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Abstract: In this article, generalized Robertson Walker spacetimes are investigated in light of perfect fluid spacetimes.
First, we establish that a perfect fluid spacetime with nonvanishing vorticity whose associated scalars are constant along
the velocity vector field becomes a generalized Robertson Walker spacetime. Among others, it is also shown that a
Ricci parallel perfect fluid spacetime is either a generalized Robertson Walker spacetime or a static spacetime. Finally,
we acquire that in a conformally semisymmetric generalized Robertson Walker spacetime of dimension 4 , the scalar
curvature vanishes and the spacetime is locally isometric to the Minkowski spacetime, provided the electric part of the
Weyl tensor vanishes. Moreover, it is established that the last result also holds in a conformally recurrent generalized
Robertson Walker spacetime.
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1. Introduction
Lorentzian manifold is a particular instance of a semi (or pseudo)-Riemannian manifold with the metric tensor
g whose signature is (−,+,+, . . . ,+) , that is, the index is one. Some of the most significant theories in
contemporary physics, including string theory and general relativity, are based on the mathematical foundation
of Lorentzian geometry. A Lorentzian manifold M , from a purely mathematical perspective, is a smooth
manifold equipped with a nondegenerate bilinear symmetric metric g . Generally, there might not be a
universally time-like vector on (M, g) . If it accommodates a globally time-like vector, then it is referred to
be a spacetime. Many researchers have investigated spacetimes in numerous ways, like [8, 13, 17, 20, 21, 30]
and many others.

In a semi (or pseudo)-Riemannian manifold Mn (n ≥ 4), let g be a semi-Riemannian metric with
signature (p,m) , in which p + m = n . Mn equipped with g is referred to as a Lorentzian manifold [23]
if g is a Lorentzian metric with signature (n − 1, 1) or (1, n − 1) . If M = −I ×f M , then M is called a
generalized Robertson-Walker (GRW) spacetime [2, 7], where M indicates an (n− 1) -dimensional Riemannian
manifold, I ∈ R (set of real numbers) is an open interval, and f > 0 stands for a smooth function. In
particular, GRW spacetime becomes Robertson-Walker (RW) spacetime if we assume that M is a 3 -dimensional
Riemannian manifold of constant curvature. One is well aware that the GRW spacetimes include the Lorentzian
Minkowski spacetimes, the Friedmann cosmological models, the Einstein-de Sitter spacetimes, the static Einstein
spacetimes, the de Sitter spacetimes [24].
∗Correspondence: agezer@atauni.edu.tr
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The energy momentum tensor Tkl in a perfect fluid spacetime (PFS) is written by

Tkl = (σ + p)ukul + pgkl. (1.1)

In here, p and σ denote the isotropic pressure and energy density [23]. In equation (1.1), the velocity vector is
described as gklu

kul = −1 and uk = gklu
l .

Without a cosmological constant, the Einstein’s field equations (EFEs) are stated as

Rkl −
R

2
gkl = κTkl, (1.2)

where κ indicates gravitational constant, Rh
kli is the curvature tensor of type (1, 3) , R = gklRkl and Rkl = Ri

kli

stand for the scalar curvature and the Ricci tensor, respectively.
M is called a PFS if it is a nonvanishing Ricci tensor Rkl obeys

Rkl = bukul + agkl, (1.3)

where b and a indicate smooth functions. The equations (1.1) and (1.2) together provide equation (1.3) (see
[21]).

Jointly, the equations (1.1), (1.2) and (1.3) infer

b = κ(p+ σ), a =
κ(p− σ)

2− n
. (1.4)

It is known that every RW-spacetime is a PFS [23]. Also, a 4 -dimensional GRW-spacetime is a PFS if and
only if it is a RW-spacetime [12]. In [21], the authors prove that a PFS with p+ σ ̸= 0 satisfying ∇hC

h
ijk = 0 ,

in which ∇ denotes the covariant differentiation is a GRW spacetime. Shepley and Taub [27] proved that a
4 -dimensional PFS with ∇hC

h
ijk = 0 and obeying state equation p = p(σ) is conformally flat, and the flow is

irrotational, geodesic and shear-free, also the metric is RW. In [26], Sharma and Ghosh established that if Thk

is Killing in a PFS, then (i) σ and p are constant, and the PFS is (ii) expansion and shear-free, with a geodesic
flow that may or may not be vorticity free. The characteristics of perfect fluid spacetimes have been seen in
[3, 9, 10, 18, 19].

The Weyl tensor denoted by C is provided in local coordinates by

Cijkl = Rijkl −
1

n− 2
(gilRjk − gikRjl + gjkRil − gjlRik)

+
R

(n− 1)(n− 2)
{gilgjk − gikgjl}, (1.5)

where Rhijk stands for the (0, 4) type curvature tensor.
Further, it is known that

∇kC
k
hji =

n− 3

n− 2
[{∇iRhj −∇jRhi} −

1

2(n− 1)
{ghj∇iR− ghi∇jR}]. (1.6)

If ∇kC
k
lij = 0 , then the Weyl tensor is named harmonic. The tensor’s harmonicity can be seen in the

conservation laws of physics.
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Chen and Yano [6] obtain the subsequent curvature tensor’s expression

Rhijk = γ(ghkgij − ghjgik)

+µ{ghkuiuj + gijuhuk − ghjuiuk − gikuhuj}, (1.7)

where Rhijk = ghlR
l
ijk , Rh

ijk denotes the (1, 3) type curvature tensor and ui is a unit vector, named the
generator and γ, µ are scalars. A space of quasi-constant curvature (briefly, (QC)n ) is a conformally flat space
of dimension n that obeys the equation (1.7). Nevertheless, it is simple to confirm that the space is conformally
flat if equation (1.7) holds. Thus, conformally flatness is not necessary according to the definition. A spacetime
of quasi-constant curvature is a Lorentzian manifold whose curvature tensor satisfies equation (1.7) and ui is a
unit time-like vector.

In [19], Mantica et. al and in [7], Chen have shown the subsequent:

Theorem A. [19] A GRW spacetime obeys ∇hC
h
ijk = 0 if and only if the spacetime is a PFS.

Theorem B. [7] M is a GRW spacetime if and only if it admits a time-like concircular vector field.
Also, the characteristics of GRW spacetimes have been found in [2, 18, 21, 24] and references therein.

The research mentioned above encourages us to investigate some features of GRW spacetimes and provide the
followings:

Theorem 1.1 A PFS with nonvanishing vorticity whose associated scalars are constant along the velocity vector
field becomes a GRW spacetime.

Theorem 1.2 A (QC)n spacetime is a GRW spacetime.

Let a Lorentzian manifold admit a Killing time-like vector ρ . Then, the spacetime is considered to be a
stationary spacetime. If, furthermore, ρ is irrotational the spacetime is named as static ([25], [28, p. 283]). Let
us define a metric

g[(t, y)] = gS [y]− β(y)dt2, (1.8)

where gS indicates a Riemannian metric on S . The product R×S , equipped with the previous metric is named
a static spacetime.

Now, we consider Ricci parallel PFS and demonstrate the subsequent:

Theorem 1.3 A Ricci parallel PFS is either a static spacetime or a GRW spacetime.

In [14], Gray invented the concept of the Codazzi type of Ricci tensor. A spacetime fulfills Codazzi type
of Ricci tensor if its nonzero Ricci tensor Rij obeys

∇kRij = ∇jRik.

Considering the Codazzi type of Ricci tensor, we reveal:

Theorem 1.4 In a PFS if the Ricci tensor is of Codazzi type, then either the PFS represents a GRW spacetime
or the flow is irrotational provided the gradient of the scalar a is parallel to the velocity vector.
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Cartan [4] introduced the notion of semisymmetric spaces. A Lorentzian manifold M is called semisym-
metric [29] if it obeys the condition

∇m∇lR
h
ijk −∇l∇mRh

ijk = 0, (1.9)

where ∇ indicates the covariant differentiation. Semisymmetric spacetimes have been considered in [15].
M is named conformally semisymmetric [15] if Chijk fulfills

∇m∇lChijk −∇l∇mChijk = 0, (1.10)

and Ricci semisymmetric [22] if Rij fulfills

∇m∇lRij −∇l∇mRij = 0. (1.11)

Obviously, a semisymmetric manifold implies Ricci semisymmetry and conformally semisymmetry. However, in
the literature examples of conformally semisymmetric manifolds in dimension 4 which are not semisymmetric
are given. In [11], Erikson and Senovilla proved that in a 4 -dimensional Lorentzian manifold conformally
semisymmetric implies Ricci semisymmetric and conformally semisymmetric and semisymmetric manifolds are
equivalent.

In dimension 4 , choosing conformally semisymmetric GRW spacetime, we acquire:

Theorem 1.5 In a conformally semisymmetric GRW spacetime of dimension 4 , the scalar curvature vanishes,
and the spacetime is locally isometric to the Minkowski spacetime, provided the electric part of the Weyl tensor
vanishes.

Conformally recurrent manifold is defined by ∇lC
h
ijk = λlC

h
ijk [1], λl is a covariant vector. Finally, we

consider a nonconformally flat conformally recurrent GRW spacetime and produce:

Theorem 1.6 In a conformally recurrent GRW spacetime the scalar curvature vanishes and the spacetime is
locally isometric to the Minkowski spacetime, provided the electric part of the Weyl tensor vanishes.

2. Proof of the Theorems
Proof of the Theorem 1.1

At first, from equation (1.3), we can easily obtain

∇lRhk = (∇la)ghk + (∇lb)uhuk + b[uk∇luh + uh∇luk]. (2.1)

Multiplying by ghl , we infer

1

2
∇kR = (∇ka) + bhuhuk + b[∇lu

luk + ul∇luk]. (2.2)

Since uhu
h = −1 implies uh∇luh + uh∇lu

h = 0 ⇒ uh∇lu
h = 0 , we acquire from the above

∇kR = 2(∇ka) + 2bhuhuk + 2buk∇lu
l. (2.3)
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Again, from equation (1.3) we have
∇kR = n(∇ka)− (∇kb). (2.4)

Making use of the last two equations, one can easily get

(n− 2)uk(∇ka) = −uk(∇kb)− 2b∇lu
l. (2.5)

Suppose the associated scalars a and b defined in equation (1.3) are constant along the velocity vector
uh , then equation (2.5) infers either (i) b ̸= 0 or, (ii) b = 0 .

(i) For b ̸= 0 , we get divergence of the velocity vector vanishes which implies the vorticity of the fluid
vanishes.

(ii) If b = 0 , then equation (1.3) implies the spacetime becomes Einstein. Hence, from equation (1.6) it
follows that ∇hC

h
ijk = 0 . Thus, by Theorem A, we get the desired result. □

Proof of the Theorem 1.2
The (QC)n spacetime is defined as

Rhijk = p1(ghkgij − ghjgik) + q1(ghkuiuj + gijuhuk − ghjuiuk − gikuhuj), (2.6)

in which p1 , q1 are scalars and vector ui is time-like and unit, that is, uiui = −1 .
Therefore, the foregoing equation reveals

Rij = {p1(n− 1)− q1}gij + (n− 2)q1uiuj , (2.7)

which provides that the spacetime represents PFS.
It is easy to see that for a (QC)n , the Weyl tensor Ch

ijk vanishes. Hence, ∇hC
h
ijk = 0 . Therefore, using

Theorem A we acquire the required result. □

Proof of the Theorem 1.3
Since the PFS is Ricci parallel, we have ∇lRhk = 0 and hence

(∇la)ghk + (∇lb)uhuk + b[uk∇luh + uh∇luk] = 0, (2.8)

which implies
(∇la)uk − (∇lb)uk − b∇luk = 0. (2.9)

Since ∇lRhk = 0 , we get R = constant and hence na− b = 0 .
From the last equation, it follows

((∇la)− n(∇la))uk − b∇luk = 0. (2.10)

Transvecting (2.10) with uk , we find (∇la) = 0 which implies a = constant and hence b = constant.
Therefore, equation (2.9) infers either (i) b ̸= 0 or (ii) b = 0 .
(i) For b ̸= 0 , we acquire ∇luk = 0 . Thus, for a smooth vector field v we infer

£vgij = ∇ivj +∇jvi,
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where £ indicates Lie derivative operator. Now, ∇luk = 0 implies £ugij = 0 which implies that u is Killing.
Further, ∇luk = 0 entails uk is irrotational. Therefore, the PFS becomes static [28].

(ii) If b = 0 , from equation (1.3) the spacetime becomes Einstein and hence, from equation (1.6) we
acquire ∇hC

h
ijk = 0 . Thus, by Theorem A, we get the result. □

Proof of the Theorem 1.4
Differentiation (1.3) covariantly yields

∇lRij = (∇la)gij + (∇lb)uiuj + b(uj∇lui + ui∇luj). (2.11)

Similarly, we obtain
∇jRil = (∇ja)gil + (∇jb)uiul + b(ul∇jui + ui∇jul). (2.12)

Suppose the Ricci tensor is of Codazzi type. Then, ∇lRij = ∇jRil . Hence, using the last two equations,
we acquire

(∇la)gij − (∇ja)gil + (∇lb)uiuj − (∇jb)uiul

+b[uj∇lui − ul∇jui + ui{∇luj −∇jul}] = 0. (2.13)

The result of multiplying with ui is

(∇la)uj − (∇ja)ul − (∇lb)uj + (∇jb)ul − b{∇luj −∇jul} = 0. (2.14)

Since ∇lRij = ∇jRil provides R = constant, from the equation (2.4) it is easily follows that n(∇ka) = (∇kb) .
Hence, equation (2.14) yields

(1− n){(∇la)uj − (∇ja)ul} − b{∇luj −∇jul} = 0. (2.15)

Suppose the gradient of the scalar a is parallel to the velocity vector. Then the foregoing equation entails
either (i) b ̸= 0 or (ii) b = 0 .

(i) For b ̸= 0 , we say that the flow is irrotational.
(ii) If b = 0 , then from equation (1.3) it follows that the spacetime is Einstein. Hence, from equation

(1.6) we obtain ∇kC
k
lij = 0 . Thus, by Theorem A, we have a PFS, which is a GRW spacetime. □

Proof of the Theorem 1.5
In a GRW spacetime [18], we have the subsequent shape of the Ricci tensor Rij :

Rij =
nf −R

(n− 1)
µiµj −

f −R

(n− 1)
gij + (n− 2)Chijkµ

hµk, (2.16)

in which µi =
Xi√
XpXp

and Rijµ
j = fµi , f is a scalar. Equation (2.16) can be written as

Rij = αµiµj − βgij + (n− 2)Chijkµ
hµk, (2.17)

where α = nf−R
(n−1) and β = f−R

(n−1) .
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From the last equation, one can easily acquire

∇l∇mRij −∇m∇lRij = α[∇l∇mµiµj + µi∇l∇mµj − µj∇m∇lµi − µi∇m∇lµj ]

+(n− 2){∇l∇mChijk −∇m∇lChijk}µhµk

+(n− 2)Chijk{(∇l∇mµh −∇m∇lµ
h)µk + µh(∇l∇mµk

−∇m∇lµ
k)}. (2.18)

In dimension 4 , let us suppose that GRW spacetime is conformally semisymmetric.
With the help of the above result equation (2.18), we have

α[(∇l∇mµi −∇m∇lµi)µj + µi(∇l∇mµj −∇m∇lµj)]

+2Chijk{(∇l∇mµh −∇m∇lµ
h)µk

+µh(∇l∇mµk −∇m∇lµ
k)} = 0. (2.19)

Applying Ricci identity, we get

α[µrR
r
ilmµj + µrR

r
jlmµi]

+2Chijk{µrRh
rlmµk + µrRk

rlmµh} = 0. (2.20)

Multiplying equation (2.20) by gil we get

α[µrR
r
mµj + µrR

r
jlmµl]

+2Chijkg
il{µrRh

rlmµk + µrRk
rlmµh} = 0. (2.21)

Multiplication with µj and using µjµj = −1 we obtain

−αµrR
r
m + αµrµ

lµjRr
jlm

= 2Chijkg
ilµrRh

rlmµkµj + 2Chijkg
ilµrRk

rlmµhµj = 0. (2.22)

Now, using µrR
r
i = fµi in the foregoing equation, we have

−αfµm − 2Chijkµ
hµjRk

rlmµrgil = 0. (2.23)

Suppose the electric part of the Weyl tensor vanishes [16], then Chijkµ
hµj = 0 .

Thus, under the above assumption, we infer Rij = 0 , that is, the spacetime is a vacuum, which implies
that the GRW spacetime is locally isometric to the Minkowski spacetime. □

Remark 2.1 Since semisymmetry and conformally semisimmetry are equivalent in a spacetime, the above result
holds for a semisymmetric GRW spacetime.

Remark 2.2 A spacetime is said to be conformally symmetric [5] if ∇lC
h
ijk = 0 . Conformally symmetric

spacetime implies conformally semisymmetric spacetime; therefore, the above theorem also holds for conformally
symmetric GRW spacetime of dimension 4 .
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Proof of the Theorem 1.6
Let us consider a nonconformally flat conformally recurrent GRW spacetime and f2 = ChijkC

hijk , from
which we get

2ffl = ∇lChijkC
hijk + ChijkC

hijk
l = 2f2λl, (2.24)

where fl = ∇lf .
From equation (2.24), we infer fl = fλl . From the above we can acquire ∇lf = fλl which implies

∇m∇lf = (∇mf)λl + f∇mλl = fλmλl + f∇mλl. (2.25)

Using the last equation, we obtain

∇l∇mf −∇m∇lf = fλlλm + f∇lλm − fλmλl − f∇mλl, (2.26)

which provides

0 = f(∇lλm −∇mλl). (2.27)

Hence, we have ∇lλm = ∇mλl , since f ̸= 0 .
Now,

∇l∇mCh
ijk = λl∇lC

h
ijk + λl∇mCh

ijk

= ∇mλlC
h
ijk + λlλmCh

ijk. (2.28)

Therefore, we get

∇l∇mCh
ijk −∇m∇lC

h
ijk = (∇mλl −∇lλm)Ch

ijk. (2.29)

Hence, ∇lC
h
ijk = λlC

h
ijk implies ∇l∇mCh

ijk −∇m∇lC
h
ijk = 0 .

Hence, using the last theorem we acquire the desired result. □

3. Discussion
Spacetime, a time-oriented, torsion-less Lorentzian manifold, is a platform of the physical world that is being
modelled at the moment. General relativity theory, originally laid out by Albert Einstein in 1915, tells that
the matter content of the cosmos can be expressed by selecting a suitable energy momentum tensor and in
cosmological models, this matter behaves like a PFS. Perfect fluid meaning it cannot transport heat. Since a
perfect fluid has no viscosity, it is unable to endure a tangential force even when it is flowing. Perfect fluids
are employed in general relativity to model idealized matter distributions, as those seen inside stars or in an
isotropic universe. In the second case, the state equation of the perfect fluid can be utilised to describe the
evolution of the cosmos using the Friedmann-Lemaître-Robertson-Walker equations. Large scale cosmology is
performed in GRW spacetimes, which are a logical and expansive extension of RW spacetimes.

In this article, we determine the conditions under which a PFS turns into a GRW spacetime. In the near
future, we or perhaps other researchers will look at the various characteristics of GRW spacetimes.
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