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Abstract: Let S be a suitable subsemigroup of a locally compact abelian group and let T = {T (s)}s∈S be a bounded
and strongly continuous representation of S on a Banach space X. In this note, we study the spectral conditions on T

and the ergodic conditions on x ∈ X which will imply that T (s)x → 0 strongly through S.
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1. Introduction and preliminaries

We will adopt the terminology of [3] and [4]. Let G be a locally compact abelian group equipped with the
Haar measure dg and let S be a measurable subsemigroup of G such that S − S = G. We will assume that
S contains the zero element of G and intS is dense in S. We will regard S as being ordered by ” ≽ ”, where
s ≽ t if and only if s − t ∈ S. All limits over s ∈ S will be with respect to this ordering. So, we will denote
by lims , the limit as s → ∞ through S. The dual S∗ of S , is the set of all nonzero, bounded and continuous
homomorphisms of S into the multiplicative semigroup C. By the unitary characters S∗

u of S we mean

S∗
u = {χ ∈ S∗ : |χ (s)| = 1, ∀s ∈ S} .

Let Ĝ be the dual group of G. Notice that each χ ∈ S∗
u can be extended uniquely to a character χ of

G in the following way: If g ∈ G, then as g = s− t (s, t ∈ S) , we define

χ (g) := χ (s)χ (t).

So, we may identify S∗
u with the dual group of G . We will take S to be equipped with the restriction of the

Haar measure. By |E| we will denote the Haar measure of measurable subset E of S.

The space L1 (S) will be identified with a subspace of L1 (G) . The space L1 (S) is a commutative Banach
algebra when convolution is taken as multiplication, where

(f1 ∗ f2) (s) =
∫

u+v=s

f1 (u) f2 (v) dv
(
f1, f2 ∈ L1 (S)

)
.
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The Gelfand space of L1 (S) can be identified with S∗. The Gelfand transform of f ∈ L1 (S) is just f̂ , the
Fourier transform of f ;

f̂ (χ) =

∫
S

χ (s) f (s) ds (χ ∈ S∗) .

The density of intS in S implies that the functions f̂
(
f ∈ L1 (S)

)
separate the points of S∗ from each other

and from zero .
Let us consider some examples.
a) Let R+ be the set of all nonnegative real numbers. If G = Rn and S = Rn

+ , then we can identify S∗

with Cn
−, where C− := {z ∈ C : Im z ≤ 0} . The identification is given by z → χz, where

χz (t) = exp (−it · z) , t · z = t1z1 + ...+ tnzn,

t = (t1, ..., tn) , and z = (z1, ..., zn) . For f ∈ L1
(
Rn

+

)
and z ∈ Cn

−, we have

f̂ (z) =

∫
Rn

+

f (t) exp (−it · z) dt

In this case, S∗
u = Rn.

b) Let Z+ be the set of all nonnegative integers and D = {z ∈ C : |z| ≤ 1} . If G = Zn and S = Zn
+,

then we identify S∗ with Dn by the relationship

χ (k1, ..., kn) = zk1
1 · ... · zkn

n .

For f ∈ L1
(
Zn
+

)
, we have

f̂ (z) =
∑
k∈Zn

+

f (k) zk1
1 · ... · zkn

n , k = (k1, ..., kn) .

In this case, S∗
u = Tn, where T = {z ∈ C : |z| = 1} .

Let X be a complex Banach space and let B (X) be the algebra of all bounded linear operators on X.

A family of operators T : = {T (s)}s∈S in B (X) is said to be a representation of S on X if the following
conditions are satisfied:

(i) T (0) = I, the identity operator on X;

(ii) T (s+ t) = T (s)T (t) for all s, t ∈ S;

(iii) s → T (s)x is a continuous function on S for every x ∈ X.

A representation T = {T (s)}s∈S is said to be bounded if sups∈S ‖T (s)‖ < ∞. By changing to an
equivalent norm given by

‖x‖1 = sup
s∈S

‖T (s)x‖ (x ∈ X) ,

a bounded representation T can be made contractive, i.e. ‖T (s)‖ ≤ 1 for all s ∈ S. If T = {T (s)}s∈S is
a contractive representation of S on X, then for every x ∈ X , the limit lims ‖T (s)x‖ exists and is equal to
infs∈S ‖T (s)x‖ .
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Note that the adjoint semigroup T∗ :=
{
T (s)

∗}
s∈S

may not be a representation of S , as strong continuity
may fail. But T∗ is a σ (X∗, X) -continuous representation of S on X∗. A character χ ∈ S∗ is said to be an
eigenvalue of T∗ if there exists a nonzero functional φ ∈ X∗ such that T ∗ (s)φ = χ (s)φ for all s ∈ S.

Let T = {T (s)}s∈S be a bounded representation of S on a Banach space X. Then, for an arbitrary

f ∈ L1 (S) , we can define f̂ (T) ∈ B (X) by

f̂ (T)x =

∫
S

f (s)T (s)xds (x ∈ X) .

The map f 7→ f̂ (T) is a continuous homomorphism from L1 (S) into B (X) . The spectrum sp(T) of T is
defined by

sp (T) =
{
χ ∈ S∗ :

∣∣∣f̂ (χ)
∣∣∣ ≤ ∥∥∥f̂ (T)

∥∥∥ , ∀f ∈ L1 (S)
}
.

By spu (T) we will denote the unitary spectrum of T;

spu (T) := sp (T) ∩ S∗
u.

Recall that a Hausdorff topological space is said to be scattered if it does not contain a nonempty perfect
subset. If S is second countable, then G and Ĝ are also second countable. In this case, scattered subsets of Ĝ

are countable sets only.
Assume that unitary spectrum of the bounded representation T = {T (s)}s∈S is a scattered set. The

celebrated Arendt-Batty-Lyubich-Phóng (ABLP) Theorem [1, 4, 8, 11] asserts that if the adjoint semigroup T∗

has no unitary eigenvalues, then T is stable, that is,

lim
s

‖T (s)x‖ = 0 for all x ∈ X.

For related results see also, [9, 10].
In this note, for the individual stability of T at x ∈ X, some suitable ergodic and spectral conditions

are found on T and on x.

2. The main result
Recall that a net {Ki}i∈I of compact subsets of the abelian semigroup S is called a Følner net for S if |Ki| > 0

(∀i ∈ I) and

lim
i

|(s+Ki)∆Ki|
|Ki|

= 0 uniformly for s in a compact subsets of S.

As is known [12, pp.131,145], there exists a Følner net for S . Moreover if S is σ -compact, then the net may
be chosen to be a sequence. Notice that if {Ki}i∈I is a Følner net for S and χ ∈ S∗

u, then

lim
i

1

|Ki|

∫
Ki

χ (s) ds =

{
1, χ = 1;
0, χ 6= 1.

The following result is an individual version of the ABLP Theorem.
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Theorem 2.1 Let T = {T (s)}s∈S be a bounded representation of the abelian semigroup S on a Banach space
X and let x ∈ X. Assume that:

(i) The unitary spectrum of T is a scattered set.
(ii) For a Følner net {Ki}i∈I for S,

lim
i

1

|Ki|

∫
Ki

|〈φ, T (s)x〉|α ds = 0 for some α > 0 and for each φ ∈ X∗.

Then, lims ‖T (s)x‖ = 0.

It follows from the condition (ii) of Theorem 2.1 that the adjoint semigroup T∗ has no unitary eigenvalues.
For the proof of Theorem 2.1, we need some preliminary results.

Lemma 2.2 Let T = {T (s)}s∈S be a bounded representation of the abelian semigroup S on a Banach space
X and let x ∈ X. Assume that for a Følner net {Ki}i∈I for S,

lim
i

1

|Ki|

∫
Ki

|〈φ, T (s)x〉|α ds = 0 for some α > 0 and for each φ ∈ X∗.

Then,

lim
i

1

|Ki|

∫
Ki

|〈φ, T (s)x〉|β ds = 0 for every β > 0 and for each φ ∈ X∗.

Proof Let K be a compact subset of S and let f be a continuous function on K. If 0 < β ≤ α, then from
the Hölder inequality ∫

K

|f (s)|β ds ≤
(∫

K

|f (s)|α ds

) β
α

|K|1−
β
α ,

we can write

1

|Ki|

∫
Ki

|〈φ, T (s)x〉|β ds ≤

 1

|Ki|

∫
Ki

|〈φ, T (s)x〉|α ds


β
α

.

If β > α, then as β = α+ γ (γ > 0) , we get

1

|Ki|

∫
Ki

|〈φ, T (s)x〉|β ds ≤ (C ‖x‖ ‖φ‖)γ 1

|Ki|

∫
Ki

|〈φ, T (s)x〉|α ds,

where C = sups∈S ‖T (s)‖ . 2

Let G be a locally compact abelian group and let M (G) be the convolution measure algebra of G. Recall
that the convolution product µ ∗ ν of two measures µ , ν ∈ M (G) is defined by

(µ ∗ ν) (B) =

∫
G

µ (B − g) dν (g) for every Borel subset B of G.
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The Fourier-Stieltjes transform of µ ∈ M (G) is defined by

µ̂ (χ) =

∫
G

χ (g)dµ (g)
(
χ ∈ Ĝ

)
.

It is well known that if µ̂ (χ) = 0 for all χ ∈ Ĝ, then µ = 0. Also, note that if {Ki}i∈I is a Følner net for S,

then for an arbitrary µ ∈ M
(
Ĝ
)
,

lim
i

1

|Ki|

∫
Ki

µ̂ (s) ds = µ {0} . (2.1)

For a closed subset K of Ĝ ,

IK :=
{
f ∈ L1 (G) : f̂ (χ) = 0, ∀χ ∈ K

}
is the largest closed ideal of L1 (G) whose hull is K and JK := Jo

K is the smallest closed ideal of L1 (G) whose
hull is K [6, Section 8.3], where

Jo
K =

{
f ∈ L1 (G) : suppf̂ ∩K = ∅

}
.

Let T = {T (g)}g∈G be a representation of G by isometries on a Banach space X. The Arveson spectrum
sp(T) of T [2] is defined as the hull of the closed ideal

IT :=
{
f ∈ L1 (G) : f̂ (T) = 0

}
,

where

f̂ (T)x =

∫
G

f (g)T (g)xdg (x ∈ X) .

In other words,

sp (T) =
{
χ ∈ Ĝ : f̂ (χ) = 0, ∀f ∈ IT

}
.

Clearly,
Jsp(T) ⊆ IT ⊆ Isp(T). (2.2)

Note that the definition of sp(T) in the preceeding paragraph coincides with the definition of the Arveson
spectrum [4].

Lemma 2.3 Let G be a locally compact abelian group and let U = {U (g)}g∈G be a unitary representation of
G on a Hilbert space H . Assume that the Arveson spectrum of U is a scattered set. If x ∈ H satisfies the
condition

lim
i

1

|Ki|

∫
Ki

|〈U (s)x, x〉|2 ds = 0,

for a Følner net {Ki}i∈I for S, then x = 0.
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Proof By Stone’s theorem, there exists a spectral measure E on Ĝ such that

U (g) =

∫
Ĝ

χ (g)dE (χ) (∀g ∈ G) .

Let y ∈ H and let µy be the scalar measure defined on the Borel subsets of Ĝ , by

µy (B) = 〈E (B) y, y〉 = ‖E (B) y‖2 .

For an arbitrary f ∈ L1 (G) , from the identity

f̂ (U) y =

∫
Ĝ

f̂ (χ) dµy (χ) ,

we can write ∥∥∥f̂ (U) y
∥∥∥2 =

∫
Ĝ

∣∣∣f̂ (χ)
∣∣∣2 dµy (χ) .

Since
suppE =

⋃
y∈H

suppµy,

it follows from the previous identity that f̂ (U) = 0 if and only if f̂ vanishes on suppE. Hence we have

IU = IsuppE

and so,
sp (U) = hull (IsuppE) = suppE.

Further, since
suppµx ⊆ suppE = sp (U) ,

suppµx is a scattered set. On the other hand,

µ̂x (g) =

∫
Ĝ

χ (g)dµx (χ)

=

∫
Ĝ

χ (g)d〈E (χ)x, x〉 = 〈U (g)x, x〉.

Now, let νx be the measure defined on the Borel subsets of Ĝ , by νx (B) = µx (−B) . Since

ν̂x (g) = 〈U (g)x, x〉,

we have
ν̂x ∗ µx (g) = |〈U (g)x, x〉|2 (∀g ∈ G) .
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Taking into account the identity (2.1), we can write

0 = lim
i

1

|Ki|

∫
Ki

|〈U (s)x, x〉|2 ds

= lim
i

1

|Ki|

∫
Ki

ν̂x ∗ µx (s) ds

= (νx ∗ µx) {0} =

∫
Ĝ

νx {−χ} dµx (χ)

=
∑
χ∈Ĝ

(µx {χ})2 .

It follows that µx is a continuous measure. But, in view of [5, p.52, Theorem 10], there is no nonzero continuous
measure supported by scattered set. Thus we have µx = 0 . This clearly implies that x = 0. 2

In the following result we use the method of [4, 8, 11] to construct an isometric representation V =

{V (s)}s∈S of the abelian semigroup S on a different Banach space.

Lemma 2.4 Let T = {T (s)}s∈S be a representation of the abelian semigroup S by contractions on a Banach
space X . Then there exists a Banach space Y, a bounded linear map J : X → Y with dense range, and a
representation V = {V (s)}s∈S of S by isometries on Y with the following properties:

(a) ‖Jx‖ = lims ‖T (s)x‖ for every x ∈ X.

(b) V (s) J = JT (s) for every s ∈ S.

(c) sp(V) ⊆sp(T) .

The triple (Y, J,V) will be called isometric representation associated with T.

Let φ be a bounded and uniformly continuous function on a locally compact abelian group G. The
w∗ -spectrum σ∗ (φ) of φ is defined as the hull of the closed ideal

Iφ :=
{
f ∈ L1 (G) : φ ∗ f = 0

}
,

that is,

σ∗ (φ) =
{
χ ∈ Ĝ : f̂ (χ) = 0, ∀f ∈ Iφ

}
.

The well-known theorem of Loomis [7] states that if the w∗ -spectrum of φ is a scattered set, then φ is an
almost periodic function.

Next, we have the following.

Lemma 2.5 Let G be a locally compact abelian group and let V = {V (g)}g∈G be a representation of G by
isometries on a Banach space X . Assume that the Arveson spectrum of V is a scattered set. Then, for an
arbitrary φ ∈ X∗, there exists a Hilbert space Hφ, a bounded linear operator Jφ : X → Hφ with dense range,
and a unitary representation Uφ = {Uφ (g)}g∈G of G on Hφ , with the following properties:

(a) Uφ (g) Jφ = JφV (g) , ∀g ∈ G.
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(b) sp(Uφ) ⊆sp(V) .

(c)
⋂

φ∈X∗
ker Jφ = {0} .

Proof Let φ ∈ X∗ be given. For x ∈ X, define the function xφ on G, by

xφ (g) := 〈φ, V (−g)x〉.

Then, xφ is a bounded and uniformly continuous function on G. We claim that

σ∗ (xφ) ⊆ sp (V) .

Suppose that there exists ξ0 ∈ σ∗ (xφ) , but ξ0 /∈sp(V) . Then there exists f ∈ L1 (G) such that f̂ (ξ0) 6= 0

and f̂ vanishes on a neighborhood of sp(V) . In other words, f belongs to the smallest closed ideal of L1 (G)

whose hull is sp(V) . It follows from (2.2) that f̂ (V) = 0. Consequently, we can write

(xφ ∗ f) (g) =

∫
G

f (s) 〈φ, V (s− g)x〉ds

= 〈φ, V (−g)

∫
G

f (s) 〈V (s)x〉ds

= 〈φ, V (−g) f̂ (V)x〉 = 0 (∀g ∈ G) .

Since ξ0 ∈ σ∗ (xφ) , we have f̂ (ξ0) = 0. This contradiction proves the claim. Hence, σ∗ (xφ) is a scattered set.
By the Loomis Theorem, xφ is an almost periodic function.

Let H0
φ denote the linear set {xφ : x ∈ X} with the inner product defined by

〈xφ, yφ〉 = Φg

[
xφ (g) yφ (g)

]
(y ∈ X) ,

where Φ is the invariant mean on the space of almost periodic functions on G. Let Hφ be the completion of
H0

φ with respect to the induced norm. Then, Hφ is a Hilbert space. Notice also that

‖xφ‖ ≤ ‖xφ‖∞ ≤ ‖φ‖ ‖x‖ .

It follows that the map Jφ : X → Hφ , defined by Jφx = xφ , is a bounded linear operator with dense range.
For an arbitrary g ∈ G, define the map Uφ (g) : Hφ → Hφ, by

Uφ (g)xφ = (V (g)x)φ .

Then, Uφ := {Uφ (g)}g∈G is a unitary representation of G on Hφ and

Uφ (g) Jφ = JφV (g) (∀g ∈ G) . (2.3)

Moreover, we have ⋂
φ∈X∗

ker Jφ = {0} .
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Now, let us show that sp(Uφ) ⊆sp(V) . To see this, let χ ∈sp(Uφ) and let f ∈ L1 (G) be such that f̂ (V) = 0.

We must show that f̂ (χ) = 0. Indeed, from the identity (2.3), we have

f̂ (Uφ) Jφ = Jφf̂ (V) ,

which implies f̂ (Uφ) Jφ = 0. Since Jφ has dense range, f̂ (Uφ) = 0. Also, since χ ∈sp(Uφ) , we have f̂ (χ) = 0.
2

The triple (Hφ, Jφ,Uφ) will be called unitary representation associated with the pair (V, φ) .

Lemma 2.6 Let G be a locally compact abelian group and let V = {V (g)}g∈G be a representation of G by
isometries on a Banach space X . Assume that the Arveson spectrum of V is a scattered set. If x ∈ X satisfies
the condition

lim
i

1

|Ki|

∫
Ki

|〈φ, V (s)x〉|2 ds = 0,

for a Følner net {Ki}i∈I for S and for every φ ∈ X∗ , then x = 0.

Proof Let φ ∈ X∗ and let (Hφ, Jφ,Uφ) be the unitary representation associated with the pair (V, φ) . In
view of Lemma 2.5,

〈Uφ (g) Jφx, Jφx〉 = 〈Jφx, Uφ (g) Jφx〉

= 〈Jφx, JφV (g)x〉 = 〈J∗
φJφx, V (g)x〉 (∀g ∈ G) .

Consequently, we have

lim
i

1

|Ki|

∫
Ki

|〈Uφ (s) Jφx, Jφx〉|2 ds = lim
i

1

|Ki|

∫
Ki

∣∣〈J∗
φJφx, V (s)x〉〉

∣∣2 ds = 0.

By Lemma 2.3, Jφx = 0 for all φ ∈ X∗. Taking into account Lemma 2.5, we get that x = 0. 2

Let V = {V (s)}s∈S be a representation of the abelian semigroup S by isometries on a Banach space X .
In [3, Theorem 5.1], it was proved that if spu (V) is a scattered set, then each V (s) (s ∈ S) is an invertible
isometry. Consequently, V extends to an isometric representation W = {W (g)}g∈G of G on X by defining

W (g) = V (s)V (t)
−1

, where g = s− t.

In this case, spu (V) coincides with the Arveson spectrum of W [3].
Now, we are in a position to prove Theorem 2.1.

Proof [Proof of Theorem 2.1.] By changing to an equivalent norm, the representation T can be made
contractive (renorming does not change the spectral assumptions). By Lemma 2.2, we may assume that

lim
i

1

|Ki|

∫
Ki

|〈φ, T (s)x〉|2 ds = 0 for all φ ∈ X∗.
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Let (Y, J,V) be the isometric representation associated with T. By Lemma 2.4,

spu (V) ⊆ spu (T) ,

which implies that the unitary spectrum of V is also a scattered set. As we have noted above, V extends
to an isometric representation W = {W (g)}g∈G of G on Y and spu (V) =sp(W) . Consequently, we have
sp(W) ⊆spu (T) and therefore, sp(W) is a scattered set. If y∗ ∈ Y ∗ , then by Lemma 2.4,

〈y∗, V (s) Jx〉 = 〈y∗, JT (s)x〉 = 〈J∗y∗, T (s)x〉 (∀s ∈ S) .

Since W (s) = V (s) (∀s ∈ S) , we can write

lim
i

1

|Ki|

∫
Ki

|〈y∗,W (s) Jx〉|2 dg = lim
i

1

|Ki|

∫
Ki

|〈y∗, V (s) Jx〉|2 ds

= lim
i

1

|Ki|

∫
Ki

|〈J∗y∗, T (s)x〉|2 ds = 0.

By Lemma 2.6, Jx = 0. By Lemma 2.4, this means that lims ‖T (s)x‖ = 0. 2

The following result is an immediate consequence of Theorem 2.1.

Corollary 2.7 Let T = {T (s)}s∈S be a bounded representation of the abelian semigroup S on a Banach space
X with scattered unitary spectrum. If x ∈ X and lims T (s)x = 0 weakly, then lims ‖T (s)x‖ = 0.
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