893-9659(00)00171-3

[36] Özçağ E, Lazarova L, Jolevska-Tuneska B. Defining Compositions of xµ
+, |x|µ, x−s and x−s ln |x| as Neutrix Limit of

Regular Sequences. Communications in Mathematics and Statistics. 2016; 4: 63-80. https://doi.org/10.1007/s40304-
015-0076-8

[37] Raju CK. On the square of x−n . Journal of Physics. A. Mathematical and General 1983; 16: 3739-3753. with the
Dirac-delta

[38] Temple G. The Theory of generalized Functions. Proceedings of the Royal Society. London. Series A. Mathematical,
Physical and Engineering Sciences. 1955; 28: 175-190.

1022



ÖZÇAĞ/Turk J Math

[39] Sellier A. Hadamard’s finite part concept in dimension n >= 2; definition and change of variables, associated
Fubini’s theorem, derivation. Mathematical Proceedings of the Cambridge Philosophical Society. 1997; 122: 131-
148. https://doi.org/10.1017/S030500419600148X

[40] Villanueva LL, Galapon EA. Finite-part integration in the presence of competing singularities: Transformation
equations for the hypergeometric functions arising from finite-part integration. Journal of Mathematical Physics.
2021; 62 (4): Article Number: 043505. https://doi.org/10.1063/5.0038274

[41] Zozulya VV. Regularization of divergent integrals: A comparison of the classical and generalized-functions ap-
proaches. Advances in Computational Mathematics. 2015; 41: 727- 780. https://doi.org/10.1007/s10444-014-9399-3

1023


	The compositions derived from by changing variable in singular distributions
	Introduction
	The expression k(f(x)) for a function having multiple roots
	 The composition k(f(x)) for negative integers 

